

City of Winnipeg

Jefferson East Combined Sewer Relief Works (Contract 5) Semple Avenue Trunk Sewer

Geotechnical Data Report

Prepared by:

AECOM Canada Ltd. 99 Commerce Drive Winnipeg, MB R3P 0Y7 Canada

T: 204 477 5381 F: 204 284 2040 www.aecom.com

Prepared for:

The City of Winnipeg Water and Waste Department 110 - 1199 Pacific Avenue Winnipeg, MB R3E 3S8

Date: November 29, 2019

Project #: 60599385

Distribution List

# Hard Copies	PDF Required	Association / Company Name		
	✓	City of Winnipeg		
•	✓	AECOM Canada Ltd.		

AECOM Canada Ltd. 99 Commerce Drive Winnipeg, MB R3P 0Y7 Canada

T: 204 477 5381 F: 204 284 2040 www.aecom.com

Mr. Jurgen Friesen, C.E.T. Project Coordinator The City of Winnipeg Water and Waste Department 110 - 1199 Pacific Avenue Winnipeg, MB R3E 3S8 November 29, 2019

Project # 60599385

Dear Mr. Friesen:

Subject: Jefferson East Combined Sewer Relief Works – Contract 5 – Semple Avenue Trunk Sewer - Geotechnical Data Report

AECOM Canada Ltd. (AECOM) is pleased to submit this Geotechnical Data Report for the Jefferson East Combined Sewer Relief Works (Contract 5) to be constructed in Winnipeg, Manitoba. The report provides a summary of the subsurface soil, and groundwater encountered along the alignment of the Semple Avenue Trunk Sewer and the laboratory test results for the soil.

If you have any questions concerning this report, please contact the undersigned at (204) 928-7444.

Sincerely,

AECOM Canada Ltd.

Ryan Harras, B.Sc., EIT

Geotechnical Engineer-in-Training

GR:rz Encl.

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued:
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13 © 2009-2015 AECOM Canada Ltd. All Rights Reserved.

General Statement – Normal Variability of Subsurface Conditions

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to the suitability of the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. The description of the project represents an understanding of the significant aspects of the project relative to the design and construction of earth work, foundations, and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, AECOM Canada Ltd. should be given the opportunity to review the changes and to modify or reaffirm, in writing, the conclusions and recommendations of this report.

The analyses and recommendations represented in this report are based on the data obtained from the test holes drilled at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere on the site are not significantly different from those encountered at the test hole locations. However, variation in the soil conditions between the test holes may exist. Also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions different from those encountered in the exploratory borings are observed or encountered during construction, or appear to be present beneath or beyond excavations, AECOM Canada Ltd. should be advised at once so that the conditions can be observed and reviewed and, where necessary, the recommendations reconsidered.

Since it is possible for conditions to vary from those identified at the test hole locations and from those assumed in the analysis and preparation of recommendations, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications, or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, it is recommended that all construction operations dealing with earthwork and the foundations be observed by an experienced geotechnical engineer. In addition, it is recommended that a qualified geotechnical engineer review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in the report

Quality Information

Report Prepared By:

Ryar Harras, B.Sc., EIT

Geotechnical Engineer-in-Training

Report Reviewed By:

Hamid Javady, M.Eng., P.Eng. National Tunneling Lead

Faris Alcoaidy, M.Sc., P.Eng. Senior Geotechnical Engineer

Table of Contents

			page
1.	Intr	oduction	8
	1.1	General	8
	1.2	Aims and Objectives	
	1.3	Project Details	
	1.4	Scope of Work	
2.	Bac	kground Information	. 11
	2.1	General Review of Existing Information	11
	2.2	Historic Waterways	
	2.3	Previous Geotechnical Investigations	
		2.3.1 AECOM (February 2012) - Jefferson East Combined Sewer Relief - Sub-	
		Surface Investigation - Geotechnical Memo	13
		Outfall Supplementary Geotechnical Investigation - Geotechnical Letter	14
	2.4	Regional Geology	
		2.4.1 Bedrock Geology	
		2.4.2 Surficial Geology	
		2.4.3 Hydrogeology	16
	2.5	AECOM 2019 Geotechnical Investigation	17
		2.5.1 Geotechnical Investigation	17
		2.5.2 Laboratory Testing	18
3.	Sub	surface Conditions	. 20
	3.1	General	20
	3.2	Subsurface Profile	
		3.2.1 Topsoil	20
		3.2.2 Fill	21
		3.2.3 Upper Complex	21
		3.2.3.1 Upper Complex – Clay	
		3.2.3.2 Upper Complex - Silt	
		3.2.3.3 Upper Complex - Sand	
		3.2.4.1 Reported Geotechnical Properties	
		3.2.4.2 Geotechnical Investigation Findings	
		3.2.5 Glacial Till	
		3.2.5.1 Reported Geotechnical Properties	29
		3.2.5.2 Geotechnical Investigation Findings	
		3.2.6 Carbonate Bedrock	
	3.3	Groundwater Conditions	
		3.3.1 AECOM 2019 Geotechnical Investigation	32

3.3.2 Previous Geotechnical Investigations	32
4. References	34
List of Figures	
Figure 3-1: Moisture Content & Atterberg Limits with Elevation for Upper Complex	24
Figure 3-2: Moisture Content & Atterberg Limits with Elevation for Glacio-Lacustrine Clay (AECOM 2012, AECOM 2015, AECOM 2019)	
Figure 3-3: Undrained Shear Strength with Elevation for Glacio-Lacustrine Clay (AECOM 2012, AECOM 2015, AECOM 2019	28
Figure 3-4: Moisture Content & Atterberg Limits with Elevation for Glacial Till	31
List of Tables	
Table 1-1: Summary of Semple Ave. Trunk Sewer Length, Size, and Proposed Installation Methods	e
Table 2-1: Summary of Previous Geotechnical Investigations Along Proposed Alignment	12
Table 2-2: Summary of Previous Geotechnical Investigations Offset from Proposed Alignment	
Table 2-3: Summary of Jefferson East CSR – Sub-Surface Investigation	
Table 2-4: Summary of Jefferson East CSR – Semple Outfall Supplementary	
Table 2-5: Soil Properties Used in Stability Modelling	
Table 2-6: Summary of Jefferson East CSR – Sub-Surface Investigation	
Table 2-7: Summary of Type and Number of Laboratory Tests	
Table 2-8: Summary of Type and Number of Laboratory Tests	
Table 3-1: Clay Fill - Summary of Laboratory Testing Along Proposed Alignment	
Table 3-2: Clay Fill - Summary of Laboratory Testing Offset from Proposed Alignment	
Table 3-3: Upper Complex - Soil Profile Along Proposed Alignment	
Table 3-4: Upper Complex - Soil Profile Offset from Proposed Alignment	
Table 3-5: Upper Complex - Summary of Laboratory Testing Along Proposed Alignment	
Table 3-6: Upper Complex - Summary of Laboratory Testing Offset from Proposed Alignment	
Table 3-7: Glacio-Lacustrine Clay - Published Geotechnical Soil Parameters	
Table 3-8: Glacio-Lacustrine Clay - Published Effective Shear Strength Parameters	
Table 3-9: Glacio-Lacustrine Clay - Summary of Laboratory Testing Along Proposed Alignment	
Table 3-10: Glacio-Lacustrine Clay - Summary of Laboratory Testing Offset from Proposed Alignment	
Table 3-11: Glacial Till - Soil Profile Along Proposed Alignment	
Table 3-12: Glacial Till - Soil Profile Offset from Proposed Alignment	
Table 3-13: Glacial Till - Summary of Laboratory Testing Along Proposed Alignment	
Table 3-14: Glacial Till - Summary of Laboratory Testing Offset from Proposed Alignment	
Table 3-16: Summary of GWL Monitoring Results	
TADIO O TOLOGITHIAI Y OLO YYE IVIOLIKOLIHA INOUKO	

Appendices

Appendix A Fig	jures
----------------	-------

Figure 1: Site Location Plan and Semple Avenue Trunk Sewer Alignment

Figure 2: Surficial Geology Plan
Figure 3: Test Hole Location Plan
Figure 4A to 4F; Stratigraphic Soci

Figure 4A to 4E: Stratigraphic Sections

Appendix B Previous Geotechnical Investigations Test Hole Logs

Appendix C AECOM (June 2019) Geotechnical Investigation Test Hole Logs

Appendix D Laboratory Testing Reports

1. Introduction

1.1 General

AECOM Canada Ltd. (AECOM) was retained by the City of Winnipeg Water and Waste Department (the City) to provide geotechnical engineering services to support the design and construction of the proposed Semple Avenue Trunk Sewer. AECOM understands that installation of the proposed Semple Avenue Trunk Sewer will be completed using one-pass or two-pass tunneling methods and pipe jacking.

This Geotechnical Data Report (GDR) presents the results of a detailed geotechnical investigation conducted by AECOM along the proposed sewer alignment. The detailed geotechnical investigation was conducted in general accordance with the American Society of Civil Engineers (ASCE) guidelines (*Essex 2007 and ASCE/CI 36-15*).

This report also provides a detailed summary of previous geotechnical investigation programs undertaken at the site and locations close in proximity to the site. The results and factual outcomes of these studies are included within Section 3 of this report.

This GDR should be read in conjunction with the Geotechnical Baseline Report (GBR). The GDR is subject to AECOM's Statement of Qualification and Limitations and General Statement regarding the Normal Variability of the Subsurface Conditions.

1.2 Aims and Objectives

The main objective of the AECOM 2019 geotechnical investigation was to determine the subsurface soil/groundwater conditions and engineering properties of the soil encountered at the test hole locations drilled along the proposed trunk sewer alignment. The primary focus of this report is to present and document the factual findings from this investigation and other relevant geotechnical investigations and laboratory testing programs. The results of AECOM's laboratory testing program and test hole logs are included within **Appendix B**, **Appendix C**, and **Appendix D** of this report.

The analyses and results presented in this report are based on the data obtained from the test holes drilled at discrete locations along the trunk sewer alignment. This report does not reflect any variations which may occur between the test hole locations. In the performance of subsurface explorations, specific information is obtained at specific locations at specific times. However, it is well known that variations in soil, bedrock, and groundwater conditions exist at most sites between test hole locations. The nature and extent of the variations may not become evident until the course of construction. If variations are then evident, it will be necessary to re-evaluate the findings and results presented in this report after performing on-site observations during the construction period and noting the characteristics of any variations.

This report is subject to the general statement regarding the normal variability of subsurface conditions provided above.

1.3 Project Details

The proposed trunk sewer will be constructed within the Mynarski ward in the northern region of Winnipeg. The proposed trunk sewer alignment extends from the west end of Semple Avenue at McKenzie Street to the east end of Semple Avenue at Scotia Street.

It is understood that the Semple Avenue trunk sewer project is an extension of the Jefferson East Combined Sewer Relief (CSR) Works. The Jefferson East Combined Sewer District was identified as needing upgrade to satisfy five-year level of service (LOS) design criteria. The proposed Semple Avenue Trunk Sewer upgrade involves disconnecting surface runoff from the existing combined sewer system in the northern portion of the Jefferson district, effectively freeing up capacity in the existing Jefferson Combined Sewer trunk and satisfying the five-year LOS design criteria for the remainder of the district. The outfall for this trunk was constructed in 2017 with the trunk temporarily terminating on Scotia Street at the east end of the proposed Semple Avenue Trunk Sewer. This outfall was installed using an open face excavator shield and pipe jacking. To minimize impact to the existing road and adjacent infrastructure at the project site, a trenchless solution is understood to be the preferred method over open-cut installation for the Semple Avenue Trunk Sewer.

Construction of the Semple Avenue Trunk Sewer will be between McKenzie Street on the west, and Scotia Street on the east as shown on **Figure 1** in **Appendix A**. A summary of the Semple Avenue Trunk Sewer lengths, sizes and installation methods are provided in **Table 1-1**.

Table 1-1: Summary of Semple Ave. Trunk Sewer Length, Size, and Proposed Installation Methods

Location	Length (m)	Size (Nominal Internal Diameter) (mm)	Installation Method
Start: McKenzie Street End: Andrews Street	400	1800 - Carrier Pipe	Tunneling with Pipe Jacking
Start: Andrews Street End: Scotia Street (East end of Semple Ave.)	1100	2100 - Carrier Pipe	Tunneling with Pipe Jacking

The proposed Semple Avenue Trunk Sewer alignment will include, at minimum, a launching shaft at the intersection of Semple Avenue and McKenzie Street and a retrieval shaft at the intersection of Semple Avenue and Scotia Street. Based on the selected tunneling method and equipment, the contractor may consider additional shafts at the following intersections: McGregor Street, Andrews Street, Powers Street, Salter Street, Aikins Street, and adjacent to Main Street (outside of the Main Street right of way). Upsizing of the 1800 mm pipe will be permitted.

New manholes will be constructed in shafts. A shaft will be located at the east end of the alignment near the connection to the existing 2100 concrete land drainage sewer (LDS) at Scotia Street. The final location, number, and size of launching and retrieving shafts are dependent on the selected trenchless construction method, as maximum drive lengths vary between each method. Based on current geotechnical information and groundwater depths, dewatering should not be required.

The overburden depth above the pipe crown varies from 3.4 m to 6.3 m along the Semple Avenue Trunk Sewer alignment. Typically, a minimum soil cover of approximately two (2) times the tunnel diameter is

required above the pipe crown. The surficial geology of the site and Semple Avenue Trunk Sewer alignment is shown on **Figure 2** in **Appendix A**.

1.4 Scope of Work

The scope of work for the detailed geotechnical investigation along the Semple Avenue trunk sewer alignment is summarized below:

- Review of geological survey maps and relevant background information.
- Obtain and review geotechnical reports available to AECOM with respect to the subject site.
 AECOM will also review geotechnical reports available in AECOM's library to collect information on the soil and bedrock within and near to the subject site.
- Prepare a GDR that documents the findings from AECOM's 2019 investigation and from previous geotechnical investigations and laboratory testing.
- Prepare a GBR in accordance with ASCE Guidelines for Preparation of GBR's.

2. Background Information

2.1 General Review of Existing Information

A review of available geotechnical information pertinent to the project was conducted including the geotechnical memo prepared by *AECOM Canada Ltd 2012* (AECOM 2012), a supplementary geotechnical letter prepared by *AECOM Canada Ltd 2015* (AECOM 2015), and an article about historical waterways in the vicinity of the Red River within Winnipeg. The main objective of the review was to obtain and present information specific to the subsurface and groundwater conditions with respect to the Semple Ave. Trunk Sewer alignment and areas adjacent to the site. The available memorandums and reports were also reviewed to prepare a GDR that presents factual information collected from the site investigation and laboratory testing. The following geotechnical documents were obtained and reviewed by the project team:

- AECOM Canada Ltd. (February 2012). Jefferson East Combined Sewer Relief Sub-Surface Investigation - Geotechnical Memo.
- AECOM Canada Ltd. (October 2015). Jefferson East Combined Sewer Relief Semple Outfall Supplementary Geotechnical Investigation - Geotechnical Letter.

The location of pertinent exploratory holes from past and existing geotechnical investigations relevant to the site are shown on **Figure 3** in **Appendix A**.

In summary, a review of the background reports indicated the following:

- The soils south of Jefferson Avenue near Scotia Street consist of interlayered sand, silt, and clay underlain by deep silt deposits. (Ref. TH11-01 to TH11-03)
- Soils in other areas consist of interlayered clay fill, silt, and clay underlain by glacio-lacustrine clay soils, glacial till and carbonate bedrock (in descending order).

2.2 Historic Waterways

As part of the review of existing information AECOM reviewed an article about sixteen major streams and twenty small creeks that were present in the Winnipeg area during the time of the first European settlers (*Bernhardt 2018*). Since that time, the waterways are thought to have been drained and either filled, entombed, or re-routed to permit construction of varying infrastructure overtop of them.

Review of this article and the associated maps indicate the presence of a historic waterway named Inkster's Creek that appears to cross the proposed Semple Avenue trunk sewer alignment in a localized area between Main Street and Scotia Street. The presence of Inkster's Creek at the site was validated by an approximately 2.5 m surveyed elevation change across TH19-14 to TH19-17, as well as from topographic contours that follow the shape of a waterway. The maps from this article also suggest that the Inkster's Creek waterway network crossed through the Jefferson East Combined Sewer Relief (CSR) at various other locations, including near previously investigated test hole locations. The presence of the waterway at these previous locations was confirmed through review of topographic information obtained as well as review of observable topographic features from Google Maps Street View.

AFCOM

The presence of Inkster's Creek crossing at the proposed Semple Avenue trunk sewer alignment has implications related to the thickness and nature of overburden soils above the proposed pipe. Near-surface alluvial soil deposits are typical of waterways, and therefore need to be considered in the selection of appropriate tunneling methods. Additionally, the change in ground surface elevation in this localized area and the reduced overburden thickness that results will need to be assessed as part of the design and construction.

2.3 Previous Geotechnical Investigations

AECOM has reviewed the previous geotechnical investigations relevant to the Semple Avenue trunk sewer alignment and adjacent structures near the proposed trunk sewer alignment. The primary objective of the review was to collect information on the subsurface soil/bedrock conditions in the project area.

Table 2-1 summarizes the geotechnical investigations that have been completed at and in near proximity to the site.

Table 2-1: Summary of Previous Geotechnical Investigations Along Proposed Alignment

Organization	Type and Number of Investigation	Drilling Date	Associated Structure	Distance (m) and Relevancy to Semple Ave. Trunk Sewer Alignment	Comments
AECOM	SSA (2 no.)	December 13 to 14, 2011	Jefferson East CSR	Distance: 10 to 20 South of proposed alignment	TH11-11, 12

Notes: SSA- Solid Stem Auger

Geotechnical investigations which have previously been undertaken within the area adjacent to the proposed Semple Avenue trunk sewer alignment are also summarised in **Table 2-2** below.

Table 2-2: Summary of Previous Geotechnical Investigations Offset from Proposed Alignment

Organization	nization		Associated Structure	Distance (m) and Relevancy to NEIS Alignment	Comments
AECOM	SSA (12 no.)	December 12 to 14, 2011	Jefferson East CSR	Distance: 60 to 900 Within Jefferson East CSR General Area	TH11-01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 14, SP11-13
AECOM	SSA/RC (1 no.) SSA (1 no.)	February 24, 2015	Jefferson East CSR - Semple Outfall	Distance: 50 to 80 Southeast of proposed alignment	SI15-01, VW15-02

Notes: SSA- Solid Stem Auger; RC - Rock Core.

The locations of the exploratory holes outlined in **Table 2-1** and **Table 2-2** are shown on **Figure 3** in **Appendix A**. Test hole logs related to previous geotechnical investigations are included as **Appendix B** of this report. The laboratory testing results from the previous geotechnical investigations are provided in **Appendix D** of this report.

2.3.1 AECOM (February 2012) - Jefferson East Combined Sewer Relief - Sub-Surface Investigation - Geotechnical Memo

In support of the City's "Basement Flooding Relief Program", AECOM was engaged to provide geotechnical engineering services for the Jefferson East Combined Sewer District to facilitate the detailed design and contract administration for proposed buried pipes and outfall. As part of the scope of work, AECOM completed a geotechnical drilling investigation and laboratory testing program within the Jefferson East District to characterize sub-surface soil and groundwater conditions, and to provide general recommendations related to pipe installation.

The AECOM 2012 geotechnical investigation consisted of fourteen (14) test holes (TH11-01 to TH11-12, SP11-13, and TH11-14) spread out across the Jefferson East District and drilled to depths ranging from 12.2 m to 19.5 m below ground surface. As part of this investigation, one (1) piezometer was installed in test hole SP11-13 (see Section 3.3 of this report for details). The geotechnical testing program consisted of index classification testing and strength testing of soils. The results of the geotechnical laboratory tests are included within the AECOM 2012 memo. Further information concerning the encountered subsurface soil and groundwater conditions are provided in Section 3 of this report. A summary of the test hole drilling is provided in **Table 2-3**, below. The test hole records for the 2012 investigation are provided in **Appendix B**. The geotechnical material testing results are also provided within **Appendix D** of this report.

Table 2-3: Summary of Jefferson East CSR – Sub-Surface Investigation (AECOM 2012)

Test Hole	Location	Coordinates (UTM 14)	Ground Elevation (m)	Completion Depth (m)	Completion Soil Unit
TH11-01	Scotia St. (between Seven Oaks Blvd. and Jefferson Ave.)	5532753 m N 635380 m E	229.15	12.19	Silt
TH11-02	Scotia St. at Tait Ave.	5532592 m N 635413 m E	229.06	12.19	Silt
TH11-03	Rupertsland Blvd. (West of Scotia St.)	5532453 m N 635415 m E	227.91	12.19	Clay
TH11-04	Mac St. (between Rupertsland Blvd. and Tait Ave.)	5532610 m N 635216 m E	228.68	12.19	Clay
TH11-05	Jones St. at Colleen Rd.	5532614 m N 634999 m E	229.10	12.19	Clay
TH11-06	Seven Oaks Blvd. (between Jones St. and Scotia St.)	5532780 m N 635215 m E	230.77	12.19	Clay
TH11-07	Seven Oaks Blvd. (East of Main St.)	5532903 m N 634952 m E	229.91	12.19	Clay
TH11-08	Jones St. at St. Anthony Avenue	5533006 m N 635170 m E	229.85	12.19	Clay
TH11-09	Jones St. at Hartford Ave.	5533160 m N 635238 m E	228.71	12.19	Clay

Test Hole	Location	Coordinates (UTM 14)	Ground Elevation (m)	Completion Depth (m)	Completion Soil Unit
TH11-10	Scotia St. at Belmont Ave.	5533205 m N 635370 m E	230.67	12.19	Clay
TH11-11	Semple Ave. (East of Main St.)	5533432 m N 635210 m E	230.74	12.19	Clay
TH11-12	Scotia St. at Semple Ave.	5533322 m N 635426 m E	230.89	12.19	Clay
SP11-13	Upper Outfall Area (East of Scotia St.)	5533354 m N 635497 m E	230.58	19.51	Silt (Till)
TH11-14	Lower Outfall Area (East of Scotia St.)	5533346 m N 635514 m E	226.96	15.54	Silt (Till)

The AECOM 2012 memo indicated that the subsurface ground profile within the investigated area generally consisted of (in descending order): topsoil, clay fill, upper complex zone (interlayered clays, silts, and sands), clay, and glacial silt till. No test holes were advanced into bedrock. Carbonate bedrock was encountered underlying the glacial till in all test holes. The AECOM 2012 test holes are presented in **Appendix B** of this report.

