

April 15, 2025

City of Winnipeg Approved Testing Laboratories

The following Testing Laboratories have been approved for the 2025 construction season.

Eng-Tech Consulting Ltd. H. Manalo Consulting Ltd. Stantec Consulting Ltd. Trek Geotechnical WSP E&I Canada Limited – Manitoba Aecom Canada Ltd. Bayview Construction Ltd.

Copies of CCIL Certification be submitted directly to:

Ahmed Ghazy, Ph.D., P.Eng., PMP Research and Standards Engineer Public Works Department, Engineering Division 106-1155 Pacific Avenue Winnipeg, MB R3E 3P1 Email: <u>aghazy@winnipeg.ca</u> Phone: 204-986-403

ENGINEERING DIVISION 106-1155 Pacific Avenue, Winnipeg (Manitoba) R3E 3P1 DIVISION DE L'INGENIERIE 106-1155, avenue Pacific, Winnipeg (Manitoba) R3E 3P1

2025 APPROVED TESTING LABORATORIES - AGGREGATE

	Testing Method				Testing	Laborato	ories		
	Testing Method	ASTM/AASHTO/CSA/LS	Eng-Tech	H. Manalo	Stantec	Trek	WSP	AECOM	Bayview ¹
()	Reducing Samples of Aggregate to Testing Size	C702	\checkmark						
lity Coni (Type C	Minerals finer than 75 μ m (No. 200) Sieve in Mineral Aggregates by Washing	C117	\checkmark						
Aggregate Quality Control Laboratories (Type C)	Sieve Analysis of Fine and Coarse Aggregates	C136	\checkmark						
regate aborat	Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate	D4791	\checkmark						
Agg La	Determining the Percentage of Fractured Particles in Coarse Aggregate	D5821	\checkmark						
D)	Resistance to Degradation of Small & Large-Size Coarse Aggregate by Abrasion and Impact in the L.A. Machine	C131 & C535	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
(Type	Relative Density (Specific Gravity) and Absorption of Coarse Aggregate	C127	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-
Itories	Relative Density (Specific Gravity) and Absorption of Fine Aggregate	C128	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-
Laboratories (Type D)	Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate	C88	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-
	Organic Impurities in Fine Aggregates for Concrete	C40	\checkmark	-	\checkmark	-	\checkmark	-	-
Physical Property	Resistance of Unconfined Coarse Aggregate to Freezing and Thawing	A23.2-24A	\checkmark	-	-	\checkmark	-	-	-
	Resistance of Coarse Aggregate to Degradation by Abrasion in the Micro-Deval Apparatus	D6928	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_
Aggregate	Resistance of Fine Aggregate to Degradation by Abrasion in the Micro-Deval Apparatus	D7428	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-
Agg	Detection of Alkali-Silica Reactive Aggregate by Accelerated Expansion of Mortar Bars	A23.2-25A	-	-	\checkmark	\checkmark	-	_	-

See Next Page

2025 APPROVED TESTING LABORATORIES – AGGREGATE (CONT'D)

	Testing Method				Testing	Laborato	ries		
	Testing Method	ASTM/AASHTO/CSA/LS	Eng-Tech	H. Manalo	Stantec	Trek	WSP	AECOM	Bayview ¹
gate rties	Uncompacted Void Content of Fine Aggregate	C1252	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark
Aggregate Properties	Sand Equivalent Value of Soils and Fine Aggregate	D2419	\checkmark	-	\checkmark	-	-	-	\checkmark
Superpave Consensus I	Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate	D4791	\checkmark	-	\checkmark	\checkmark	-	-	\checkmark
Supe Consi	Determining the Percentage of Fractured Particles in Coarse Aggregate	D5821	\checkmark	-	\checkmark	\checkmark	-	-	\checkmark
	Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lb/ft3 (600 kN-m/m3))	D698	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
y Tests	Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lb/ft3 (2,700 kN-m/m3))	D1557	\checkmark	-	\checkmark	\checkmark	\checkmark	-	-
Property	Specific Gravity of Soil Solids by Water Pycnometer	D854	-	-	\checkmark	\checkmark	-	-	-
	Liquid Limit, Plastic Limit, and Plasticity Index of Soils	D4318	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
Soil Physical	Particle Size Analysis of Soils	T88	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	-
	Permeability of Granular Soils (Constant Head)	D2434	-	-	-	\checkmark	-	-	-

¹ Bayview Construction Ltd. Testing Laboratory is conditionally approved. Please contact the Research and Standards Engineer before using this laboratory.

