Winnipeg Biosolids SAC Meeting #2

November 18, 2013

Outline

- Selection Criteria
- Biosolids Trends and Options
 - Compost
 - Land Reclamation
 - Landfill

Selection Criteria

- Selection criteria that must be included:
 - Consider sustainable reuse of biosolids and/or end product(s)
 - Nutrient recovery and recycle
 - Cost
- What is sustainable reuse?*
 - Minimize greenhouse gas
 - Consider usability of product
 - Meet municipal, provincial, federal regulations
 - Minimize risk to human health and environment

*CCME Guidance Document for Beneficial Use of Municipal Biosolids, Municipal Sludge, and Treated Septage

SAC Discussion on Selection Criteria

CCME Considerations* for Biosolids Management

- Usable product (marketability)
- Nutrients
- Safety
- Greenhouse gas emissions
- Pathogens
- Metals
- Vector attraction (birds, rodents, insects)
- Odours
- Energy

*Canada-Wide Approach for the Management of Wastewater Biosolids

CCME Biosolids Disposal and End Product Options*

- Compost
- Land reclamation (mines, top cover in landfill)
- Landfill (not considered sustainable reuse)
- Land Application
- Thermal Oxidation/Combustion and energy recovery
- Pelletization for soil conditioner

*CCME Canada-Wide Approach for the Management of Wastewater Biosolids

 Biosolids, woodchips, air, mixing, and time make compost

Compost: How is it done?

- Biosolids and woodchips mixed together
 - Woodchips provide carbon, structure, breathability
- 'Mixture' is composted for four weeks with air
 - Aerated by blowing air or vacuum
 - Biological reactions heat mixture and kill pathogens
- Compost is stored for three to four weeks for curing and testing
 - Cools compost
 - Ensures reactions are complete

Winnipeg's Pilot Compost Facility

Total size equivalent to approximately 3 football fields

Compost: Who is involved?

- Can be publically or privately operated/distributed
- Provincially regulated
- Stakeholders and Users
 - Regulators (MB Conservation)
 - City of Winnipeg
 - Soil mixers
 - Parks and recreational facilities
 - Garden centers

Where is Composting Done?

- Western Canada:
 - Kelowna/Vernon, BC
 - Edmonton, AB
 - Banff, AB
 - Abbotsford, BC
 - Calgary, AB (procurement/design stage)
 - Winnipeg, MB (pilot)
- Moncton, New Brunswick
- Quebec (9% of biosolids composted)

Compost Key Success Factors

- Bulking agent (woodchips)
 - Reliable source of woodchips at reasonable cost
- Metals
 - Compost/biosolids must have sufficiently low metals
- Pathogens
 - Temperature and duration
- Odour
- End use of compost
 - Compost must be used offsite

Compost Summary

Advantages

- Sustainable reuse
- Utilize nutrients
- Easy to store and handle
- Strong demand as soil amendment
- Satisfies an existing need

Disadvantages

- Potentially odorous
- Expensive (\$\$\$)
- Dependent on bulking agent
- Land/space required

SAC Discussion on Composting

Land Reclamation

- End product (compost, ash, pellet) applied as top cover
 - Prevent erosion, contain garbage and promote plant growth

Land Reclamation: How is it Done?

- Landfill a potential reclamation site
- Biosolids end products used for final cover
- Could be applied by City or private contractor
- Landfill demand not strong enough for all of City's biosolids

Land Reclamation: Who is Involved?

- Stakeholders
 - City of Winnipeg
 - Residents close to landfill
 - Manitoba Conservation
 - Sludge and biosolids haulers and spreaders

Land Reclamation Success Factors

- Requires access to landfills
- Demand of product: reclamation typically limited to less than 15% of global picture
 - Ottawa 12% (biosolids used for landfill top cover)
 - Quebec 2% (land reclamation)
 - USA 3% (land reclamation)

Land Reclamation Summary

Advantages

- Beneficial reuse
- Nutrient utilization
- Satisfies existing need
- Cost, depending on pretreatment (\$ - \$\$\$)

Disadvantages

- Labour and logistics
- Requires pretreatment
- Limited access/demand in Manitoba

Landfill: How is it Done?

- Biosolids mixed with municipal waste on site and disposed in landfill
- Not considered sustainable reuse
- City or private contractor can dispose

Landfill Success Factors

- Access to landfill with sufficient capacity
- Need solid waste to mix with biosolids
- Odours

Landfill Summary

Advantages

- Cost (\$)
- Reliable disposal
- Less disposal restrictions

Disadvantages

- Does not utilize nutrients
- Does not utilize energy
- Decreases landfill capacity
- Odours
- Greenhouse Gas

SAC Discussion on Land Reclamation and Landfilling