Groundwater information collected from the AECOM 2012 geotechnical investigation is summarized in Section 3.3 of this report.

2.3.2 AECOM (October 2015) – Jefferson East Combined Sewer Relief – Semple Outfall Supplementary Geotechnical Investigation - Geotechnical Letter

This letter was produced in support of the Jefferson East District storm relief program waterway application for construction of the proposed chamber and outfall pipe on the west riverbank of the Red River between 405 and 409 Scotia Street. As part of the waterway application, AECOM was engaged to provide riverbank characterization near the proposed infrastructure, complete a pre-construction slope stability analysis, and to provide long term slope monitoring prior to and post-construction. The letter summarizes the findings of the geotechnical investigation, laboratory testing, initial instrumentation monitoring, and provides the results of the completed slope stability analyses.

The AECOM 2015 geotechnical investigation consisted of two (2) test holes (SI15-01 and VW15-02) drilled on either side of the proposed outfall pipe on the west riverbank of the Red River. As part of this investigation, one (1) slope inclinometer was installed in test hole SI15-01 and two (2) vibrating wire piezometers were installed in test hole VW15-02 (see Section 3.3 of this report for details). The geotechnical testing program consisted of index classification testing and strength testing of soils. The results of the geotechnical laboratory tests are included within the AECOM 2015 memo. Further information concerning the encountered subsurface soil and groundwater conditions are provided in Section 3 of this report. A summary of the drilled test holes is provided in **Table 2-4**, below. The test hole records for the 2015 investigation are provided in **Appendix B**. The geotechnical material testing results are also provided within **Appendix D** of this report.

AFCOM

Table 2-4: Summary of Jefferson East CSR – Semple Outfall Supplementary
Geotechnical Investigation
(AECOM 2015)

Test Hole	Location	*Ground Elevation (m)	Completion Depth (m)	Completion Soil Unit
SI15-01	North of Outfall Pipe 4 m West of Lower Slope	227.00	22.61	Bedrock
VW15-02	South of Outfall Pipe 15 m West of Lower Slope	227.00	12.50	Clay

Notes: * Drilled locations not surveyed. Elevations were inferred.

The AECOM 2015 memo indicated that the subsurface ground profile within the investigated area generally consisted of (in descending order): topsoil, alluvial upper zone (silty clay, silt), lacustrine clay, and glacial silt till. Carbonate bedrock was encountered underlying the glacial till in test hole SI15-01. The AECOM 2015 test holes are presented in **Appendix B** of this report.

Groundwater information collected from the AECOM 2015 geotechnical investigation is summarized in Section 3.3.1 of this report.

A slope stability analysis was performed at the proposed outfall pipe alignment along the riverbank of the Red River. The stability models were developed using SEEP/W, SIGMA/W, and SLOPE/W modules of the GeoStudio 2007 software package. The intent of the stability analyses was to determine the existing stability of the riverbank prior to construction of the outfall pipe for normal summer and normal winter river water levels. The results of the analysis were provided to the City to assist with identifying whether slope stabilizing measures would need to be implemented to satisfy desired post-construction factors of safety.

The slope stability analysis incorporated topographic survey information and subsurface information obtained from the AECOM 2012 and 2015 investigation and material testing programs. The adopted soil strength parameters used within the slope stability analysis are summarised in **Table 2-5** below.

Table 2-5: Soil Properties Used in Stability Modelling (AECOM 2015)

Soil Description	Unit Weight (kN/m³)	Cohesion (kPa)	Friction Angle (°)	Hydraulic Conductivity (m/s)
Upper Zone (Alluvial)	17	0	25	1 x 10 ⁻⁹
Lacustrine Clay	17	5	17	1 x 10 ⁻⁹
Till	20	5	30	1 x 10 ⁻⁵

2.4 Regional Geology

2.4.1 Bedrock Geology

The shallow bedrock geology of the Winnipeg area generally comprises of carbonate rock of the Selkirk and Fort Garry Members belonging to the Red River Formation. The Red River Formation consists of

alternating layers of limestone and dolomite (with basal shale layers). The proposed Semple Avenue trunk sewer alignment is located near the geological contact between the Selkirk Member and the lower part of the Fort Garry Member of the Red River Formation (*Matile G.L.D 2004*).

The upper surface of the bedrock is generally characterised with poor rock mass characteristics and is highly fractured. Karstic features are also common within the upper zone of the carbonate bedrock. The Karst topography is typically infilled with mixtures of silt, sand and gravel till material. The Winnipeg formation underlies the Red River formation, and typically consists of sandstone and shale units. The basement bedrock geology is comprised of the Pre-Cambrian Basal Granites at depth. The actual bedrock encountered at the site are described in Section 3.0 of this report below.

2.4.2 Surficial Geology

The overlying surficial soils generally comprise of upper complex deposits, glacio-lacustrine clays and glacial till soils of varying thicknesses and compositions. The glacial till soils were laid down by the advancing and retreating glacial ice masses. The glacio-lacustrine soils are a product of fine materials deposited through suspension within the glacial lakes (*Manitoba Energy and Mines 1990*).

The glacio-lacustrine soils are typically 10 m to 12 m thick but vary spatially within the Red River Valley of southern central Manitoba from approximately 1 m to 20 m. The glacio-lacustrine soils are further subdivided into two (2) distinct sub-units; the Upper and Lower Clay. The transition zone between the two (2) sub-units is typically located between an approximate depth of 4.6 and 7.6 m (*Graham and Shields 1985*).

Glacial till soils underlie the glacio-lacustrine soils, and the soil boundary interface is usually marked by a transition zone containing glacial till inclusions.

2.4.3 Hydrogeology

There are three (3) significant bedrock aquifers beneath the City of Winnipeg. The largest is known as the Upper Carbonate Aquifer which is generally found within the upper 7 m of the carbonate bedrock profile. This aquifer is contained in an extensive network of fractures and Karstic solution cavities formed by the dissolution of the Upper carbonate rocks. Other aquifers include the Lower and Middle Carbonate Aquifers near the base of the carbonate bedrock profile, and the underlying Winnipeg Formation sandstones. In general, these Lower and Middle aquifers are not utilized due either to the presence of saline water or the higher productivity of the Upper Carbonate Aquifer.

Groundwater flow within the Upper Carbonate Aquifer is towards the Red River (the major discharge point for this aquifer), and in particular towards the St. Boniface Industrial Park on the east side of the Red River where consumptive groundwater use occurs. West of the Red River, the water quality varies from brackish to saline, except beneath the northwest part of the city. Therefore, groundwater in this aquifer is mostly used for commercial and industrial heating and cooling. The majority of these systems recycle the water back into the subsurface and there is very little consumptive use.

Prior to the start of development of this aquifer in the late 1800's, the potentiometric surface was estimated to be approximately 3 to 6 m below ground surface in the central Winnipeg area. Extensive consumptive use of this groundwater resulted in a decline in the potentiometric surface to depths of 21 to 24 m. Consumptive use has declined since the early 1970's and since that time the potentiometric

surface has been rising. Currently in the downtown area the potentiometric surface is approximately 7 m below grade.

2.5 AECOM 2019 Geotechnical Investigation

The AECOM 2019 geotechnical investigation field program (including laboratory test results) is summarized below. The 2019 AECOM geotechnical investigation was completed to determine the subsurface conditions along the proposed Semple Avenue Trunk Sewer alignment.

2.5.1 Geotechnical Investigation

AFCOM

From June 20 to 21, 2019 a hydro-vac investigation was completed at seventeen (17) proposed test hole locations to a maximum depth of 3.1 m to confirm that the locations were clear of utilities. From June 24 to 27, 2019, 16 test holes (TH19-01 to TH19-08, and TH19-10 to TH19-17) were drilled at the approximate locations shown on **Figure 3** in **Appendix A** and summarized in **Table 2-6** below. One (1) proposed test hole (TH19-09) could not be drilled due to the presence of underground and above ground utilities in the area. A safe work plan was prepared prior to the hydro-vac and drilling investigations, and utility clearance certificates were obtained by AECOM personnel from representatives of ClickBeforeYouDigMB and DigShaw.

Table 2-6: Summary of Jefferson East CSR – Sub-Surface Investigation (AECOM 2019)

Test Hole	Location	Coordinates (UTM 14)	Ground Elevation (m)	Completion Depth (m)	Completion Soil Unit
TH19-01	Sta. 0+197.30	5533995 m N, 634036m E	231.11	231.11	Silt/Sand (Till)
TH19-02	Sta. 0+250.40	5533973 m N, 634084m E	231.28	231.28	Clay
TH19-03	Sta. 0+371.20	5533922 m N, 634193m E	231.52	231.52	Clay
TH19-04	Sta. 0+457.90	5533885 m N, 634272m E	231.54	231.54	Clay
TH19-05	Sta. 0+592.90	5533828 m N, 634394m E	231.32	231.32	Silt/Sand (Till)
TH19-06	Sta. 0+654.10	5533801 m N, 634449m E	231.23	231.23	Clay
TH19-07	Sta. 0+775.20	5533750 m N, 634559m E	231.13	231.13	Clay
TH19-08	Sta. 0+849.90	5533718 m N, 634627m E	230.97	230.97	Silt/Sand (Till)
*TH19-09	Sta. 0+197.30	5533656 m N, 634757 m E	-	-	-
TH19-10	Sta. 1+068.50	5533626 m N, 634825m E	230.73	230.73	Clay
TH19-11	Sta. 1+183.50	5533577 m N, 634929m E	230.89	230.89	Silt/Sand (Till)
TH19-12	Sta. 1+266.00	5533542 m N, 635003m E	230.76	230.76	Clay
TH19-13	Sta. 1+396.00	5533487 m N, 635121m E	230.81	230.81	Clay
TH19-14	Sta. 1+550.80	5533421 m N, 635261m E	230.65	230.65	Silt/Sand (Till)
TH19-15	Sta. 1+591.50	5533404 m N, 635298m E	230.08	230.08	Clay
TH19-16	Sta. 1+656.60	5533376 m N, 635357m E	228.55	228.55	Silt/Sand (Till)
TH19-17	Sta. 1+719.70	5533349 m N, 635414m E	230.54	230.54	Clay

Notes: * TH19-09 not drilled due to presence of underground and above ground utilities in the area

Drilling was completed by Maple Leaf Drilling using the following equipment: track-mounted Acker MP-5 drill rig equipped with 125 mm solid stem augers for test holes TH19-02 to TH19-08 and TH19-12 to TH19-17, and a truck-mounted Canterra CT-250 drill rig equipped with 125 mm solid stem augers for test holes TH19-01, TH19-10, and TH19-11. Subsurface conditions observed during drilling were visually classified and documented by AECOM geotechnical personnel. Other pertinent information such as groundwater and drilling conditions were also recorded during the field investigation.

Disturbed soil samples collected from auger cuttings and split-spoon samplers, as well as relatively undisturbed Shelby Tube samples were obtained at regular intervals. Standard penetration tests (SPTs) were completed at selected intervals in the test holes and blow counts for 300 mm penetration (SPT "N" blow counts) were recorded.

Recovered soil samples were transported to Dyregrov Robinson Inc. materials testing laboratory in Winnipeg for further visual examination and moisture content, undrained shear strength, pocket penetrometer, and bulk unit weight testing. A section of all recovered Shelby Tube samples were waxed to preserve them for further testing. Select samples were taken to H. Manalo Consulting materials testing laboratory in Winnipeg for Atterberg Limits, grain size distribution (hydrometer/sieve methods), and permeability testing. Other samples were taken to Wood Environment & Infrastructure Solutions materials testing laboratory in Winnipeg for Atterberg Limits, grain size distribution (hydrometer/sieve methods), and swell testing. All electrochemical testing was completed by ALS Environmental's Winnipeg laboratory.

Detailed test hole logs have been prepared for each test hole, and are attached as **Appendix C**. The test hole logs include description and depth of the soil units encountered, sample type, sample location, results of field and laboratory testing, and other pertinent information such as seepage and sloughing.

2.5.2 Laboratory Testing

The laboratory testing program included the determination of moisture contents, grain size distribution (hydrometer method), Atterberg Limits, undrained shear strength (unconfined compressive strength, pocket penetrometer, and torvane tests), bulk unit weight, permeability (hydraulic conductivity test), consolidation (oedometer method), swell (*ASTM D4546-14 one-dimensional swell or collapse test*), and electrochemical properties (pH, sulphate content, resistivity/conductivity). Laboratory test results are included in **Appendix D**, and the type and number of laboratory tests are summarized in **Table 2-7.**

Table 2-7: Summary of Type and Number of Laboratory Tests (AECOM 2019)

Laboratory Test	Number of Tests	Data Location
Moisture Content	157	Test Hole Logs & Appendix D
Atterberg Limits	11	Test Hole Logs & Appendix D
Grain Size Distribution (Hydrometer Method)	11	Test Hole Logs & Appendix D
Undrained Shear Strength (Unconfined Compressive Strength Method)	26	Test Hole Logs & Appendix D
Pocket Penetrometer	29	Test Hole Logs & Appendix D
Torvane	29	Test Hole Logs & Appendix D
Bulk Unit Weight	27	Test Hole Logs & Appendix D
Permeability (Hydraulic Conductivity Method)	2	Appendix D
Free Swell & Swelling Pressure (One-Dimensional Swell or Collapse Method)	5	Appendix D
Electrochemical (pH, Sulphate, Resistivity/Conductivity)	5	Appendix D

The geotechnical testing program undertaken as part of the historic geotechnical investigation programs has been summarized in **Table 2-8**, below.

Table 2-8: Summary of Type and Number of Laboratory Tests (AECOM 2012, AECOM 2015)

Laboratory Test	AECOM (2012) Number of Tests	AECOM (2015) Number of Tests
Moisture Content	131	20
Atterberg Limits	4	3
Grain Size Distribution (Hydrometer Method)	4	2
Undrained Shear Strength (Unconfined Compressive Strength Method)	3	Not Tested
Pocket Penetrometer	34	Not Tested
Torvane	29	13
Bulk Unit Weight	3	Not Tested

3. Subsurface Conditions

3.1 General

The following sections describe the subsurface conditions encountered during the AECOM 2019 geotechnical investigation and information referenced from review of geotechnical investigations previously carried out at the site. The results of the AECOM 2019 investigation are in general agreement with investigations carried out in the past for City owned projects in the site area. It is however prudent to note that subsurface conditions can vary significantly between test holes within the same site. It should also be noted that test holes drilled for the AECOM 2019 investigation were located within the north boulevard of Semple Avenue. As a result, information about the existing roadway pavement structure along the proposed alignment was not collected and has therefore not been discussed or presented within this document. A simplified stratigraphic profile based on the findings of the AECOM 2019 investigation and relevant historic soils data (derived from past geotechnical reports) along the Semple Avenue Trunk Sewer alignment is presented as **Figures 4A to 4E** in **Appendix A**.

Detailed descriptions of the subsurface conditions encountered at the test hole locations as part of the AECOM 2019 investigation are provided on the test hole logs presented in **Appendix C**. A description of the terms and symbols used on the test hole logs are also included in **Appendix C**. A brief description of the subsurface soil/bedrock unit encountered along the trunk sewer alignment and adjacent locations are provided in the following sections.

3.2 Subsurface Profile

Soils encountered during the investigations consisted of the following:

- Topsoil
- Fill
- Upper Complex
 - o Clay
 - o Silt
 - Sand
- Glacio-Lacustrine Clay
- Glacial Till
- Carbonate Bedrock

Each of these units is described below.

3.2.1 Topsoil

A layer of topsoil was encountered in all test holes drilled as part of the AECOM 2012, AECOM 2015, and AECOM 2019 geotechnical investigations ranging in thickness from 0.1 m to 0.3 m. The topsoil was classified as black, moist, and contained trace to some rootlets.

3.2.2 Fill

Fill was encountered beneath the topsoil in all test holes completed as part of the AECOM 2012 investigation except in test hole TH11-14, and all test holes completed as part of the AECOM 2019 investigation. The fill was classified as clay fill or silt fill and ranged in thickness from 0.3 m to 1.0 m (0.7 m average) when considering only test holes along the proposed trunk sewer alignment from the AECOM 2012 and AECOM 2019 investigations. The fill ranged in thickness from 0.3 m to 3.0 m when considering only test holes offset from the proposed trunk sewer alignment from the AECOM 2012 and AECOM 2015 investigations.

Clay fill was encountered in all AECOM 2012 and AECOM 2019 test holes except in test holes TH11-14, and TH19-03. The clay fill contained some silt to silty, trace to some sand, trace gravel, trace roots, and was brown to dark grey, firm, dry to moist, and of intermediate to high plasticity.

A summary of the laboratory testing results for the clay fill deposits encountered along the proposed alignment as part of the AECOM 2012 and AECOM 2019 investigations are presented in **Table 3-1** below.

Table 3-1: Clay Fill - Summary of Laboratory Testing Along Proposed Alignment (AECOM 2012, AECOM 2019)

Laboratory Test	Clay Fill
Moisture Content (%)	26 to 32 (29)

Notes: (#) - Average Value

A summary of the laboratory testing results for the clay fill deposits encountered offset from the proposed alignment as part of the AECOM 2012 and AECOM 2015 investigations are presented in **Table 3-2** below.

Table 3-2: Clay Fill - Summary of Laboratory Testing Offset from Proposed Alignment (AECOM 2012, AECOM 2015)

Laboratory Test	Clay Fill
Moisture Content (%)	21 to 30 (25)

Notes: (#) - Average Value

Silt fill was encountered in test holes TH19-03 and TH19-14 and was classified as sandy with trace to some clay, light brown, dry to moist, and of low plasticity. No laboratory testing was completed on the encountered silt fill.

3.2.3 Upper Complex

The upper complex is a near ground surface zone common to the Winnipeg area that typically consisting of interlayered clays, silts, sands, and organics near ground surface that are thought to be a mixture of lacustrine and alluvial sediments. Upper complex clays are generally distinguished by a lower range of moisture content when compared to glacio-lacustrine clays, which was evident from the plot of moisture content values on the AECOM 2012 and AECOM 2019 test hole logs along the proposed alignment. Upper complex deposits were encountered beneath the topsoil or fill in all AECOM 2012, AECOM 2015, and AECOM 2019 test holes ranging in total thickness from 0.5 m to 2.2 m for test holes along the proposed alignment and from 0.6 m to 11.6 m for test holes offset from the proposed alignment.

The extent of the upper complex deposit identified from test holes along the proposed trunk sewer alignment from the AECOM 2012 and AECOM 2019 investigations are outlined in **Table 3-3** below.

Table 3-3: Upper Complex - Soil Profile Along Proposed Alignment (AECOM 2012, AECOM 2019)

Location	Profile	Clay	Silt	Sand
Section 1	Elevation at Base (m)	228.3 to 230.0		
(Station 0+202 to	Thickness (m)	0.5 to 1.2	NR to 0.9	NR to 1.0
0+600)	*Average Thickness (m)	0.7	0.6	1.0
Section 2	Elevation at Base (m)		228.5 to 229.6	
(Station 0+600 to	Thickness (m)	NR to 0.3	NR to 0.8	NR to 1.1
1+000)	*Average Thickness (m)	0.3	0.7	1.1
Section 3	Elevation at Base (m)	228.0 to 229.4		
(Station 1+000 to	Thickness (m)	NR to 0.9	0.8 to 1.2	NR
1+500)	*Average Thickness (m)	0.6	1.0	NR
Section 4	Elevation at Base (m)	226.6 to 228.5		
(Station 1+500 to	Thickness (m)	NR to 1.5	NR to 1.1	NR to 0.7
1+742)	*Average Thickness (m)	0.9	0.7	0.4

Notes: NR- Not Recorded; * Average thickness from test holes where encountered

The extent of the upper complex deposit identified from test holes offset from the trunk sewer alignment from the AECOM 2012 and AECOM 2015 investigations are outlined in **Table 3-4** below.