2025 APPROVED TESTING LABORATORIES - CONCRETE

	Testing Method	ASTM/AASHTO/CSA/LS	CSA/LS Testing Laboratories							
			Eng-Tech	H. Manalo	Stantec	Trek	WSP			
	Sampling plastic concrete	A23.2-1C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Basic Concrete (Type Q)	Making and curing concrete compression and flexural test specimens	A23.2-3C (Compressive)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
	Air content of plastic concrete by the pressure method	A23.2-4C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Concre	Slump of concrete	A23.2-5C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Basic	Compressive strength of cylindrical concrete specimens	A23.2-9C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
	Temperature of freshly mixed hydraulic cement concrete	A23.2-17C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
	Testing for properties of flowable grout	A23.2-1B	\checkmark	\checkmark	\checkmark	-	\checkmark			
	Determination of bond strength of bonded toppings and overlays and of direct tensile strength of concrete, mortar, and grout	A23.2-6B (Procedure A)	\checkmark	\checkmark	\checkmark	-	\checkmark			
ype Q)	Making and curing concrete compression and flexural test specimens	A23.2-3C (Flexural)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
ests (T ₎	Flexural strength of concrete (using simple beam with third-point loading)	A23.2-8C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Additional Tests (Type Q)	Water content, density, absorption, and voids in hardened concrete, grout, or mortar	A23.2-11C	\checkmark	-	\checkmark	-	\checkmark			
Additic	Obtaining and testing drilled cores for compressive strength testing	A23.2-14C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
	Slump flow of concrete	A23.2-19C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
	Passing ability of self-consolidating concrete by J-ring and slump cone	A23.2-20C	\checkmark	-	-	-	-			

See Next Page

2025 APPROVED TESTING LABORATORIES – CONCRETE (CONT'D)

	Testing Method	ASTM/AASHTO/CSA/LS		1	ng Laborato	ries	
			Eng-Tech	H. Manalo	Stantec	Trek	WSP
	Sampling aggregates for use in concrete	A23.2-1A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Sieve analysis of fine and coarse aggregate	A23.2-2A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
e R)	Clay lumps in natural aggregate	A23.2-3A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
(Type	Low-density granular material in aggregate	A23.2-4A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Aggregate (Amount of material finer than 80 μ m in aggregate	A23.2-5A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Aggre	Relative density and absorption of fine aggregate	A23.2-6A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Concrete	Test for organic impurities in fine aggregates for concrete	A23.2-7A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Bulk density of aggregate	A23.2-10A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Relative density and absorption of coarse aggregate	A23.2-12A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Flat and elongated particles in coarse aggregate	A23.2-13A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Soundness of fine and coarse aggregate by use of magnesium sulphate	A23.2-9A	\checkmark	-	-	\checkmark	-
	Surface moisture in fine and coarse aggregate	A23.2-11A	\checkmark	\checkmark	\checkmark	-	\checkmark
e R)	Resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine	A23.2-16A	\checkmark	-	\checkmark	\checkmark	\checkmark
s (Type R)	Resistance to degradation of large-size coarse aggregate by abrasion and impact in the Los Angeles machine	A23.2-17A	\checkmark	-	\checkmark	\checkmark	\checkmark
Tests	Test method for the resistance of fine aggregate to degradation by abrasion in the Micro-Deval apparatus	A23.2-23A	\checkmark	-	\checkmark	\checkmark	-
Additional	Test method for the resistance of unconfined coarse aggregate to freezing and thawing	A23.2-24A	\checkmark	-	-	\checkmark	-
Addi	Test method for detection of alkali-silica reactive aggregate by accelerated expansion of mortar bars	A23.2-25A	-	-	\checkmark	\checkmark	-
	Determination of potential alkali-carbonate reactivity of quarried carbonate rocks by chemical composition	A23.2-26A	-	-	-	\checkmark	_
	Test method for the resistance of coarse aggregate to degradation by abrasion in the Micro-Deval apparatus	A23.2-29A	\checkmark	-	\checkmark	\checkmark	-
	See Next Page						

See Next Page

2025 APPROVED TESTING LABORATORIES – CONCRETE (CONT'D)

	Testing Method	ASTM/AASHTO/CSA/LS	Testing Laboratories							
		ASTIVI/AASHTO/CSA/LS	Eng-Tech	H. Manalo	Stantec	Trek	WSP			
ete	Measuring mortar-strength properties of fine aggregate	A23.2-8A	\checkmark	-	\checkmark	-	\checkmark			
Advanced Concrete (Type S)	Making concrete mixes in the laboratory	A23.2-2C	\checkmark	-	\checkmark	-	\checkmark			
	Density and yield of plastic concrete	A23.2-6C	\checkmark	-	\checkmark	-	\checkmark			
Adı	Water content, density, absorption, and voids in hardened concrete, grout, or mortar	A23.2-11C	\checkmark	-	\checkmark	-	\checkmark			
	Accelerating the curing of concrete cylinders and determining their compressive strength	A23.2-10C (Procedure A & C)	\checkmark	-	-	-	-			
	Making, curing, and testing compression test specimens of no-slump concrete	A23.2-12C (incl. 18C)	\checkmark	-	-	-	-			
ype S)	Splitting tensile strength of cylindrical concrete specimens	A23.2-13C	\checkmark	-	\checkmark	-	-			
ests (T	Determination of total water content of normal weight fresh concrete	A23.2-18C	\checkmark	-	-	-	-			
Additional Tests (Type S)	Test Method for length change of hardened concrete	A23.2-21C	\checkmark	-	-	-	-			
Addit	Scaling resistance of concrete surfaces exposed to deicing chemicals using mass loss	A23.2-22C	\checkmark	-	-	-	-			
	Electrical indication of concrete's ability to resist chloride ion penetration	A23.2-23C	\checkmark	-	\checkmark	-	-			
	Bulk electrical resistivity of concrete	A23.2-26C	\checkmark	-	-	-	-			