Table 3-4: Upper Complex - Soil Profile Offset from Proposed Alignment (AECOM 2012, AECOM 2015)

Location	Profile	Clay	Silt	Sand
Jofferson Foot CCD	Elevation at Base (m)		216.0 to 227.9	
Jefferson East CSR (AECOM 2012)	Thickness (m)	0.5 to 6.7	0.5 to 10.4	0.9 to 1.5
(AECOIVI 2012)	*Average Thickness (m)	1.8	2.5	1.2
Outfall Christian	Elevation at Base (m)	225.2 to 225.3		
Outfall Structure (AECOM 2015)	Thickness (m)	0.2 to 1.2	0.3 to 0.6	NR
(AECOIVI 2015)	*Average Thickness (m)	0.6	0.4	NR

Notes: NR- Not Recorded; * Average thickness from test holes where encountered

A summary of the laboratory testing results for the upper complex clay, silt, and sand deposits encountered along the proposed alignment as part of the AECOM 2012 and AECOM 2019 investigations are presented in **Table 3-5** below.

Table 3-5: Upper Complex - Summary of Laboratory Testing Along Proposed Alignment (AECOM 2012, AECOM 2019)

Laboratory Test	Clay	Silt	Sand
Moisture Content (%)	24 to 36 (28)	14 to 28 (22)	12 to 19 (16)
Atterberg - Plastic Limit (%)	23	NP to 16	NT
Atterberg - Liquid Limit (%)	53	NP to 24	NT
Atterberg – Plasticity Index (%)	30	NP to 8	NT
Grain Size - Gravel (%)	0	0	NT
Grain Size - Sand (%)	6	1 to 2 (2)	NT
Grain Size - Silt (%)	39	81 to 87 (84)	NT
Grain Size - Clay (%)	55	11 to 18 (15)	NT
рН	NT	9.1	NT
Resistivity (ohm*cm)	NT	4950	NT
Conductivity (mS/cm)	NT	0.2	NT
Sulphate Content (mg/kg)	NT	46	NT

Notes: NP- Non-Plastic; NT- Not Tested; (#) - Average Value

A summary of the laboratory testing results for the upper complex clay, silt, and sand deposits encountered offset from the proposed alignment as part of the AECOM 2012 and AECOM 2015 investigations are presented in **Table 3-6** below.

Table 3-6: Upper Complex - Summary of Laboratory Testing Offset from Proposed Alignment (AECOM 2012, AECOM 2015)

Laboratory Test	Clay	Silt	Sand
Moisture Content (%)	18 to 38 (29)	8 to 35 (26)	29 to 35 (32)
Atterberg - Plastic Limit (%)	19 to 22 (21)	17	15
Atterberg - Liquid Limit (%)	65 to 71 (68)	34	23
Atterberg – Plasticity Index (%)	47 to 49 (48)	17	8
Grain Size - Gravel (%)	0	1	0
Grain Size - Sand (%)	6 to 7 (6)	5	62
Grain Size - Silt (%)	25 to 30 (27)	70	23
Grain Size - Clay (%)	64 to 69 (66)	25	15
Pocket Penetrometer - Undrained Shear Strength (kPa)	72 to 132 (101)	NT	NT
Torvane - Undrained Shear Strength (kPa)	59 to 79 (71)	NT	NT
Bulk Unit Weight (kN/m³)	NT	NT	NT

Notes: NT- Not Tested; (#) - Average Value

Plots of moisture content and Atterberg Limits with elevation for the upper complex soil deposits encountered in the AECOM 2012, AECOM 2015, and AECOM 2019 investigations are illustrated in **Figure 3-1** below.

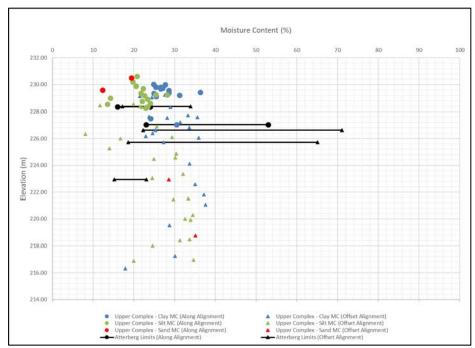


Figure 3-1: Moisture Content & Atterberg Limits with Elevation for Upper Complex (AECOM 2012, AECOM 2016, AECOM 2019)

3.2.3.1 Upper Complex – Clay

The upper complex clay contained trace silt to silty, trace to some sand, and trace to some gravel. The upper complex clay was brown to grey, soft to stiff, moist, and of intermediate to high plasticity. The upper complex clay was classified as clay and silt in test hole TH19-16. Boulder and cobble were not encountered within this layer during the investigations.

3.2.3.2 Upper Complex - Silt

The upper complex silt contained trace clay to clayey, trace sand to sandy, trace to some gravel, and was brown to grey, soft to firm, moist to wet, and ranged from non-plastic to intermediately plastic. Boulder and cobble were not encountered within this layer during the investigations.

3.2.3.3 Upper Complex - Sand

The upper complex sand was silty, contained trace to some clay, and was light brown to brown, and dry to moist. Boulder and cobble were not encountered within this layer during the investigations.

3.2.4 Glacio-Lacustrine Clay

A layer of glacio-lacustrine clay was encountered during the AECOM 2012, AECOM 2015, and AECOM 2019 investigations. These glacio-lacustrine soils are common to the Winnipeg area and have been the subject of prior investigation, research, and testing as part of the Floodway Channel project. The

City of Winnipeg

subsequent sections provide a summary of the glacio-lacustrine clay properties from published literature and technical reports, as well as the results from the AECOM 2012, AECOM 2015, and AECOM 2019 investigations completed in proximity to the proposed trunk sewer alignment site.

3.2.4.1 Reported Geotechnical Properties

Published literature and technical reports were reviewed to obtain data with respect to the subsurface soils and bedrock within the Winnipeg area, specifically along the proposed trunk sewer alignment.

Geotechnical parameters of the Lake Agassiz glacio-lacustrine clay (Upper and Lower Clays) have been referenced from the Floodway Channel Pre-design Floodway Expansion Project (KGS Group, Acres Engineering and UMA Engineering, 2004) reports and are presented within **Table 3-7**. The Floodway Channel project is located approximately 10 to 20 km east and southeast of the proposed trunk sewer alignment and involved an extensive study of the glacio-lacustrine soils common to the Winnipeg area.

The glacio-lacustrine clay layer can be further broken down into the Upper Glacio-Lacustrine Clay (Upper Clay) and Lower Glacio-Lacustrine Clay (Lower Clay) layers. The Upper Clay is typically stiff in consistency, highly plastic, fissured, and contains gypsum pockets. The Lower Clay is typically soft to firm in consistency and has an intermediate to high plasticity. Fine to coarse grained gravel and boulders are occasionally found in the Lower Clay near the glacial till interface (*Graham and Shields, 1985*). The clay content was between 67 and 81 percent of the total composition of the Lake Agassiz glacio-lacustrine clay in Winnipeg. The clay size fractions typically consist of up to 75 percent montmorillonite, 10 percent illite, 10 percent kaolinite, and approximately 5 percent quartz mineral.

The typical soil index classification and undrained shear strength compressive strength parameters presented as part of the published literature and technical reports are summarized in **Table 3-7**.

Soil Property

Typical Range of Values

Moisture Content (%)

40 to 60- Upper and Lower Clay

80 to 110- Upper Clay
65 to 95- Lower Clay

Plasticity Index (%)

Undrained Shear Strength (kPa)

Typical Range of Values

40 to 60- Upper and Lower Clay
65 to 95- Lower Clay
70 to 100- Upper Clay
25 to 40- Lower Clay

Table 3-7: Glacio-Lacustrine Clay - Published Geotechnical Soil Parameters

Notes: Based on Graham & Shields (1985)

Effective shear strength parameters of the Upper and Lower Clay obtained from consolidated undrained compression triaxial strength testing on a large number of relatively undisturbed samples yielded intact peak strengths of:

- Upper Clay- c' = 19.6 kPa and φ'= 20.5° and
- Lower Clay- c' = 29.8 kPa and ϕ '= 15.8°.

The effective large strain shear strength (fully softened) parameters for the Upper and Lower Clay were reported as follows:

Upper Clay- c' = 14.5 kPa and φ'= 13.3° and

• Lower Clay- c' = 7.7 kPa and φ'= 15.7°.

Typical industry accepted effective shear strength parameters used in the Winnipeg area for the glaciolacustrine clay are summarised in **Table 3-8.**

Table 3-8: Glacio-Lacustrine Clay - Published Effective Shear Strength Parameters

Parameter	Value
Effective Cohesion (c'), kPa	5.0
Effective Friction Angle (¢'), degrees	14.0

3.2.4.2 Geotechnical Investigation Findings

A layer of glacio-lacustrine clay was encountered beneath the Upper Complex in all test holes completed as part of the AECOM 2012, AECOM 2015, and AECOM 2019 investigations except for test holes TH11-01 and TH11-02. The glacio-lacustrine clay ranged in thickness from 10.7 m to 15.7 m (13.3 m average) in test holes along the proposed trunk sewer alignment that were advanced through the glacio-lacustrine clay layer into the underlying till. The glacio-lacustrine clay ranged in thickness from 13.1 m to 15.8 m (14.2 m average) in test holes offset from the proposed trunk sewer alignment that were advanced through the glacio-lacustrine clay layer into the underlying till.

The glacio-lacustrine clay generally contained trace silt to silty, trace sand, trace gravel, and was brown to grey, soft to stiff, and of high plasticity. In test hole TH11-14 a 0.9 m silt interlayer with a moisture content of 13% was encountered within the glacio-lacustrine clay layer. In test hole TH19-05 suspected gravel and/or cobble was inferred from the deformed shape of the recovered Shelby Tube pushed at an elevation of 217.6 m.

A summary of the laboratory testing results for the glacio-lacustrine clay layers encountered along the proposed alignment as part of the AECOM 2012 and AECOM 2019 investigations are presented in **Table 3-9.**

Table 3-9: Glacio-Lacustrine Clay - Summary of Laboratory Testing Along Proposed Alignment (AECOM 2012, AECOM 2019)

Laboratory Test	Minimum	Average	Maximum
Moisture Content (%)	22	47	64
Atterberg - Plastic Limit (%)	14	23	31
Atterberg - Liquid Limit (%)	50	72	90
Atterberg – Plasticity Index (%)	35	49	69
Grain Size - Gravel (%)	0	0	2
Grain Size - Sand (%)	0	3	19
Grain Size - Silt (%)	12	23	35
Grain Size - Clay (%)	44	74	88
Unconfined Compressive Strength - Undrained Shear Strength (kPa)	17	39	63
Pocket Penetrometer - Undrained Shear Strength (kPa)	12	50	79
Torvane - Undrained Shear Strength (kPa)	25	50	66
Bulk Unit Weight (kN/m³)	15.6	16.7	18.8
Permeability (cm/s)	1.52 x 10 ⁻⁸	2.25 x 10 ⁻⁸	2.98 x 10 ⁻⁸
Free Swell (%)	1.9	2.6	3.4
Swelling Pressure (kPa)	35	68	120
pH	8.0	8.1	8.3
Resistivity (ohm*cm)	561	1620	3580
Conductivity (mS/cm)	0.3	1.8	1.0
Sulphate Content (mg/kg)	30	590	927

A summary of the laboratory testing results for the glacio-lacustrine clay layers encountered offset from the proposed alignment as part of the AECOM 2012 and AECOM 2015 investigations are presented in Table 3-10.

Table 3-10: Glacio-Lacustrine Clay - Summary of Laboratory Testing Offset from Proposed
Alignment
(AECOM 2012, AECOM 2015)

Laboratory Test	Minimum	Average	Maximum
Moisture Content (%)	27	48	62
Atterberg - Plastic Limit (%)	24	29	31
Atterberg - Liquid Limit (%)	80	85	92
Atterberg – Plasticity Index (%)	53	57	62
Grain Size - Gravel (%)		0	
Grain Size - Sand (%)	0	1	2
Grain Size - Silt (%)	15	16	17
Grain Size - Clay (%)	81	83	85
Unconfined Compressive Strength - Undrained Shear Strength (kPa)	53	68	93
Pocket Penetrometer - Undrained Shear Strength (kPa)	12	42	110
Torvane - Undrained Shear Strength (kPa)	12	38	93
Bulk Unit Weight (kN/m³)	17.1	17.2	17.3

Plots of moisture content, Atterberg Limits, and undrained shear strength with elevation for the glaciolacustrine soil deposits encountered in the AECOM 2012, AECOM 2015, and AECOM 2019 investigations are illustrated in **Figure 3-2** and **Figure 3-3** below

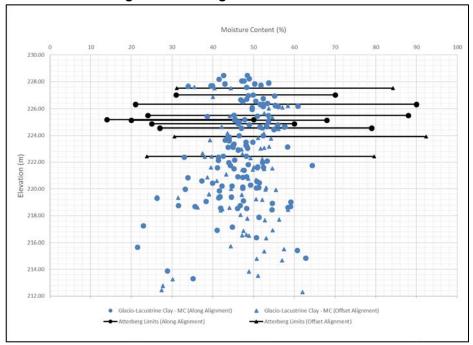


Figure 3-2: Moisture Content & Atterberg Limits with Elevation for Glacio-Lacustrine Clay (AECOM 2012, AECOM 2015, AECOM 2019)

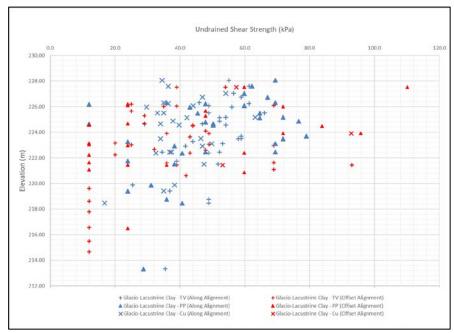


Figure 3-3: Undrained Shear Strength with Elevation for Glacio-Lacustrine Clay (AECOM 2012, AECOM 2015, AECOM 2019

The reported laboratory test results are generally consistent with the published findings for the glacio-lacustrine clay within the Winnipeg area. The trend of the undrained shear strength profile (as shown in Figure 3-3) for the glacio-lacustrine clay showed lower undrained shear strength values closer to the clay/glacial till boundary.

3.2.5 Glacial Till

A glacial till layer was encountered during the AECOM 2012, AECOM 2015, and AECOM 2019 investigations. When considering test holes along the proposed alignment drilled during the AECOM 2019 investigation, the contact elevation of the glacial till layer was noted to be highest at the west end of the proposed alignment and generally decreased in elevation along the alignment towards the river. The glacial till was noted to overlie the carbonate bedrock in test hole SI15-01.

The profile of the glacial till layer encountered as part of the AECOM 2012 and AECOM 2019 investigations along the proposed alignment are outlined in **Table 3-11**.

Table 3-11: Glacial Till - Soil Profile Along Proposed Alignment (AECOM 2012, AECOM 2019)

Location	Test Hole	Depth (m BGS)	Till Contact Elevation (m)
Section 1	TH19-01	12.5	218.6
(Station 0+202 to 0+600)	TH19-05	14.3	217.0
Section 2 (Station 0+600 to 1+000)	TH19-08	15.1	215.9
Section 3 (Station 1+000 to 1+500)	TH19-11	16.2	214.7
Section 4	TH19-14	18.1	212.5
(Station 1+500 to 1+742)	TH19-16	16.0	212.6

Notes: BGS - Below Ground Surface

The profile of the glacial till layer encountered as part of the AECOM 2012 and AECOM 2015 investigation offset from the proposed alignment are outlined in **Table 3-12**.

Table 3-12: Glacial Till - Soil Profile Offset from Proposed Alignment (AECOM 2012, AECOM 2015)

Location	Test Hole	Depth (m BGS)	Till Contact Elevation (m)
Jefferson East CSR	SP11-13	18.6	212.0
(AECOM 2012)	TH11-14	14.0	212.9
Outfall Structure (AECOM 2015)	SI15-01	15.5	211.5*

Notes: BGS - Below Ground Surface; * Drilled locations not surveyed. Elevations were inferred.

3.2.5.1 Reported Geotechnical Properties

Within the Winnipeg area, the composition of the glacial till deposit is highly variable and its density varies both with depth and distance. Near the glacio-lacustrine/glacial till interface, the upper zone of the till is typically characterized by a softer sub-unit (locally termed "putty till") and has a typical moisture content

ranging from 10 and 15 percent. The lower sub-unit has typical in-situ moisture content values of between 7 and 10 percent.

Reported unconfined compressive strength values of the very dense tills (with in-situ moisture contents of 5 percent) range between 3.4 and 3.6 MPa (*Baracos, A.G. Shields, D.H., and Kjartenson, B. 1983*). The elastic modulus of the glacial till soils has also been reported at a range of between 170 and 240 MPa (*Baracos, A.G. Shields, D.H., and Kjartenson, B. 1983*). These parameters are based upon the results of past material testing performed on representative samples of glacial till deposits from within the Winnipeg area.

3.2.5.2 Geotechnical Investigation Findings

The glacial till was generally described as silt and sand containing some clay to clayey, trace to some gravel, and was light brown, compact to very dense, dry to wet, and of low plasticity. The consistency of the glacial till generally increased in strength with depth. Whilst not confirmed during the advancement of the AECOM 2012, AECOM 2015, and AECOM 2019 test holes, the glacial till is suspected to contain cobble and boulder size obstructions.

A summary of the laboratory testing results for the glacial till layer encountered along the proposed alignment as part of the AECOM 2012 and AECOM 2019 investigations are presented in **Table 3-13**.

Table 3-13: Glacial Till - Summary of Laboratory Testing Along Proposed Alignment (AECOM 2012, AECOM 2019)

Laboratory Test	Minimum	Average	Maximum
Moisture Content (%)	9	15	38
SPT 'N' Blow Counts (uncorrected)	17	45	≥ 50
Atterberg - Plastic Limit (%)		10	
Atterberg - Liquid Limit (%)		22	
Grain Size - Gravel (%)		0	
Grain Size - Sand (%)		35	
Grain Size - Silt (%)		44	
Grain Size - Clay (%)		21	
Pocket Penetrometer - Undrained Shear		36	
Strength (kPa)		30	
Torvane - Undrained Shear Strength (kPa)		49	

A summary of the laboratory testing results for the glacio-lacustrine clay layers encountered offset from the proposed alignment as part of the AECOM 2012 and AECOM 2015 investigations are presented in **Table 3-14.**

Table 3-14: Glacial Till - Summary of Laboratory Testing Offset from Proposed Alignment (AECOM 2012, AECOM 2015)

Laboratory Test	Minimum	Average	Maximum
Moisture Content (%)	12	28	54
Torvane - Undrained Shear Strength (kPa)		12	

Plots of moisture content and Atterberg Limits with elevation for the glacial till encountered in the AECOM 2012, AECOM 2015, and AECOM 2019 investigations are illustrated in **Figure 3-4** below

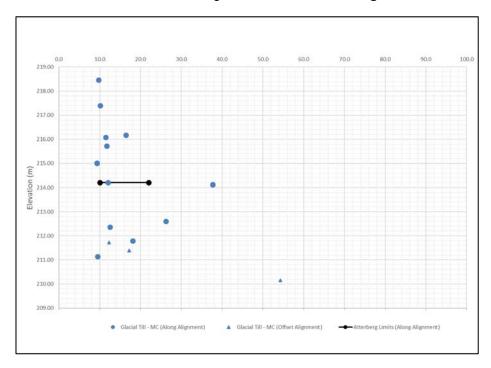


Figure 3-4: Moisture Content & Atterberg Limits with Elevation for Glacial Till (AECOM 2012, AECOM 2015, AECOM 2019)

3.2.6 Carbonate Bedrock

Carbonate bedrock was encountered below the glacial till in one of the AECOM 2015 test holes drilled offset from the proposed alignment. The carbonate bedrock from test hole SI15-01 was encountered at an elevation of 205.2 m and was classified as limestone. These findings are generally consistent with the pre-established bedrock mapping of the area and published literature.

3.3 Groundwater Conditions

Groundwater depths were measured within the monitoring wells installed as part of the AECOM 2019 geotechnical investigation and are summarized in the following section. Groundwater monitoring records from previous geotechnical investigations are also included.

3.3.1 AECOM 2019 Geotechnical Investigation

To assess groundwater levels along the proposed trunk sewer alignment, three (3) standpipe piezometers were installed in test holes TH19-01, TH19-05, and TH19-16 at varying depths and within varying soil units. Short term monitoring results of the groundwater level (GWL) from the instruments installed at the site as part of the AECOM 2019 investigation are provided in **Table 3-15**. Sloughing was observed from the glacial till layer within test holes TH19-01 and TH19-16, and from the Upper Complex silt layer in TH19-05. It should be noted that groundwater levels and subsequently sloughing may change seasonally, annually or as a result of construction activities.

Table 3-15: Summary of GWL Monitoring Results (AECOM 2019)

Location	Test Hole ID	Ground Elev. (m)	Tip Elev. (m)	Soil Unit	Monitoring Date	Depth (m BGS)	GWL Elev. (m)
Section 1 (Station 0+202 to 0+600)		231.11	218.41	Glacial Till	Aug-06-2019	4.13	226.98
	TH19-01				Aug-20-2019	4.21	226.90
				1	Sept-03-2019	4.17	226.94
				217.60 Glacial	Aug-06-2019	7.76	223.55
	TH19-05	231.32	.32 217.60		Aug-20-2019	6.55	224.76
				1	Sept-03-2019	6.11	225.20
Section 4 (Station 1+500 to 1+742)				6 1 .	Aug-06-2019	2.91	225.64
	TH19-16	228.55	221.23	Glacio. Clay	Aug-20-2019	2.93	225.63
					Sept-03-2019	2.94	225.61

Notes: BGS - Below Ground Surface

3.3.2 Previous Geotechnical Investigations

One (1) standpipe piezometer was installed in test hole SP11-13 as part of the AECOM 2012 investigation, and one (1) vibrating wire piezometer was installed as part of the AECOM 2015 investigation.

Results for the vibrating wire piezometers over the reported period indicated nearly constant negative piezometric head (i.e. piezometric elevation is below tip elevation). The development of negative head is likely not credible and may be attributed to instruments malfunction. As a result, the monitoring results of the vibrating wire piezometer have not been presented in this report. The groundwater monitoring results from the AECOM 2012 standpipe piezometer are summarized in **Table 3-16.**

AECOM City of Winnipeg

Jefferson East Combined Sewer Relief Works (Contract 5) Semple Avenue Trunk Sewer

Table 3-16: Summary of GWL Monitoring Results (AECOM 2012)

Location	Test Hole ID	Ground Elev. (m)	Tip Elev. (m)	Soil Unit	Monitoring Date	Depth (m BGS)	GWL Elev. (m)	
Jefferson East CSR SP11-13					Jan-06-2012	7.80	222.78	
						Feb-24-2015	7.50	223.03
					Mar-13-2015	7.50	223.03	
	CD11 12	220 50	244.00		May-19-2015	7.40	223.14	
	230.58	211.08	Till	Aug-28-2015	7.50	223.12		
					Oct-07-2015	7.70	222.91	
					Dec-07-2015	7.70	222.91	
					Feb-03-2016	7.70	222.88	

Notes: BGS - Below Ground Surface

4. References

- 1- AECOM Canada Ltd. (2012). City of Winnipeg Jefferson East Sub-Surface Investigation Geotechnical Memo.
- 2- AECOM Canada Ltd. (2015). City of Winnipeg Construction of Outfall Chamber and Piping Jefferson East CSR – Waterway Application – Supplementary Geotechnical Investigation Letter.
- 3- Bernhardt, Darren (2018). Ghost creeks: Winnipeg buried many waterways that could have changed city's shape. CBC News.
- 4- Essex, R.J. (2007). Geotechnical Baseline Reports for Construction, Suggested Guidelines. American Society of Civil Engineers.
- 5- ASCE/CI 36-15 (2015). Standard Design and Construction Guidelines for Microtunneling. Published by American Society of Civil Engineers.
- 6- Matile, G.L.D. (2004). Surficial Geology, Winnipeg, Manitoba Geoscientific Map MAP2003-7.
- 7- Manitoba Energy and Mines (1990). Bedrock Geology Compilation Map Series NTS 62H.
- 8- Graham, J., and Shields, D.H (1985). Influence of geology and geological processes on the geotechnical properties of a plastic clay. Engineering Geology.
- 9- ASTM D4546-14. Standard Test Methods for One-Dimensional Swell or Collapse of Soils.
- 10- Baracos, A.G. Shields, D.H., and Kjartenson, B. (1983). Geological Engineering Report for Urban Development of Winnipeg, University of Manitoba- Department of Geological Engineering.

AECOM

Appendix

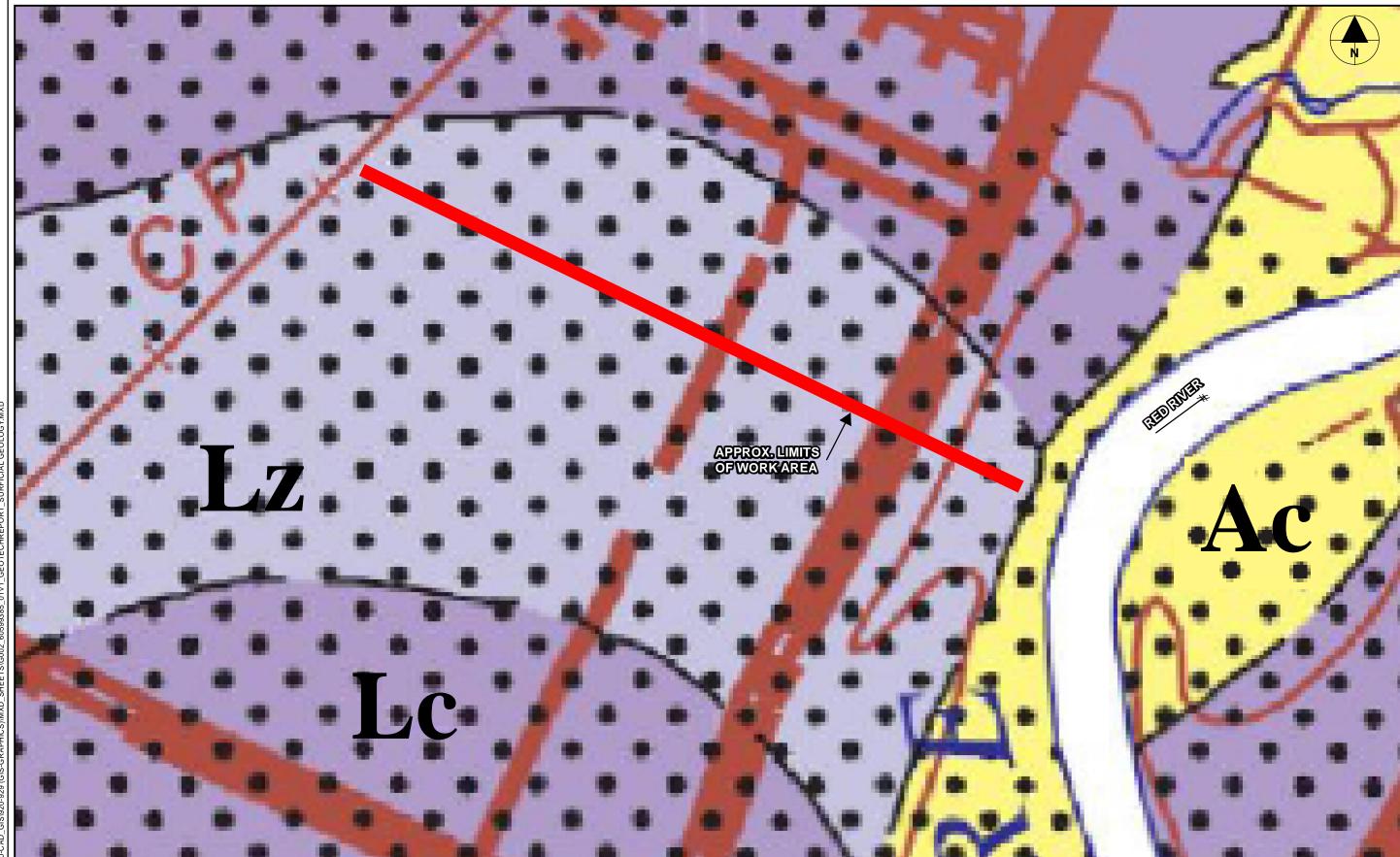
Figures

- Figure 1: Site Location Plan and Semple Avenue Trunk Sewer Alignment
- Figure 2: Surficial Geology
- Figure 3: Test Hole Location Plan
- Figure 4A to 4E: Stratigraphic Section of Semple Avenue Trunk Sewer Alignment

60

NAD 1983 UTM Zone 14N

1:6,000



LEGEND

SEMPLE AVE - TRUNK SEWER ALIGNMENT EXISTING LDS AND OUTFALL

SCALE: NTS

FIGURE: 2

SURFICIAL GEOLOGY LEGEND

Lc Lz CHANNEL DEPOSITS CLAY TO SILTY CLAY

LITHOLOGY (MATERIAL) LITHOGENSIS (ORIGINS OF MATERIAL)

ALLUVIAL SEDIMENTS: SAND AND GRAVEL, SAND, SILT, CLAY, ORGANIC DETRITUS; 1-20 m THICK; CHANNEL AND OVERBANK SEDIMENTS; DEPOSITED BY POSTGLACIAL RIVERS.

OFFSHORE GLACIOLACUSTRINE SEDIMENTS: CLAY, SILT, MINOR SAND; 1-20 m THICK; VERY LOW RELIEF MASSIVE AND LAMINATED DEPOSITS; DEPOSITED FROM SUSPENSION IN OFFSHORE, DEEP WATER OF GLACIAL LAKE AGASSIZ, COMMONLY SCOURED AND HOMOGENIZED BY ICEBERGS.

CLAYEY TO SANDY SILT

OFFSHORE GLACIOLACUSTRINE SEDIMENTS: CLAY, SILT, MINOR SAND; 1-20 m THICK; VERY LOW RELIEF MASSIVE AND LAMINATED DEPOSITE; DEPOSITED FROM SUSPENSION IN OFFSHORE, DEEP WATER OF GLACIAL LAKE AGASSIZ, COMMONLY SCOURED AND HOMOGENIZED BY ICEBERGS.

AECOM

FIGURE:

60 120 NAD 1983 UTM Zone 14N

1:6,000

LEGEND

MANHOLE

SEMPLE AVE - TRUNK SEWER ALIGNMENT

EXISTING LDS AND OUTFALL

TEST HOLE (AECOM 2012)

TEST HOLE (AECOM 2015)

PIEZOMETER TEST HOLE (AECOM 2012) PIEZOMETER TEST HOLE (AECOM 2015)


PIEZOMETER TEST HOLE (AECOM 2019)

TEST HOLE (AECOM 2019)

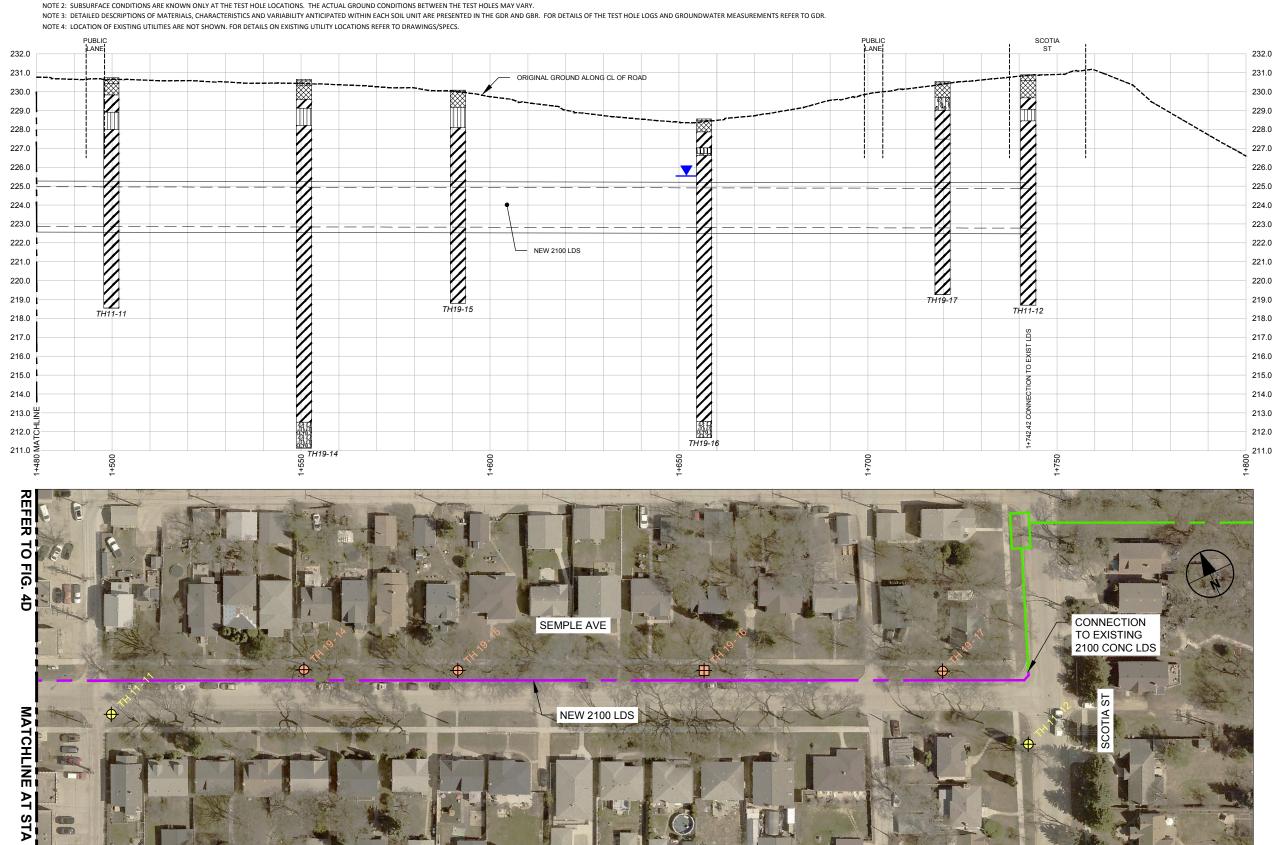
STRATIGRAPHIC SECTION OF SEMPLI TRUNK SEWER ALIGNMENT STN 0+830 TO STN 1+150

SEMPLE AVENUE TRUNK SEWER
GEOTECHNICAL DATA REPORT
CITY OF WINNIPEG, WATER AND WASTE DEPARTMENT

FIGURE: 4C

LEGEND

TOPSOIL FILL


SILTY SAND

INTERMEDIATE PLASTIC SILT

GLACIAL TILL 66 SPT (N) VALUES

LOW PLASTIC SILT HIGH PLASTIC CLAY

NOTE 1: THIS FIGURE SHOULD BE USED FOR BASELINE PURPOSES ONLY AND SHOULD BE READ IN CONJUNCTION WITH THE GEOTECHNICAL BASELINE STRATIGRAPHIC CROSS SECTION ALONG THE TUNNEL SECTIONS ONLY. FOR BASELINE STRATIGRAPHIC CONDITIONS AT THE SHAFT LOCATIONS, REFER TO GBR. NOTE 2: SUBSURFACE CONDITIONS ARE KNOWN ONLY AT THE TEST HOLE LOCATIONS. THE ACTUAL GROUND CONDITIONS BETWEEN THE TEST HOLES MAY VARY.

AECOM

Appendix B

Previous Geotechnical Investigations Test Hole Logs

- B-1: AECOM (February 2012) Test Hole Logs
- B-2: AECOM (October 2015) Test Hole Logs

AECOM Canada Ltd.

GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.

Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

The field and laboratory test results, as shown for each hole, are described below.

1. NATURAL MOISTURE CONTENT

The relationship between the natural moisture content and depth is significant in determining the subsurface moisture conditions. The Atterberg Limits for a sample should be compared to its natural moisture content and plotted on the Plasticity Chart in order to determine the soil classification.

2. SOIL PROFILE AND DESCRIPTION

Each soil stratum is classified and described noting any special conditions. The Modified Unified Classification System (MUCS) is used. The soil profile refers to the existing ground level at the time the hole was done. Where available, the ground elevation is shown. The soil symbols used are shown in detail on the soil classification chart.

3. TESTS ON SOIL SAMPLES

Laboratory and field tests are identified by the following and are on the logs:

- Standard Penetration Test (SPT) Blow Count. The SPT is conducted in the field to assess the in-situ consistency of cohesive soils and the relative density of non-cohesive soils. The N value recorded is the number of blows from a 63.5 kg hammer dropped 760 mm which is required to drive a 51 mm split spoon sampler 300 mm into the soil.
- SO₄ <u>Water Soluble Sulphate Content</u>. Expressed in percent. Conducted primarily to determine requirements for the use of sulphate resistant cement. Further details on the water-soluble sulphate content are given in Section 6.
- γ_D <u>Dry Unit Weight</u>. Usually expressed in kN/m³.
- γ_T <u>Total Unit Weight</u>. Usually expressed in kN/m³.
- Qu <u>Unconfined Compressive Strength</u>. Usually expressed in kPa and may be used in determining allowable bearing capacity of the soil.

- Cu <u>Undrained Shear Strength</u>. Usually expressed in kPa. This value is determined by either a
 direct shear test or by an unconfined compression test and may also be used in determining
 the allowable bearing capacity of the soil.
- C_{PEN} <u>Pocket Penetrometer Reading</u>. Usually expressed in kPa. Estimate of the undrained shear strength as determined by a pocket penetrometer.

The following tests may also be performed on selected soil samples and the results are given on separate sheets enclosed with the logs:

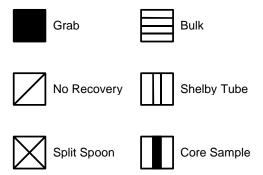
- Grain Size Analysis
- Standard or Modified Proctor Compaction Test
- California Bearing Ratio Test
- Direct Shear Test
- Permeability Test
- Consolidation Test
- Triaxial Test

4. SOIL DENSITY AND CONSISTENCY

The SPT test described above may be used to estimate the consistency of cohesive soils and the density of cohesionless soils. These approximate relationships are summarized in the following tables:

Table 1 Cohesive Soils

N	Consistency	C _u (kPa) approx.
0 - 1	Very Soft	<10
1 - 4	Soft	10 - 25
4 - 8	Firm	25 - 50
8 - 15	Stiff	50 - 100
15 - 30	Very Stiff	100 - 200
30 - 60	Hard	200 - 300
>60	Very Hard	>300


Table 2 Cohesionless Soils

N	Density
0 - 5	Very Loose
5 - 10	Loose
10 - 30	Compact
30 - 50	Dense
>50	Very Dense

5. SAMPLE CONDITION AND TYPE

The depth, type, and condition of samples are indicated on the logs by the following symbols:

6. WATER SOLUBLE SULPHATE CONCENTRATION

The following table, from CSA Standard A23.1-14, indicates the requirements for concrete subjected to sulphate attack based upon the percentage of water-soluble sulphate as presented on the logs. CSA Standard A23.1-14 should be read in conjunction with the table.

Table 3 Requirements for Concrete Subjected to Sulphate Attack*

						Performance	requirements	s§,§§
		Water-soluble	Sulphate (SO ₄)	Water soluble sulphate (SO ₄) in recycled	Cementing	Maximum ex when tested CSA A3004-C Procedure A	using C8	Maximum expansion when tested using CSA A3004-C8 Procedure B at 5 °C, % †††
Class of exposure	Degree of exposure	sulphate (SO ₄)† in soil sample, %	in groundwater samples, mg/L‡	aggregate sample, %	materials to be used§††	At 6 months	At 12 months††	At 18 months‡‡
S-1	Very severe	> 2.0	> 10 000	> 2.0	HS** ,HSb, HSLb*** or HSe	0.05	0.10	0.10
S-2	Severe	0.20–2.0	1500–10 000	0.60-2.0	HS**, HSb, HSLb*** or HSe	0.05	0.10	0.10
S-3	Moderate (including seawater exposure*)	0.10–0.20	150–1500	0.20-0.60	MS, MSb, MSe, MSLb***, LH, LHb, HS**, HSb, HSLb*** or HSe	0.10		0.10

^{*}For sea water exposure, also see Clause 4.1.1.5.

[†]In accordance with CSA A23.2-3B.

[‡]In accordance with CSA A23.2-2B.

[§]Where combinations of supplementary cementing materials and portland or blended hydraulic cements are to be used in the concrete mix design instead of the cementing materials listed, and provided they meet the performance requirements demonstrating equivalent performance against sulphate exposure, they shall be designated as MS equivalent (MSe) or HS equivalent (HSe) in the relevant sulphate exposures (see Clauses 4.1.1.6.2, 4.2.1.1, and 4.2.1.3, and 4.2.1.4).

^{**}Type HS cement shall not be used in reinforced concrete exposed to both chlorides and sulphates, including seawater. See Clause 4.1.1.6.3.

††The requirement for testing at 5 °C does not apply to MS, HS, MSb, HSb, and MSe and HSe combinations made without portland limestone cement.

‡‡ If the increase in expansion between 12 and 18 months exceeds 0.03%, the sulphate expansion at 24 months shall not exceed 0.10% in order for the cement to be deemed to have passed the sulphate resistance requirement.

§§For demonstrating equivalent performance, use the testing frequency in Table 1 of CSA A3004-A1 and see the applicable notes to Table A3 in A3001 with regard to re-establishing compliance if the composition of the cementing materials used to establish compliance changes.

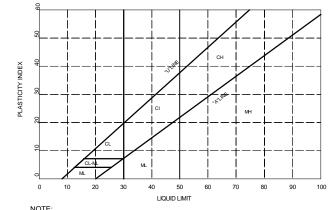
***Where MSLb or HSLb cements are proposed for use, or where MSe or HSe combinations include Portland-limestone cement, they must also contain a minimum of 25% Type F fly ash or 40% slag or 15% metakaolin (meeting Type N pozzolan requirements) or a combination of 5% Type SF silica fume with 25% slag or a combination of 5% Type SF silica fume with 20% Type F fly ash. For some proposed MSLb, HSLb, and MSe or HSe combinations that include Portland-limestone cement, higher SCM replacement levels may be required to meet the A3004-C8 Procedure B expansion limits. Due to the 18-month test period, SCM replacements higher than the identified minimum levels should also be tested. In addition, sulphate resistance testing shall be run on MSLb and HSLb cement and MSe or HSe combinations that include Portland-limestone cement at both 23 °C and 5 °C as specified in the table.

†††If the expansion is greater than 0.05% at 6 months but less than 0.10% at 1 year, the cementing materials combination under test shall be considered to have passed.

7. SOIL CORROSIVITY

The following table, from the Handbook of Corrosion Engineering (Roberge, 1999) indicates the corrosivity rating can be obtained from the soil resistivity, presented on the logs.