2025 APPROVED TESTING LABORATORIES – ASPHALT

	Testing Method	ASTM/AASHTO/CSA/LS	Testing Laboratories							
			Eng-Tech	H. Manalo	Stantec	Trek	WSP	Bayview ¹		
	Preparation of Bituminous Specimens Using Marshall Apparatus	D6926	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
e B)	Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures	D2726	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark		
- Marshall Method (Type	Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Coated Samples	D1188	-	\checkmark	-	\checkmark	\checkmark	-		
Metho	Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Automatic Vacuum Sealing Method	D6752	-	\checkmark	\checkmark	\checkmark	-	-		
rshall	Marshall Stability and Flow of Asphalt Mixtures	D6927	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
e - Ma	Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures	D2041	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Compliance	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	D3203	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
x Com	Percent VMA in Compacted Mixture	MS-2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Asphalt Mix	Quantitative Extraction of Bitumen From Bituminous Paving Mixtures	D2172	\checkmark	\checkmark	\checkmark	\checkmark	-	-		
Asph	Asphalt Content of Hot-Mix Asphalt by Ignition Method	D6307	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	Mechanical Size Analysis of Extracted Aggregate	D5444	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
iance hod	Preparing and Determining the Density of Asphalt Mixture Specimens by Means of the Gyratory Compactor	T312	-	-	\checkmark	-	\checkmark	\checkmark		
ohalt Mix Compliance Superpave Method (Type B)	Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures	D2726	-	-	\checkmark	-	\checkmark	\checkmark		
	Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures	D2041	_	_	\checkmark	_	\checkmark	\checkmark		
Asphalt Mix - Superpav (Typ	Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	D3203	-	-	\checkmark	-	\checkmark	\checkmark		

See Next Page

winnipeg.ca

2025 APPROVED TESTING LABORATORIES – ASPHALT (CONT'D)

		S Testing Laboratories									
	Testing Method	ASTM/AASHTO/CSA/LS	Eng-Tech	H. Manalo	Stantec	Trek	WSP	Bayview ¹			
=	Reducing Samples of Aggregate to Testing Size	C702	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Marshall	Minerals Finer than 75-μm (No.200) Sieve in Mineral Aggregates by Washing	C117	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
1	Sieve Analysis of Fine and Coarse Aggregates	C136	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Laboratory d (Type A)	Relative Density (Specific Gravity) and Absorption of Coarse Aggregate	C127	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
	Relative Density (Specific Gravity) and Absorption of Fine Aggregate	C128	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Asphalt Mix Design Methoo	Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate	D4791	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
sphalt	Determining the Percentage of Fractured Particles in Coarse Aggregate	D5821	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
As	Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage	D4867	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark			
- rry - 4)	Superpave Volumetric Design for Asphalt Mixtures	R35	-	-	\checkmark	-	\checkmark	\checkmark			
Laborato d (Type /	Mixture Conditioning of Hot Mix Asphalt (HMA)	R30	-	-	\checkmark	-	\checkmark	\checkmark			
ign Lal thod (Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage	D4867	-	-	\checkmark	-	-	\checkmark			
lix Des we Me	Uncompacted Void Content of Fine Aggregate	Т304	-	-	\checkmark	-	-	\checkmark			
Asphalt Mix Design Laboratory Superpave Method (Type A)	Determination of Draindown Characteristics in Uncompacted Asphalt Mixtures (if required)	C1252	-	-	\checkmark	-	\checkmark	\checkmark			
Asp Sı	Sand Equivalent Value of Soils and Fine Aggregate	D2419	-	-	\checkmark	_	\checkmark	\checkmark			

¹Bayview Construction Ltd. Testing Laboratory is conditionally approved. Please contact the Research and Standards Engineer before using this laboratory.

Should you have any questions, or if clarification is required, please contact me at your convenience.

Yours truly,

Ahmed Gihazy

Ahmed Ghazy, Ph.D., P.Eng., PMP, Research and Standards Engineer