Table 4 Corrosivity Ratings Based on Soil Resistivity

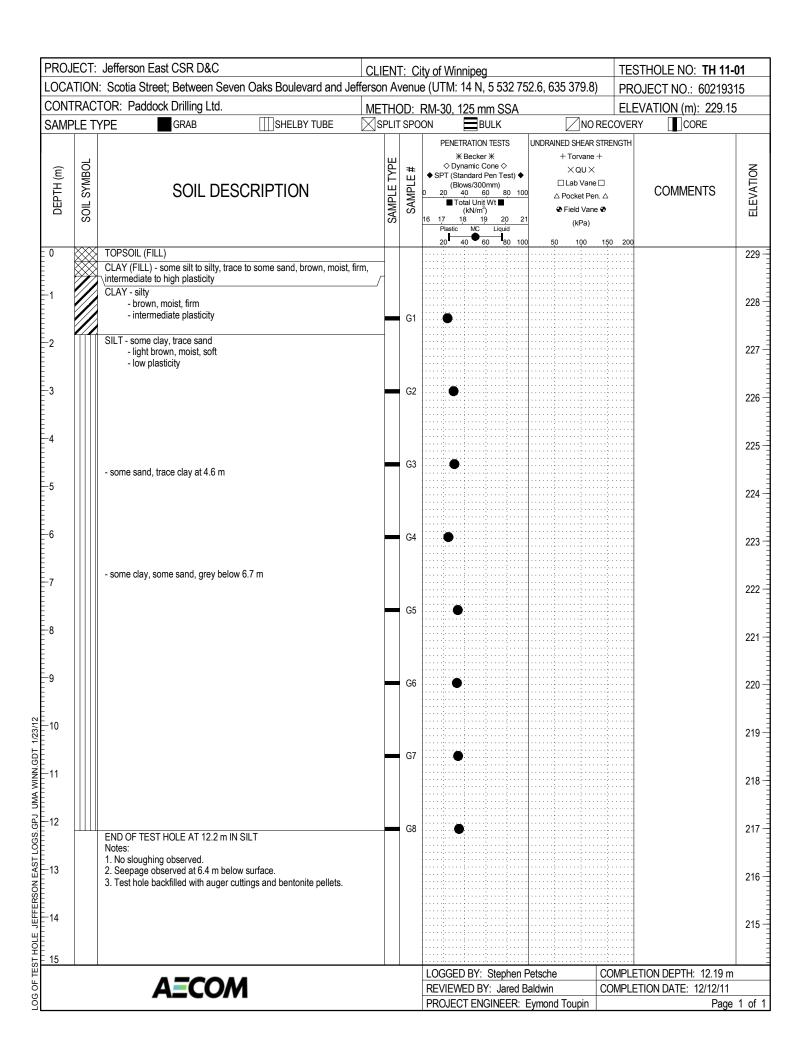

Soil Resistivity (ohm-cm)	Corrosivity Rating
>20,000	Essentially non-corrosive
10,000 – 20,000	Mildly corrosive
5,000 - 10,000	Moderately corrosive
3,000 - 5,000	Corrosive
1,000 – 3,000	Highly corrosive
<1,000	Extremely corrosive

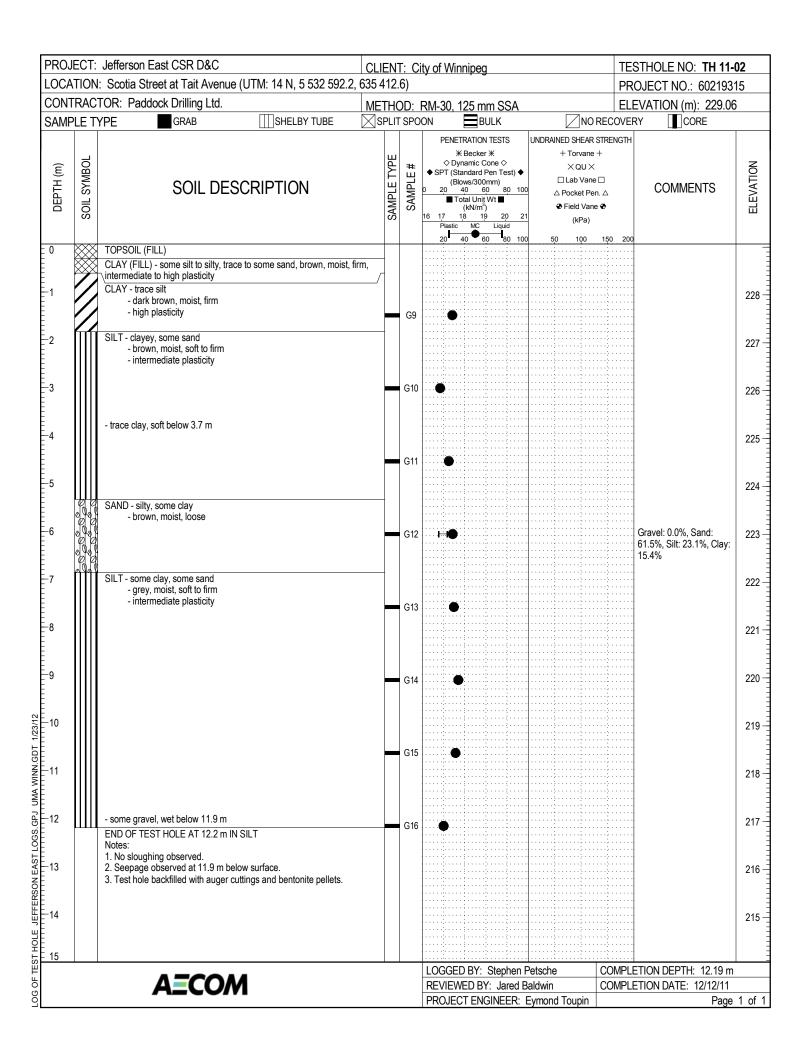
8. GROUNDWATER TABLE

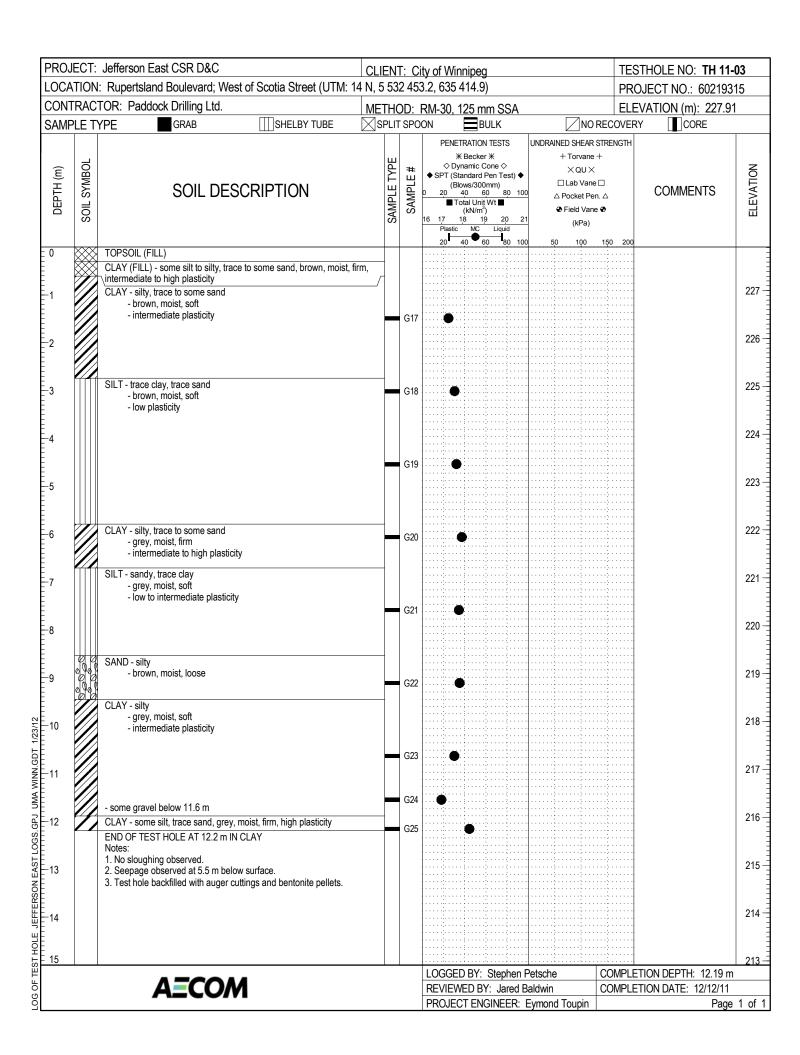
The groundwater table is indicated by the equilibrium level of water in a standpipe installed in a testhole or test pit. This level is generally taken at least 24 hours after installation of the standpipe. The groundwater level is subject to seasonal variations and is usually highest in the spring. The symbol on the logs indicating the groundwater level is an inverted solid triangle (\P).

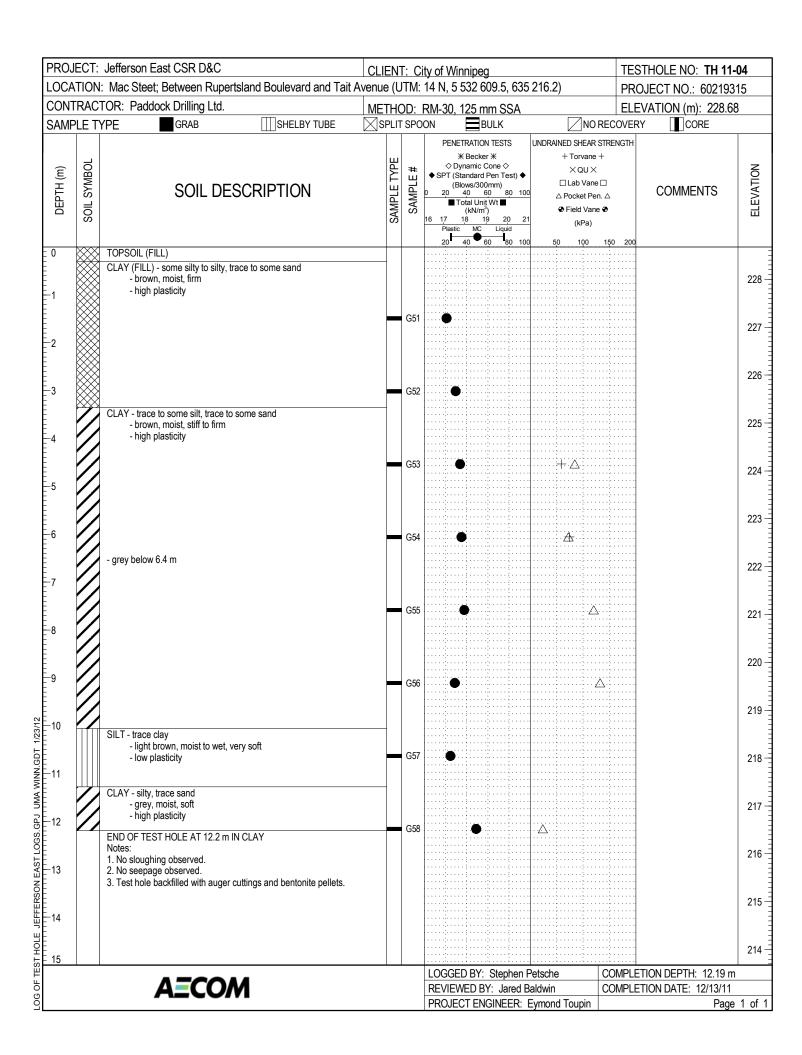
	MAJOR DIVISION		LOG SYMBOLS	UCS	TYPICAL DESCRIPTION	LABORATORY CLA CRITER							
		CLEAN GRAVELS		GW	WELL GRADED GRAVELS, LITTLE OR NO FINES	$C_u = \frac{D_{60}}{D_{10}} > 4 C_c = \frac{C_c}{D_{10}}$	$\frac{(D_{30})^2}{_{10} \times D_{60}} = 1 \text{ to } 3$						
ဟု	GRAVELS (MORE THAN HALF COARSE GRAINS	(LITTLE OR NO FINES)	, , , ,	GP	POORLY GRADED GRAVELS AND GRAVEL- SAND MIXTURES, LITTLE OR NO FINES	NOT MEETING ABOVE	REQUIREMENTS						
SOILS	LARGER THAN 4.75 mm)	GRAVELS	, , , ,	GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES	CONTENT OF FINES EXCEEDS	ATTERBERG LIMITS BELOW 'A' LINE W _P LESS THAN 4						
GRAINED		WITH FINES		GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES	12%	ATTERBERG LIMITS ABOVE 'A' LINE W _p MORE THAN 7						
		CLEAN SANDS (LITTLE R NO		SW	WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	$C_u = \frac{D_{60}}{D_{10}} > 6 C_C = \frac{C_C}{D_{10}}$	$\frac{D_{30})^2}{10 \times D_{80}} = 1 \text{ to } 3$						
COARSE	SANDS (MORE THAN HALF	FINES)		SP	POORLY GRADED SANDS, LITTLE OR NO FINES	NOT MEETING ABOVE	REQUIREMENTS						
ŏ	COARSE GRAINS SMALLER THAN 4.75 mm)	LER THAN 75 mm) SANDS		SM	SILTY SANDS, SAND-SILT MIXTURES	CONTENT OF FINES EXCEEDS	ATTERBERG LIMITS BELOW 'A' LINE W _p LESS THAN 4						
		WITH FINES		SC	CLAYEY SANDS, SAND-CLAY MIXTURES	12%	ATTERBERG LIMITS ABOVE 'A' LINE W _p MORE THAN 7						
	SILTS (BELOW 'A' LINE	W _L < 50		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY SANDS OF SLIGHT PLASTICITY	CLASSIFICATION IS PLASTICITY (SEE BELO	CHART						
ILS	NEGLIGIBLE ORGANIC CONTENT)	NEĞLIGIBLE ORGANIC		МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS								
FINE GRAINED SOILS		W _L < 30		CL	INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY, OR SILTY CLAYS, LEAN CLAYS								
RAINE	CLAYS (ABOVE 'A' LINE NEGLIGIBLE ORGANIC CONTENT)	30 < W _L < 50		CI	INORGANIC CLAYS OF MEDIUM PLASTICITY, SILTY CLAYS	WHENEVER THE NATU CONTENT HAS NOT BEI IT IS DESIGN BY THE LETT	EN DETERMINED, NATED						
D H		W _L > 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	E.G. SF IS A MIXTURE SILT OR C	OF SAND WITH						
	ORGANIC	W _L < 50		OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY								
	SILTS & CLAYS (BELOW 'A' LINE)	W _L > 50		ОН	ORGANIC CLAYS OF HIGH PLASTICITY								
	HIGHLY ORGANIC SOILS			Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS	LS STRONG COLOUR OR ODOUR, AND OFTEN FIBROUS TEXTURE							
	BEDROCK			BR	SEE REPORT DE	SCRIPTION							
	FILL			FILL			FILL			FILL	SEE REPORT DE	SCRIPTION	

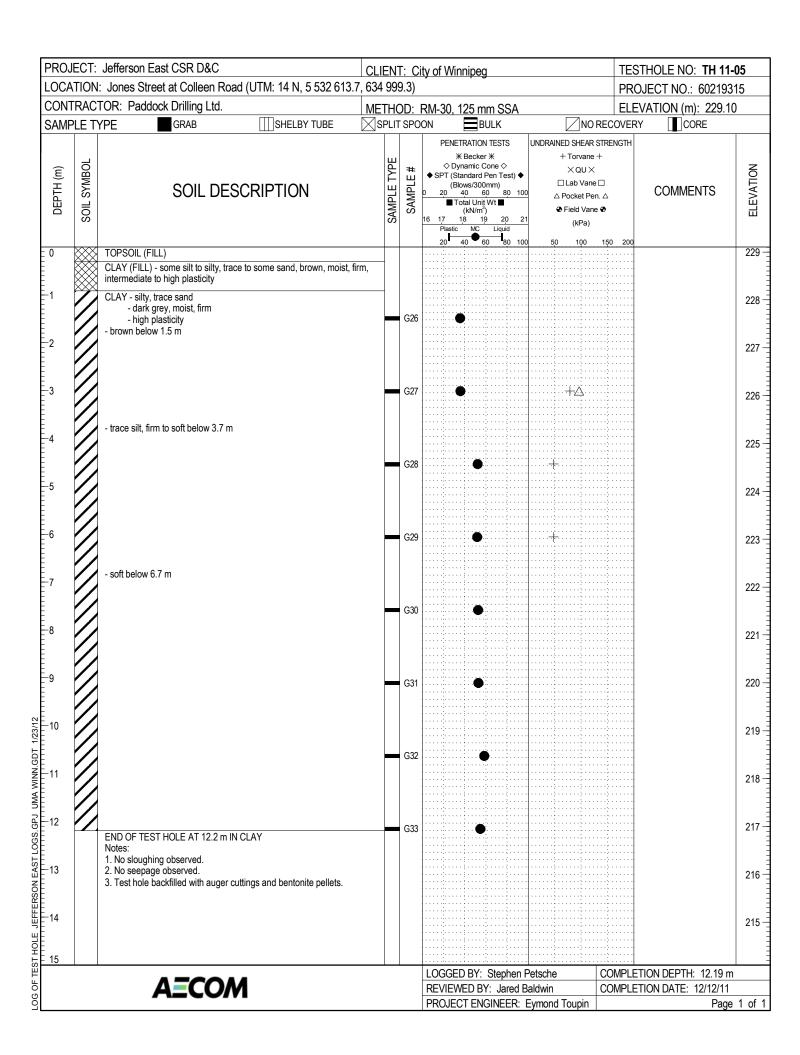
NOTE:

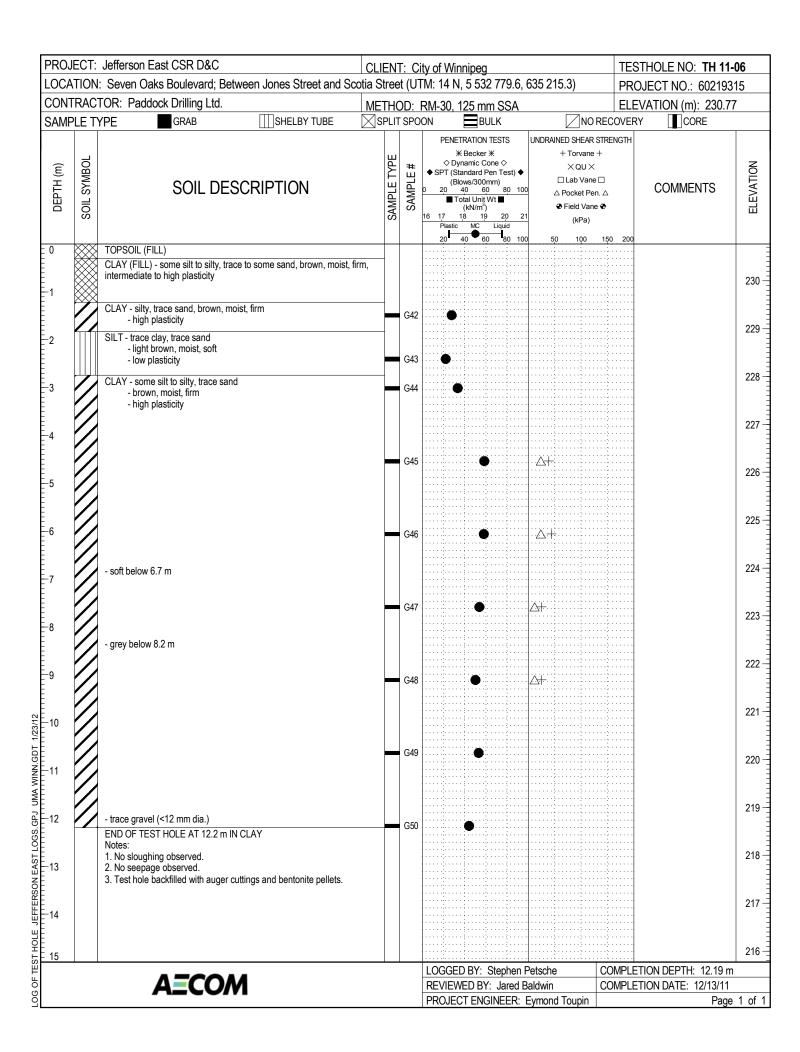

1. BOUNDARY CLASSIFICATION POSSESSING CHARACTERISTICS OF TWO GROUPS ARE GIVEN GROUP SYMBOLS, E.G. GW-GC IS A WELL GRADED GRAVEL MIXTURE WITH CLAY BINDER BETWEEN 5% AND 12%

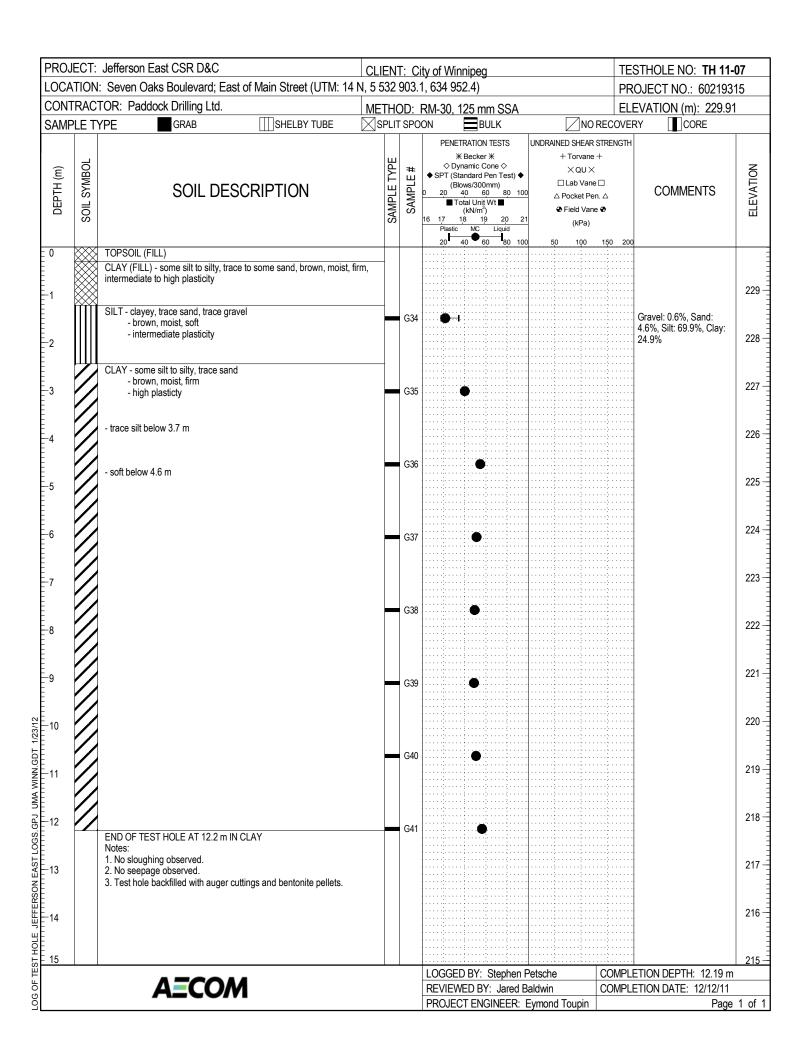

SOIL COMPONENTS

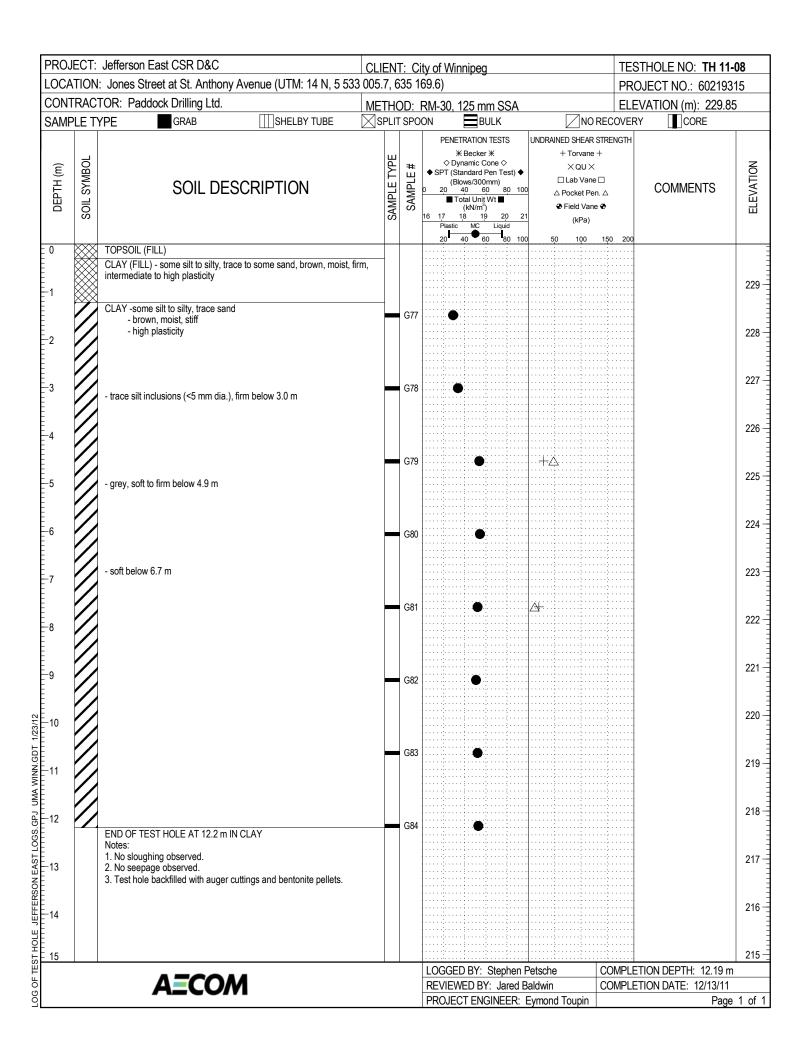

FRAC	TION	SIEVE S	IZE (mm)	DEFINING RANGES OF PERCENTAGE BY WEIGHT OF MINOR COMPONENTS			
		PASSING	PASSING RETAINED		IDENTIFIER		
GRAVEL	COARSE	75	19	50.05	AND		
	FINE	19	4.75	50 - 35	AND		
SAND	COARSE	4.75	2.00	25 20	V		
	MEDIUM	2.00	0.425	35 – 20	т		
	FINE	0.425	0.080	20 – 10	SOME		
SILT (nor	n-plastic)			20 - 10	SOME		
o	r	0.0	080	10 - 1	TRACE		
CLAY (plastic)			10 - 1	TRACE		
		OVERSIZE	MATERIALS				
COBBL	ED OR SUB-ROUN LES 75 mm TO 200 DULDERS >200 mm) mm	ANGULAR ROCK FRAGMENTS ROCKS > 0.75 m3 IN VOLUME				

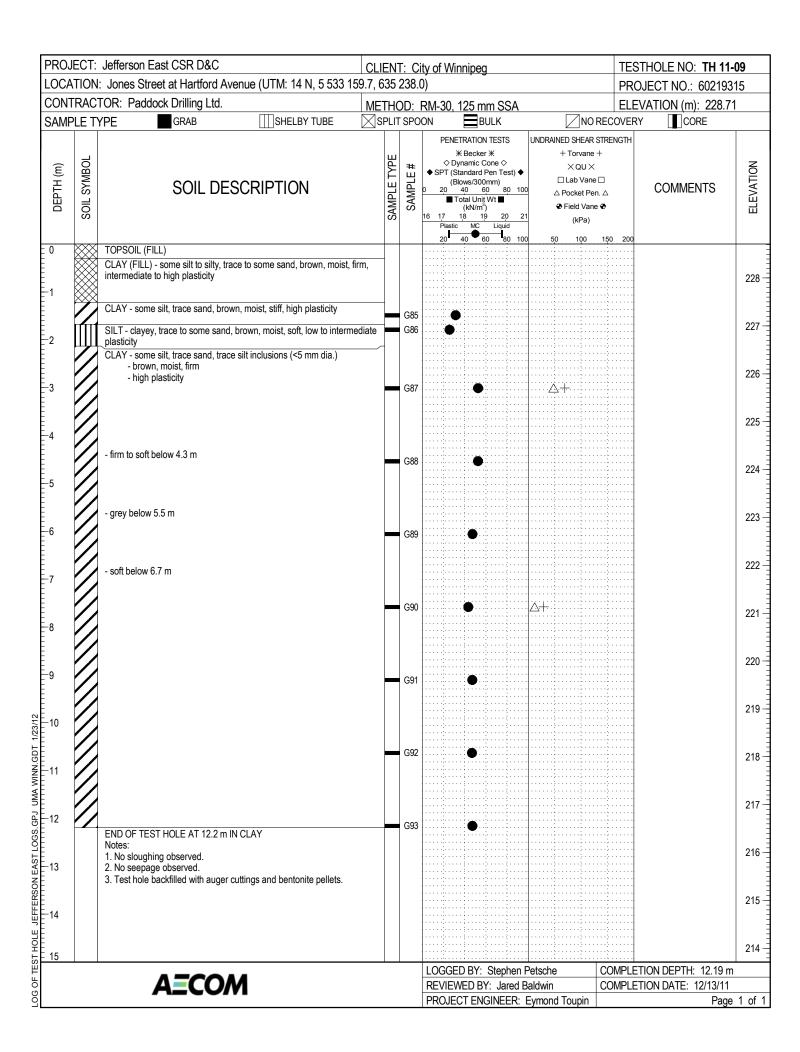

MODIFIED UNIFIED SOIL CLASSIFICATION SYSTEM

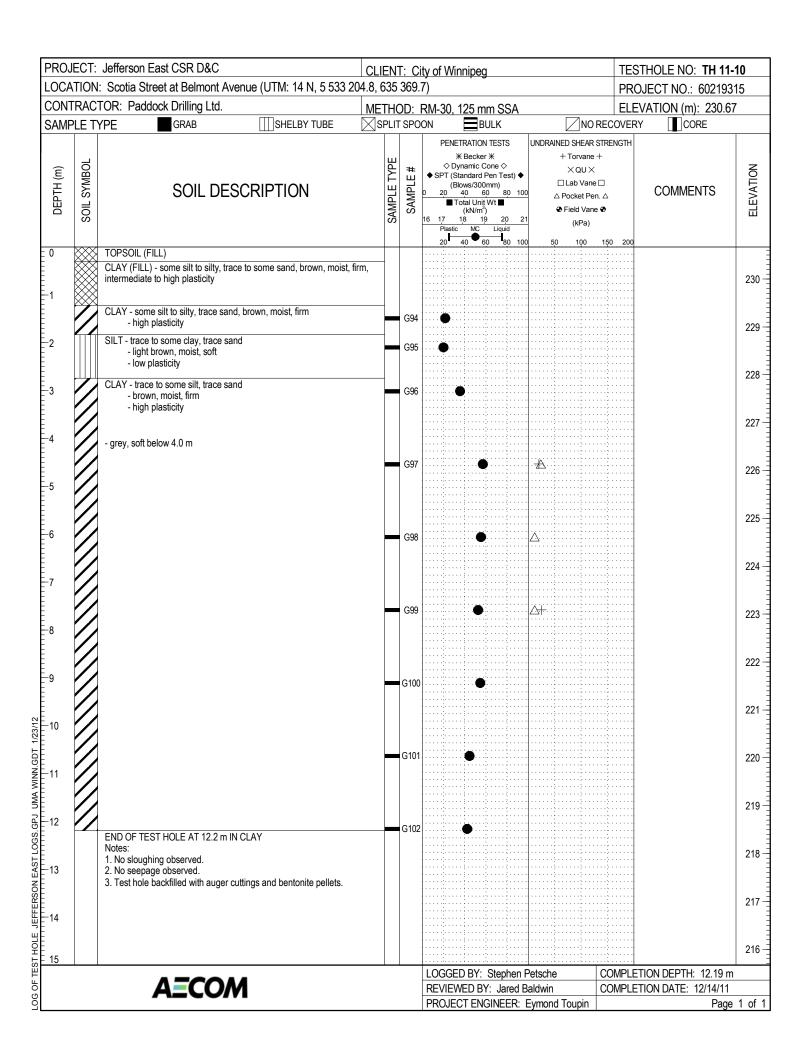

August 2015

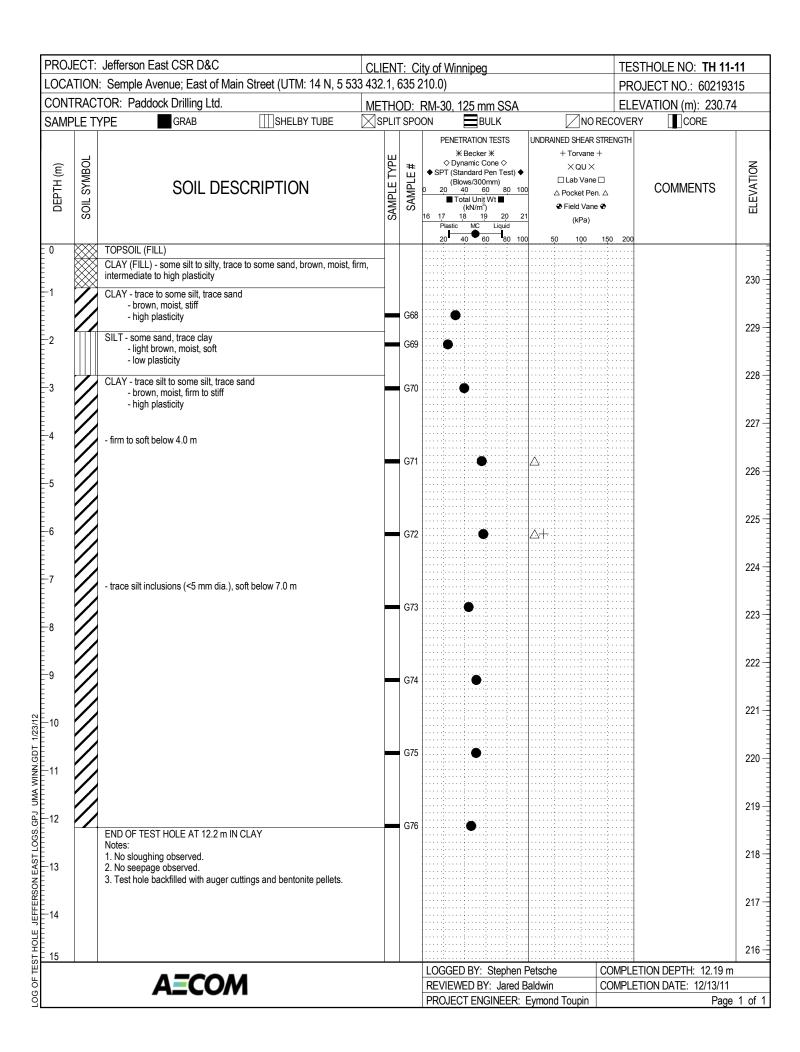


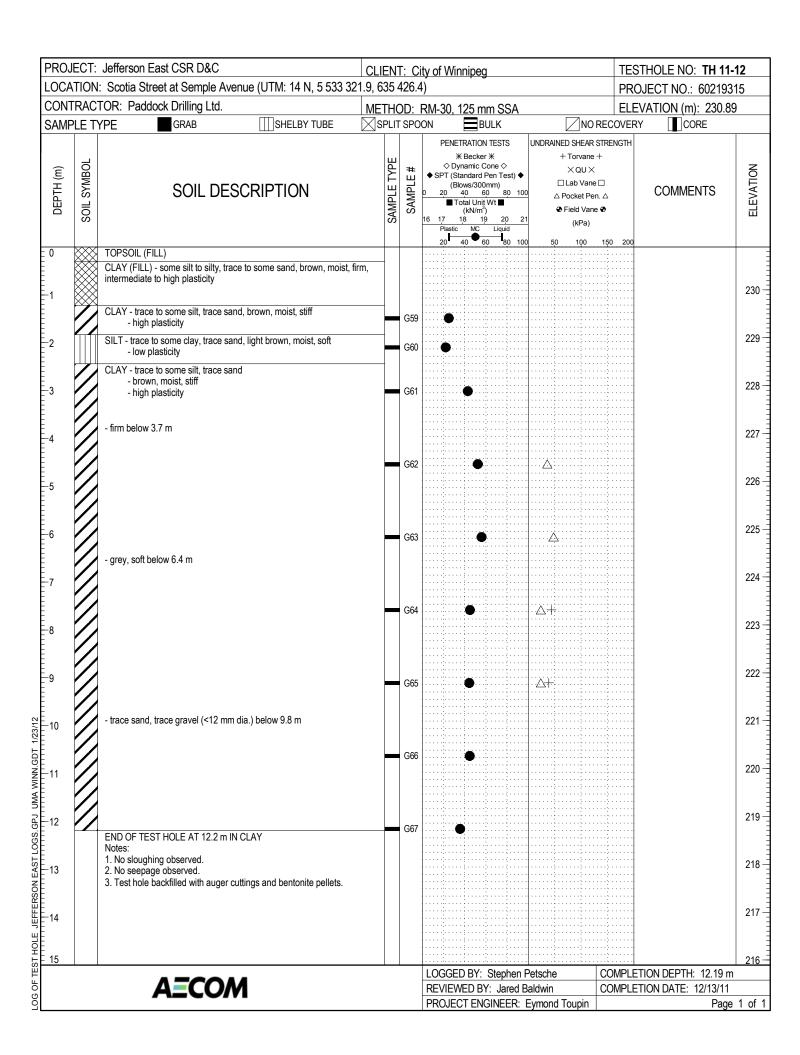


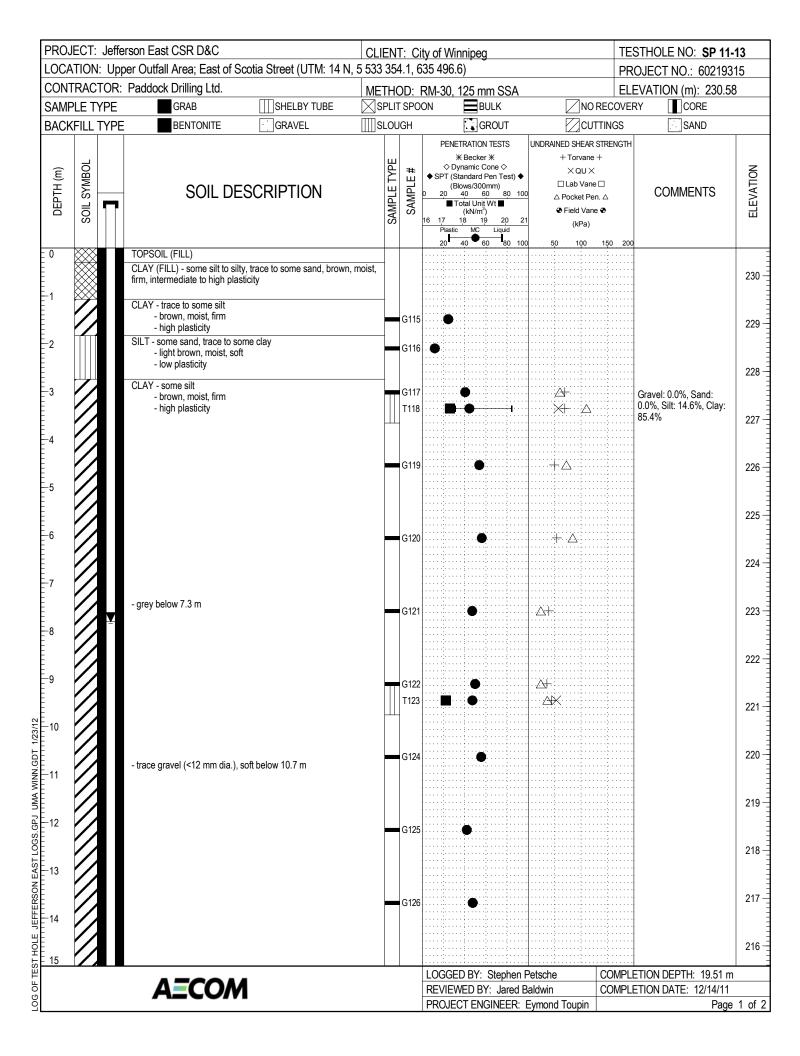


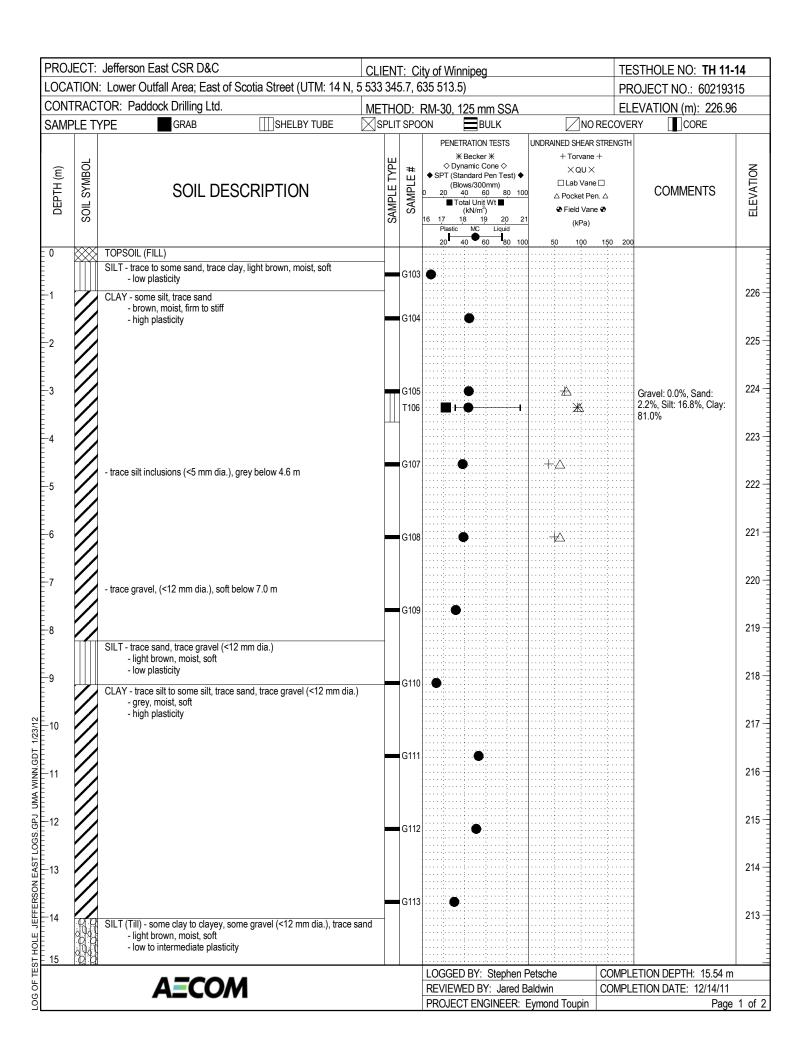












		rson East CSR D&C					of Winnipeg	TE	TESTHOLE NO: SP 11-13			
		per Outfall Area; East of So	cotia Street (UTM: 14 N,				·				PROJECT NO.: 60219315	
		Paddock Drilling Ltd.	SHELBY TUBE		<mark>THOD</mark> PLIT SF		-30, 125 mm			RECOVER	EVATION (m): 230.58 RY	3
	PLE TYPE KFILL TYPE	GRAB BENTONITE	GRAVEL		LOUGH		■BUI			TTINGS	RYCORE	
DEPTH (m)	SOIL SYMBOL SLOTTED PIEZOMETER	<u>-</u>	SCRIPTION	SI	SAMPLE TYPE	÷ 0	PENETRATION T # Becker Optional Color PENETRATION T # Becker Blows/300m 0 40 60 Total Unix (kN/rM) 17 18 19	TESTS K ne ♦ en Test) ♦ im) 80 100	UNDRAINED SHEAR + Torvane × QU × □ Lab Vank △ Pocket Pe ◆ Field Van (kPa)	STRENGTH + : e □ n. △	COMMENTS	ELEVATION
-15 -16 -17					G1							215 -
-18 -18 		CLAY and SILT - some gravel intermediate plasticity CLAY - grey, moist, soft, high SILT (Till) - some clay to claye - brown, moist to wet, co	plasticity y, some gravel, trace sand		G1 G1	1)				213 -
-19 20		- low plasticity END OF TEST HOLE AT 19.5 Notes: 1. Power auger refusal encour	m IN SILT (TILL)	ə.	G1	31						211 -
-21 -21 22		No sloughing observed. No seepage observed. Standpipe piezometer (SP-tip and 0.99 m stick-up. Above with lock. Test hole backfilled with silin followed by bentonite chips to 6. On January 6, 2012, a wate	ground protective casing inst ca sand to 18.1 m below surfa surface.	alled ce								210 -
-23		was observed and recorded.	Tiever 7.0 III below ground lev	GI								208 -
24												206 -
WINN.GDT 1/2/												205 -
SBC.GPJ UMA												204 -
106 OF TEST HOLE JEFFERSON EAST LOGS GPJ UMA WINN GDT 1/23/12												203 -
29 10 10 10 10 10 10 10 10 10 10 10 10 10												201 -
유		A=COM	I				OGGED BY: S EVIEWED BY:				ETION DEPTH: 19.51 m ETION DATE: 12/14/11	
LOG		7_0//						Eymond Toupin	OOIVII LI		2 of 2	

PROJ	ROJECT: Jefferson East CSR D&C				Г: Ci	ty of Winnipeg	TES	TESTHOLE NO: TH 11-14			
LOCA	TION	: Lower Outfall Area; East of Scotia Street (UTM: 14 N,							PROJECT NO.: 60219315		
CONT	RAC	TOR: Paddock Drilling Ltd.				RM-30, 125 mm SSA		ELEVATION (m): 226.96			
SAMP	LE T	YPE GRAB SHELBY TUBE	SI	PLIT	SPO	ON BULK	NO	RECOVER	RY CORE		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE#	PENETRATION TESTS	⊕ Field Vane (kPa)	+ e□ n. △	COMMENTS	ELEVATION	
15	00				G114	- 0: - 0: - 0: - 0: - 0: - 0: - 0: - 0:	50 100				
Ē	DO	END OF TEST HOLE AT 15.5 m IN SILT (TILL)									
16		Notes: 1. Power auger refusal encountered at 15.5 m below surface.								211	
E		No sloughing observed.									
Ē ,,		No seepage observed. Test hole backfilled with auger cuttings and bentonite pellets.								210	
- 17										210	
Ē										:	
- 18										209 -	
-											
E											
- 19										208 -	
Ē											
E 20										207 -	
E 20											
Ė											
21										206	
Ē											
Ē										205	
-22										205	
Ē											
E -23										204 -	
Ē - ~										=	
Ē											
24										203	
Ė											
<u> </u>										202	
25										202	
<u>_</u>											
26										201 -	
\$:	
<u> </u>											
£ 27										200 -	
ŠĒ.											
2 28										199 –	
1 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2											
žĖ.										:	
29										198	
]											
26 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29											
		1 = 60 1 1				LOGGED BY: Stephen F			ETION DEPTH: 15.54 m		
5		A=COM				REVIEWED BY: Jared B		COMPLE	ETION DATE: 12/14/11		
3						PROJECT ENGINEER: I	Eymond Toupin		Page	2 of 2	

			erson East CSR - Semple O th of the Proposed Outfall F				City	of Winnipeg			THOLE NO: SI15-01		
			Maple Leaf Drilling Ltd.	Tipe, 4 m vvest of Low)· ME	25 Track Mounted-125m	PROJECT NO.: 60219315 mm SSA/HQ Barrel ELEVATION (m): 227.00				
	PLE T		GRAB	SHELBY TUBE			T SPO			RECOVER			
—	(FILL		BENTONITE	GRAVEL		SLO		GROUT	Сит		SAND		
DEPTH (m)	SOIL SYMBOL	SLOPE	SOIL DESC		SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	UNDRAINED SHEAR : + Torvane × QU × □ Lab Vane △ Pocket Per ♣ Field Vane (kPa)	STRENGTH +	COMMENTS	ELEVATION (m)	
-1 -2 -3			TOPSOIL - black, rootlets, froze CLAY - silty, trace sand, silt incli - brown mottled grey, stiff, moist - high plasticity - G1: Gravel: 0%, Sand: 5.9%, \$ - G3: Gravel: 0%, Sand: 6.6%, \$ SILT - trace sand, trace gravel - light grey, loose, moist - fine grained CLAY (Lacustrine) - some silt, si - brown mottled grey, firm, moist - high plasticity - grey below 2.7 m	usions (<3 mm dia.) Silt: 25.3%, Clay: 68.8% Silt: 29.5%, Clay: 63.9% It inclusions (<5 mm dia.)		G1 G2 G3 G5 G6 G7						226	
A.GDT 10/26/15			- silt pockets (<50 mm dia.) at 4	m		G8 G10 T11			Δ			223 —	
EST HOLE LOGS REV 02.GPJ UMA WIN						G12			Δ			221 -	
LOG OF TEST HOLE _JEFFERSON CSR - SEMPLE OUTFALL_TEST HOLE LOGS_REV 02.GPJ_UMA_WINN.GDT_10/26/15			- very soft, trace to some silt below	ow 9.1 m		G16 G19			Δ			219	
-06 OF TEST HOL			AECOM					LOGGED BY: Mustafa A REVIEWED BY: Zeyad PROJECT ENGINEER:	Shukri		ETION DEPTH: 22.61 m ETION DATE: 2/24/15 Page	1 of 3	

		erson East CSR - Semple C		CLIENT: City of Winnipeg							TESTHOLE NO: SI15-01 PROJECT NO.: 60219315				
		rth of the Proposed Outfall I Maple Leaf Drilling Ltd.	ape, 4 m west of Lo)· ME	95 Tr	ack Mo	unted-	125m	m SSA	√HO Ba	_	/ATION (m): 227.00	5
	PLE TYPE	GRAB	SHELBY TUBE	_		T SPC			BULK	120111	✓ NO RECOVER				
	KFILL TYPE	BENTONITE	GRAVEL		SLO				GROU	T		CUT		SAND	
DEPTH (m)	SOIL SYMBOL SLOPE INCLINOMETER	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	◆ SF 0 2 16 1	Dynam T (Standa (Blows/ 0 40 ■ Total I (kN 7 18	cker Ж ic Cone ⟨ ard Pen To 300mm) 60 8 Jnit Wt ■ /m³) 19 2	> est) • 30 100	[_	ED SHEAR + Torvane × QU × Lab Vane Pocket Per Field Vane (kPa)	STRENGTH +	COMMENTS	ELEVATION (m)
							1	Plastic N	C Liqu	id 30 100	50	100	150 200		
- 10 11 12 13					G25 G27										216
WINN.GDT 10/26/15					G31			•							213 —
10LE LOGS, REV 02.GPJ UMA	03030303030	SILT (Till) - some clay, some sa dia., subangular) - brown, compact, moist to wet - low plasticity	nd, trace gravel (<5 mm		G33				•						211 —
JEFFERSON CSR - SEMPLE OUTFALL TEST H	050505050505050505050 05050505050505050	- very dense below 17.4 m													209 —
로 2															-
100 OF TEST HOLE	IN WAYL & LA						LOC	GED B	Y: Mus	tafa A	lkiki		COMPLE	TION DEPTH: 22.61 m	1
3 OF	A ≡ C OM						RE\	/IEWED	BY: Ze	eyad S	Shukri			TION DATE: 2/24/15	
ğ					PRO	DJECT I	ENGINE	ER: I	Eymond	l Toupin		Page	2 of 3		

PRO	PROJECT: Jefferson East CSR - Semple Outfall						CLIENT: City of Winnipeg							TES	THOLE NO: SI15-01	
LOC	ATION	N: Nor	th of the Proposed Outfa	Il Pipe, 4 m West of Lov	ver SI	lope								PROJECT NO.: 60219315		
			Maple Leaf Drilling Ltd.									nm SSA			/ATION (m): 227.00	
SAMF			GRAB	SHELBY TUBE			IT SPO	ON		BULK				RECOVER		
BACK	FILL	TYPE	BENTONITE	GRAVEL	Ш	SLO	UGH		<u>:</u>	GRO	UT	1	CU	TTINGS	SAND	
DEPTH (m)	SOIL SYMBOL	SLOPE INCLINOMETER	SOIL DES	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP 0 2		I Unit Wt I kN/m³) 19 MC Lic	· ◇ Test) ◆) 80 100		ED SHEAR - Torvane X QU X Lab Vand Pocket Pe Field Van (kPa)	< e □ en. △	COMMENTS	ELEVATION (m)
-21 -22 -23 -24			BEDROCK (Limestone) END OF TEST HOLE AT 22. (LIMESTONE) Notes: 1. Power auger refusal at 17. 2. Switched to HQ barrel beld 3. No sloughing observed dur 4. Seepage observed at 9 an 5. Installed slope inclinomete 6. Test hole backfiled with ce	4 m below grade. ow 17.4 m. ing drilling. d 12.8 m below grade. r (SI15-01) to 22.6 m.												206 - 205 - 204 -
61/05/01 105/01/01/01/01/01/01/01/01/01/01/01/01/01/			surface.													202 -
26																201 -
26 - 27 - 27 - 28 - 27 - 27 - 28 - 29 - 29 - 29 - 29 - 29 - 29 - 29																199 –
29																198 -
			A = 00 t	_	,					BY: Mu					ETION DEPTH: 22.61 n	n
ָל פֿו	A ECOM									D BY: Z				COMPLE	ETION DATE: 2/24/15	
5	A_COM							PRC	JECT	ENGIN	IEER:	Eymond	Toupin			

		on East CSR - Semple C					of Winnipeg		TESTHOLE NO: VW15-02 PROJECT NO.: 60219315			
		aple Leaf Drilling Ltd.	ripe, 15 m west of Li				25 Track Mounted-125m	5mm SSA/HQ Barrel ELEVATION (m): 227.00				
	PLE TYPE	GRAB	SHELBY TUBE			T SPO		NO RECOVERY CORE				
-	KFILL TYPE	BENTONITE	GRAVEL		SLO		GROUT	Сит		SAND		
DEPTH (m)	SOIL SYMBOL	SOIL DES	SCRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	PENETRATION TESTS	⊕ Field Vane (kPa)	+ □ n. Δ æ �	COMMENTS	ELEVATION (m)	
- 0		TOPSOIL - black, rootlet	s, frozen				20 40 60 80 100	50 100	150 200		-	
-1 -2 -3 -4		CLAY - silty, some sand - brown, stiff, moist - high plasticity - SILT - sandy - brown, loose, moist - fine grained	silt inclusions (<5 mm dia n, moist gravel e silt, silt inclusions (<5		G35						225 —	
LOG OF TEST HOLE JEFFERSON CSR - SEMPLE OUTFALL_TEST HOLE LOGS_REV 02.6PJ UMA WINN.GDT 10/26/15		- very soft below 7.6 m					LOGGED RV: Mustafa	Mili	COMPLE	ETION DEPTH: 12 50 m	221	
OF TE	AECOM						LOGGED BY: Mustafa A			ETION DEPTH: 12.50 m ETION DATE: 2/24/15		
907		A_CO//!				PROJECT ENGINEER:				1 of 2		

PRC	PROJECT: Jefferson East CSR - Semple Outfall OCATION: South of the Proposed Outfall Pipe, 15 m West of					CLIENT: City of Winnipeg								TES	THOLE NO: VW15-0)2		
LOC	ATION	1: Sou	uth of t	he Proposed Outfall I	Pipe, 15 m West of L										PROJECT NO.: 60219315			
			Maple	e Leaf Drilling Ltd.								125m	m SS/			VATION (m): 227.00		
	PLE T			GRAB	SHELBY TUBE		_	T SPO	ON		BULK				RECOVER			
BAC	KFILL	TYPE		BENTONITE	GRAVEL	Щ	SLO	UGH			GROUT				JTTINGS	SAND		
DEPTH (m)	SOIL SYMBOL	VW PIEZOMETER	VW PIEZOMETER	SOIL DES	CRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	◆ SP ² 0 20	■ Total Ur (kN/n	ter ₩ Cone <> d Pen Te Domm) 60 8 nit Wt ■ n³) 19 20 Liqui	est) ♦ 0 21	۷	+ Torvand X QU > □ Lab Vand Δ Pocket Potential Tield Vand (kPa)	≺ ne	COMMENTS	ELEVATION (m)	
- 10 																	216 -	
- - - - - 13				END OF TEST HOLE AT (Lacustrine) Notes: 1. No sloughing observed ay 3. Squeexing below 8.3 r 4. Installed VW15-02 and 5.8 and 12 m, respectivly	d during drilling. 9.6 m below grade. n I VW15-03 in test hole at												214	
UMA WINN.GDT 10/26/15				5. Test hole backfilled widepth).	in cement/grout (tuli												213 -	
ELOGS REV 02.GPJ																	211 -	
LOG OF TEST HOLE JEFFERSON CSR - SEMPLE OUTFALL_TEST HOLE LOGS_REV 02.GPJ UMA 1																	210 -	
ON CSR - SEMPLE O																	209 -	
19 20 19 19 19 19 19 19 19 19 19 19 19 19 19																	208 -	
TES	'			1 = 60 1 1					_	GED BY						ETION DEPTH: 12.50 r	n	
0 P	AECOM				REVIEWED BY: Zeyad Shukri						COMPLETION DATE: 2/24/15							
٩	ALCOM								PROJECT ENGINEER: Eymond							Page	e 2 of 2	

Appendix C

AECOM (June 2019) Geotechnical Investigation Test Hole Logs

• AECOM (June 2019) Geotechnical Investigation Test Hole Logs

AECOM Canada Ltd.

GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.

Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

The field and laboratory test results, as shown for each hole, are described below.

1. NATURAL MOISTURE CONTENT

The relationship between the natural moisture content and depth is significant in determining the subsurface moisture conditions. The Atterberg Limits for a sample should be compared to its natural moisture content and plotted on the Plasticity Chart in order to determine the soil classification.

2. SOIL PROFILE AND DESCRIPTION

Each soil stratum is classified and described noting any special conditions. The Modified Unified Classification System (MUCS) is used. The soil profile refers to the existing ground level at the time the hole was done. Where available, the ground elevation is shown. The soil symbols used are shown in detail on the soil classification chart.

3. TESTS ON SOIL SAMPLES

Laboratory and field tests are identified by the following and are on the logs:

- Standard Penetration Test (SPT) Blow Count. The SPT is conducted in the field to assess the in-situ consistency of cohesive soils and the relative density of non-cohesive soils. The N value recorded is the number of blows from a 63.5 kg hammer dropped 760 mm which is required to drive a 51 mm split spoon sampler 300 mm into the soil.
- SO₄ <u>Water Soluble Sulphate Content</u>. Expressed in percent. Conducted primarily to determine requirements for the use of sulphate resistant cement. Further details on the water-soluble sulphate content are given in Section 6.
- γ_D <u>Dry Unit Weight</u>. Usually expressed in kN/m³.
- γ_T <u>Total Unit Weight</u>. Usually expressed in kN/m³.
- Qu <u>Unconfined Compressive Strength</u>. Usually expressed in kPa and may be used in determining allowable bearing capacity of the soil.

- Cu <u>Undrained Shear Strength</u>. Usually expressed in kPa. This value is determined by either a
 direct shear test or by an unconfined compression test and may also be used in determining
 the allowable bearing capacity of the soil.
- C_{PEN} <u>Pocket Penetrometer Reading</u>. Usually expressed in kPa. Estimate of the undrained shear strength as determined by a pocket penetrometer.

The following tests may also be performed on selected soil samples and the results are given on separate sheets enclosed with the logs:

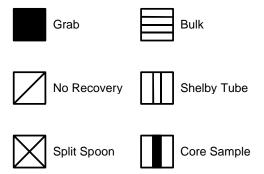
- Grain Size Analysis
- Standard or Modified Proctor Compaction Test
- California Bearing Ratio Test
- Direct Shear Test
- Permeability Test
- Consolidation Test
- Triaxial Test

4. SOIL DENSITY AND CONSISTENCY

The SPT test described above may be used to estimate the consistency of cohesive soils and the density of cohesionless soils. These approximate relationships are summarized in the following tables:

Table 1 Cohesive Soils

N	Consistency	C _u (kPa) approx.
0 - 1	Very Soft	<10
1 - 4	Soft	10 - 25
4 - 8	Firm	25 - 50
8 - 15	Stiff	50 - 100
15 - 30	Very Stiff	100 - 200
30 - 60	Hard	200 - 300
>60	Very Hard	>300


Table 2 Cohesionless Soils

N	Density
0 - 5	Very Loose
5 - 10	Loose
10 - 30	Compact
30 - 50	Dense
>50	Very Dense

5. SAMPLE CONDITION AND TYPE

The depth, type, and condition of samples are indicated on the logs by the following symbols:

6. WATER SOLUBLE SULPHATE CONCENTRATION

The following table, from CSA Standard A23.1-14, indicates the requirements for concrete subjected to sulphate attack based upon the percentage of water-soluble sulphate as presented on the logs. CSA Standard A23.1-14 should be read in conjunction with the table.

Table 3 Requirements for Concrete Subjected to Sulphate Attack*

						Performance	requirement	s§,§§
		Water-soluble	Sulphate (SO ₄)	Water soluble sulphate (SO ₄) in recycled	Cementing	Maximum e when tested CSA A3004-C Procedure A	using C8	Maximum expansion when tested using CSA A3004-C8 Procedure B at 5 °C, % †††
Class of exposure	Degree of exposure	sulphate (SO ₄)† in soil sample, %	in groundwater samples, mg/L‡	aggregate sample, %	materials to be used§††	At 6 months	At 12 months††	At 18 months‡‡
S-1	Very severe	> 2.0	> 10 000	> 2.0	HS** ,HSb, HSLb*** or HSe	0.05	0.10	0.10
S-2	Severe	0.20–2.0	1500–10 000	0.60-2.0	HS**, HSb, HSLb*** or HSe	0.05	0.10	0.10
S-3	Moderate (including seawater exposure*)	0.10–0.20	150–1500	0.20-0.60	MS, MSb, MSe, MSLb***, LH, LHb, HS**, HSb, HSLb*** or HSe	0.10		0.10

^{*}For sea water exposure, also see Clause 4.1.1.5.

[†]In accordance with CSA A23.2-3B.

[‡]In accordance with CSA A23.2-2B.

Where combinations of supplementary cementing materials and portland or blended hydraulic cements are to be used in the concrete mix design instead of the cementing materials listed, and provided they meet the performance requirements demonstrating equivalent performance against sulphate exposure, they shall be designated as MS equivalent (MSe) or HS equivalent (HSe) in the relevant sulphate exposures (see Clauses 4.1.1.6.2, 4.2.1.1, and 4.2.1.3, and 4.2.1.4).

^{**}Type HS cement shall not be used in reinforced concrete exposed to both chlorides and sulphates, including seawater. See Clause 4.1.1.6.3.

††The requirement for testing at 5 °C does not apply to MS, HS, MSb, HSb, and MSe and HSe combinations made without portland limestone cement.

‡‡ If the increase in expansion between 12 and 18 months exceeds 0.03%, the sulphate expansion at 24 months shall not exceed 0.10% in order for the cement to be deemed to have passed the sulphate resistance requirement.

§§For demonstrating equivalent performance, use the testing frequency in Table 1 of CSA A3004-A1 and see the applicable notes to Table A3 in A3001 with regard to re-establishing compliance if the composition of the cementing materials used to establish compliance changes.

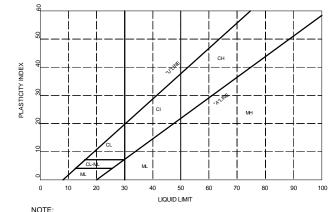
***Where MSLb or HSLb cements are proposed for use, or where MSe or HSe combinations include Portland-limestone cement, they must also contain a minimum of 25% Type F fly ash or 40% slag or 15% metakaolin (meeting Type N pozzolan requirements) or a combination of 5% Type SF silica fume with 25% slag or a combination of 5% Type SF silica fume with 20% Type F fly ash. For some proposed MSLb, HSLb, and MSe or HSe combinations that include Portland-limestone cement, higher SCM replacement levels may be required to meet the A3004-C8 Procedure B expansion limits. Due to the 18-month test period, SCM replacements higher than the identified minimum levels should also be tested. In addition, sulphate resistance testing shall be run on MSLb and HSLb cement and MSe or HSe combinations that include Portland-limestone cement at both 23 °C and 5 °C as specified in the table.

†††If the expansion is greater than 0.05% at 6 months but less than 0.10% at 1 year, the cementing materials combination under test shall be considered to have passed.

7. SOIL CORROSIVITY

The following table, from the Handbook of Corrosion Engineering (Roberge, 1999) indicates the corrosivity rating can be obtained from the soil resistivity, presented on the logs.

Table 4 Corrosivity Ratings Based on Soil Resistivity


Soil Resistivity (ohm-cm)	Corrosivity Rating
>20,000	Essentially non-corrosive
10,000 – 20,000	Mildly corrosive
5,000 - 10,000	Moderately corrosive
3,000 - 5,000	Corrosive
1,000 – 3,000	Highly corrosive
<1,000	Extremely corrosive

8. GROUNDWATER TABLE

The groundwater table is indicated by the equilibrium level of water in a standpipe installed in a testhole or test pit. This level is generally taken at least 24 hours after installation of the standpipe. The groundwater level is subject to seasonal variations and is usually highest in the spring. The symbol on the logs indicating the groundwater level is an inverted solid triangle (\P).

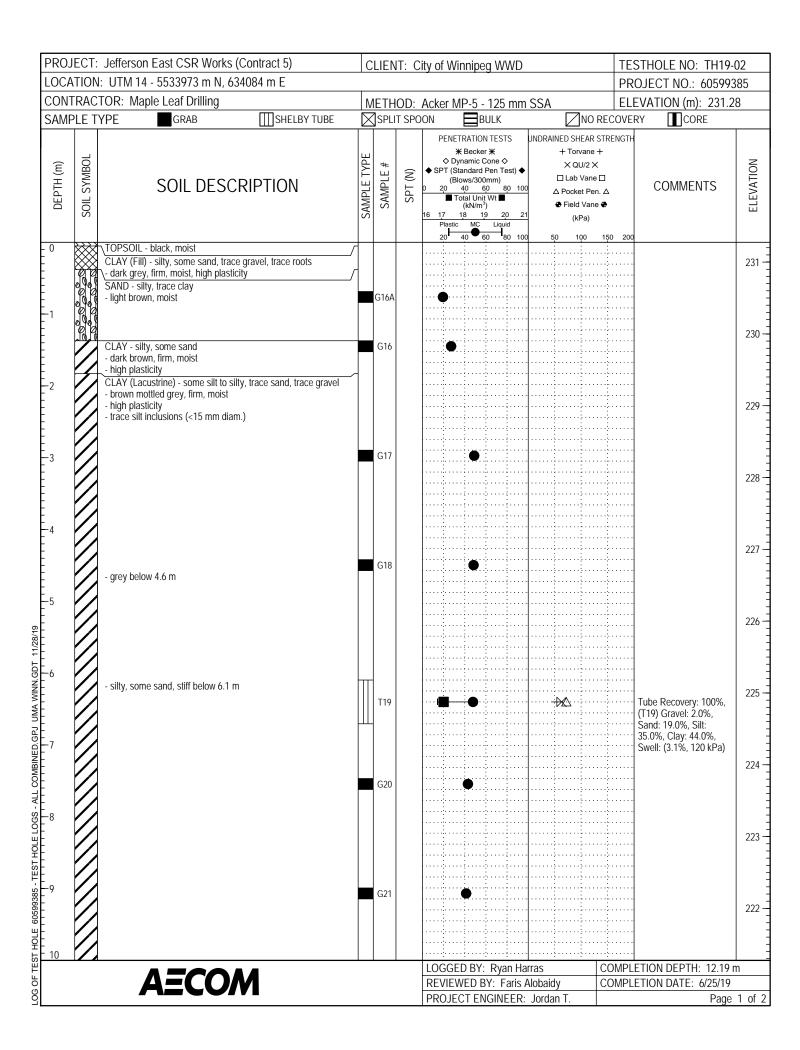
	MAJOR DIVISION		LOG SYMBOLS	UCS	TYPICAL DESCRIPTION	LABORATORY CLASSIFICATION CRITERIA			
		CLEAN GRAVELS		GW	WELL GRADED GRAVELS, LITTLE OR NO FINES	$C_u - \frac{D_{60}}{D_{10}} > 4 C_c - \frac{C_c}{D_0}$	$\frac{D_{30})^2}{10 \times D_{60}} = 1 \text{ to } 3$		
S	GRAVELS (MORE THAN HALF COARSE GRAINS	(LITTLE OR NO FINES)		GP	POORLY GRADED GRAVELS AND GRAVEL- SAND MIXTURES, LITTLE OR NO FINES	NOT MEETING ABOVE	REQUIREMENTS		
D SOILS	LARGER THAN 4.75 mm)	GRAVELS		GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES	CONTENT OF FINES EXCEEDS	ATTERBERG LIMITS BELOW 'A' LINE W _P LESS THAN 4		
GRAINED		WITH FINES		GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES	12%	ATTERBERG LIMITS ABOVE 'A' LINE W _P MORE THAN 7		
		CLEAN SANDS (LITTLE R NO	00000	SW	WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	$C_u = \frac{D_{60}}{D_{10}} > 6 C_c = \frac{C_c}{D_c}$	$\frac{D_{30})^2}{0 \times D_{60}} = 1 \text{ to } 3$		
COARSE	SANDS (MORE THAN HALF	FINES)	0 0 0 0 0 0 0 0 0 0 0 0 0 0	SP	POORLY GRADED SANDS, LITTLE OR NO FINES	NOT MEETING ABOVE	REQUIREMENTS		
ŏ	COARSE GRAINS SMALLER THAN 4.75 mm)	SANDS		SM	SILTY SANDS, SAND-SILT MIXTURES	CONTENT OF FINES EXCEEDS	ATTERBERG LIMITS BELOW 'A' LINE W _p LESS THAN 4		
		WITH FINES		SC	CLAYEY SANDS, SAND-CLAY MIXTURES	12%	ATTERBERG LIMITS ABOVE 'A' LINE W _p MORE THAN 7		
	SILTS (BELOW 'A' LINE	W _L < 50		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY SANDS OF SLIGHT PLASTICITY	CLASSIFICATION IS PLASTICITY (SEE BELO	CHART		
SOILS	NEĠLIGIBLE ORGANIC CONTENT)	W _L > 50		МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS				
OS Q		W _L < 30		CL	INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY, OR SILTY CLAYS, LEAN CLAYS				
GRAINED	CLAYS (ABOVE 'A' LINE NEGLIGIBLE ORGANIC CONTENT)	30 < W _L < 50		CI	INORGANIC CLAYS OF MEDIUM PLASTICITY, SILTY CLAYS	WHENEVER THE NATU CONTENT HAS NOT BEI IT IS DESIGN BY THE LETT	EN DETERMINED, NATED		
FINE G		W _L > 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	E.G. SF IS A MIXTURE SILT OR C	OF SAND WITH		
Ē	ORGANIC	W _L < 50		OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY				
	SILTS & CLAYS (BELOW 'A' LINE) W _L > 50			ОН	ORGANIC CLAYS OF HIGH PLASTICITY				
	HIGHLY ORGANIC SOILS			Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS	STRONG COLOUR OFTEN FIBROUS			
	BEDROCK			BR	SEE REPORT DE	SCRIPTION			
	FILL			FILL	SEE REPORT DE	SCRIPTION			

NOTE:

1. BOUNDARY CLASSIFICATION POSSESSING CHARACTERISTICS OF TWO GROUPS ARE GIVEN GROUP SYMBOLS, E.G. GW-GC IS A WELL GRADED GRAVEL MIXTURE WITH CLAY BINDER BETWEEN 5% AND 12%

SOIL COMPONENTS

FRAC	CTION	SIEVE S	SIZE (mm)	PERCENTAG	RANGES OF SE BY WEIGHT COMPONENTS				
		PASSING	RETAINED	PERCENT	IDENTIFIER				
GRAVEL	COARSE	75	19	50.05	AND				
	FINE	19	4.75	50 - 35	AND				
SAND	COARSE	4.75	2.00	25 20	V				
	MEDIUM	2.00	0.425	35 – 20	т				
	FINE	0.425	0.080	20 – 10	SOME				
SILT (no	n-plastic)			20 - 10	SOME				
C	or	0.0	080	10 - 1	TRACE				
CLAY (plastic)			10 - 1	TRACE				
		OVERSIZE	MATERIALS						
COBB	DED OR SUB-ROUP LES 75 mm TO 200 DULDERS >200 mm) mm	ANGULAR ROCK FRAGMENTS ROCKS > 0.75 m3 IN VOLUME						


BOULDERS > 200 mm ROCKS > 0.75 m3 IN V

MODIFIED UNIFIED SOIL CLASSIFICATION SYSTEM

August 2015

PROJ	ROJECT: Jefferson East CSR Works (Contract 5)						ity of	Winr	nipeg V	VWD		TESTHOLE NO: TH19-01					
		M 14 - 5533995 m N, 634	036 m E										PR	OJECT NO.: 605993	885		
		Maple Leaf Drilling									5 mm SSA			EVATION (m): 231.1	1		
	PLE TYPE	GRAB	SHELBY TUBE			T SPO	ON		BULK				RECOVE				
BACK	(FILL TYPE	BENTONITE	GRAVEL	Щ	SLO	UGH			GRO	UT		CUT	TINGS	SAND			
DEPTH (m)	SOIL SYMBOL SLOTTED PIEZOMETER	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP 0 2 16 17		I Unit Wt I N/m³) 19 MC Lic	♦ Test) ♦	X(□ Lal Δ Poc ⊕ Fie	orvane QU/2 X b Vane ket Per Id Vane kPa)	+ (: □ 1. △ 2. ◆	COMMENTS	ELEVATION		
- 0		TOPSOIL - black, moist		+				0 40	- 60	80 100	50	100	150 200		231 —		
-1		CLAY (Fill) - silty, some sand - dark grey, firm, moist - high plasticity - light brown below 0.6 m SILT - sandy, some clay - light brown, moist - low plasticity CLAY - silty, some sand - dark brown, firm, moist - high plasticity CLAY (Lacustrine) - some silt - brown mottled grey, firm to s - high plasticity - trace silt inclusions (<15 mm	, trace sand tiff, moist		G1A G1						X - ∆-			Tube Recovery: 100%	230		
71 11/28/19					G3										226 -		
COMBINED.GPJ UMA WINN.GP		- grey below 6.1 m			G4										225		
LOG OF TEST HOLE 60699385 - TEST HOLE LOGS - ALL COMBINED.GPJ. UMA WINI, GDT 11/2017					T5						X+A			Tube Recovery: 100%	223		
					<u> </u>	<u> </u>	LOC	GED	BY: Ry	an Ha	ırras		COMPL	L ETION DEPTH: 15.01 r	'n		
AECOM							REVIEWED BY: Faris Alobaidy						COMPLETION DATE: 6/27/19				
ğΙ	ALCOM						PROJECT ENGINEER: Jordan T.							Page 1 of			

PROJECT: Jeffer	rson East CSR Works (Coi	ntract 5)	CI	LIEN	IT: C	ity of	Winni	peg W	/WD		TE	STHOLE NO: TH19-	01	
LOCATION: UTM	/I 14 - 5533995 m N, 63403	36 m E	1								PROJECT NO.: 60599385			
CONTRACTOR:	Maple Leaf Drilling		M	ETH	OD:	Cant	erra C	T-250	- 125	mm SSA	ELEVATION (m): 231.11			
SAMPLE TYPE	GRAB	SHELBY TUBE	\boxtimes	SPLI	T SPO	ON		BULK			O RECOVE	RY CORE		
BACKFILL TYPE	BENTONITE	GRAVEL		SLO	UGH			GROU	JT	⊠ ci	JTTINGS	SAND		
DEPTH (m) SOIL SYMBOL SLOTTED PIEZOMETER	SOIL DESCI	RIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	◆ SP 0 2	# Be Dynam T (Standa (Blows, 0 40 Total (kN 7 18	Unit Wt I/m³) 19 2 IC Liqu	≎ est) ◆ 80 100 ■	UNDRAINED SHEAH + Torvar	ne + ×× ne □ Pen. ∆ une ❤	COMMENTS	ELEVATION	
112 113 113 113 113 113 113 113 113 113	- trace gravel, trace to some silt diam.) below 10.7 m SILT and SAND (Till) - clayey, tr light brown, moist - some clay, very dense, dry to respect to 13.4 m upor 13.4 m upor 13.4 m upor 15. Auger refusal at 14.9 m in sar 14. Test hole open to 13.4 m upor 15. Auger refusal at 14.9 m in sar 16. Test hole backfilled with sand bentonite from 11.3 m to 10.4 m 10.4 m to 0.6 m, and sand from Flush-mount cover installed. 7. Groundwater monitoring: - August 20, 2019 at elev. 226 September 3, 2019 at elev. 226.	ace to some gravel m IN TILL (SPT m during augering. 4 m during augering. 1 completion of augering. 1 (till). 1 from 13.4 m to 11.3 m, 2 auger cuttings from 3 m to 0.3 m. 98 m (4.13 m bgs) 3 90 m (4.21 m bgs)		G7 T8 S9	59 50/ 76mm		0 40	60	80 100	50 100	150 20	Tube Recovery: 100% SPT Blows: [9/30/29], Spoon Recovery: 83% SPT Blows: [50 (76 mm)], Spoon Recovery: 17%	221 – 220 – 219 – 217 – 216 – 217 – 216 – 217 – 217 – 217 – 217 –	
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AECOM	l				REV	GED E		an Ha aris <i>I</i>	Alobaidy		 - LETION DEPTH: 15.01 r ETION DATE: 6/27/19		
<u> </u>)JECT	ENGIN	EER:	Jordan T.	Page 2 of			

PROJ	ECT:	Jefferson East CSR Works (Co	ntract 5)	CLIENT: City of Winnipeg WWD TESTHOLE NO: TH19-											-02		
LOCA	NOIT	I: UTM 14 - 5533973 m N, 63408	34 m E												PR	OJECT NO.: 605993	385
		TOR: Maple Leaf Drilling						er M			mm	SSA				EVATION (m): 231.2	28
SAME	PLE T	YPE GRAB	SHELBY TUBE	\square	SPLI	T SPC	ON			BULK			\angle	NO R	ECOVE	RY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRI	PTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ S 0	Dy PT (St. (Blo	Becker namic (andard ows/300 40 (otal Uni (kN/m 18 1	Cone © Pen Te Omm) 60 8 it Wt 3) 9 20 Liqui	est) ♦ 0 100		+ Tor X Q □ Lab Δ Pocke Field (k	vane + U/2 X Vane [et Pen. I Vane (Pa)] _	COMMENTS	ELEVATION
- 10								20	40 - 1	60 8 	0 100		0 1	00	150 200		+
—11 —11		- trace silt till inclusions (<15 mm diam.) below 10.7 m		G22												221 -
'		END OF TEST HOLE AT 12.19 m IN C	ΙΔV	\blacksquare	G23			<u> </u>	•	<u>.</u>					::		219 -
—13 —13		Notes: 1. Seepage not observed during augeri 2. Sloughing not observed during auge 3. Test hole backfilled with auger cuttin completion.	ng. rina.														218 -
ļ''								<u>.</u>		<u> </u>	: :		<u>.</u>	<u>.</u>	<u>:</u>		217 -
15																	216 -
- 16 - 16 - 16 - 1																	215 -
9.71 17 17 17 18																	214 -
16 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19																	213 -
á -								į		<u></u>			: :				
<u> </u>								÷		 			;	;	· · · · · · · · · · · · · · · · · · ·		
20			_				LO	GGF	D BY	: : Rya	n Ha	rras	<u> </u>	.: <u>.</u> [(COMPI	 ETION DEPTH: 12.19	m
5	AECOM						RE	VIEV	VED E	3Y: F	aris <i>P</i>	Alobaic				ETION DATE: 6/25/19	
<u>{</u>	ALCOM											Jorda				Page	2 of 2

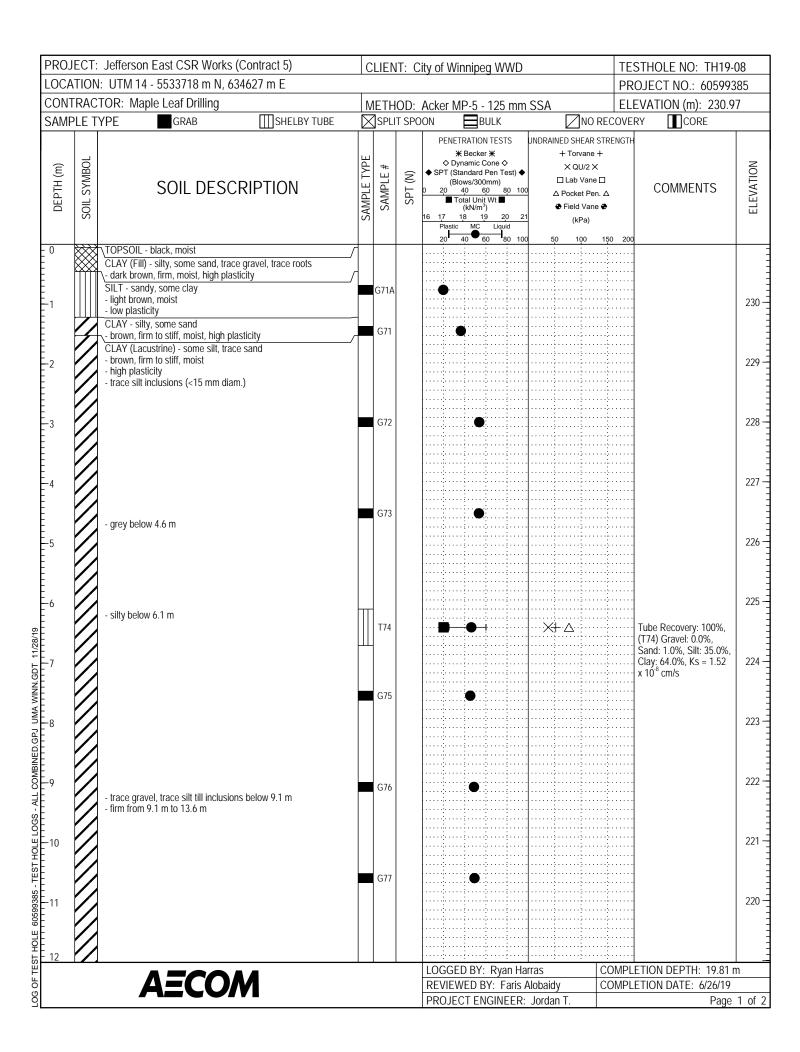
CONTRACTOR: Maple Leaf Drilling			Jefferson East CSR Works (Contract 5) UTM 14 - 5533922 m N, 634193 m E	C	LIEN	IT: C	ity of Winnipeg WWD TESTHOLE NO: TH19 PROJECT NO.: 60599				
SAMPLE TYPE				IN	IETH	IOD:					
SOIL DESCRIPTION			<u> </u>								
TOPSOIL - Back, molet SILL (Fill - sainty, some day - light brown molet SILL (Fill - sainty, some day - light brown molet SILL (Fill - sainty, some saint - saint brown firm, molet Sill - saint brown saint saint saint Sill - saint brown saint sain	DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	★ Becker ★ ♦ Dynamic Cone ♦ ♦ SPT (Standard Pen Test) ♦ (Blows/300mm) 0 20 40 60 80 100 ■ Total Unit Wt ■ (kV/m²) (kV/m²) 16 17 18 19 20 21 Plastic MC Liquid ★ Prield Vane ♣ (kPa)	NO F			
Section Sect	0			†							
- draft brown, firm, molet - lingh plesicity - CLAY (Lacustrine) - some silt, trace sand - Lown molled grey, tim to stiff, molet - lingh plesicity - brown molled grey, tim to stiff, molet - lingh plesicity - lingh plesicy	1		- light brown, moist - low plasticity					2			
- trace gravel, firm, trace silt till inclusions (<25 mm diam.) below 9.1 m	2		- dark brown, firm, moist - high plasticity CLAY (Lacustrine) - some silt, trace sand - brown mottled grey, firm to stiff, moist		G24			2			
- grey below 4.0 m G26 G27 G28 G28 Tube Recovery: 100%	<u>′</u>		- trace silt inclusions (<15 mm diam.)					2			
Tube Recovery: 100%					G25			2			
G28 - trace gravel, firm, trace silt till inclusions (<25 mm diam.) below 9.1 m Tube Recovery: 100%	1		- grey below 4.0 m		G26			2			
- trace gravel, firm, trace silt till inclusions (<25 mm diam.) below 9.1 m Tube Recovery: 100%	ó				G27			2			
- trace gravel, firm, trace silt till inclusions (<25 mm diam.) below 9.1 m Tube Recovery: 100%	7				321			2			
- trace gravel, firm, trace silt till inclusions (<25 mm diam.) below 9.1 m Tube Recovery: 100%					G28			2			
9.1 m Tube Recovery: 100%	3							2			
LOCCED DV. Dvon Horros COMDITTION DEDTH. 12.10 m)		- trace gravel, firm, trace silt till inclusions (<25 mm diam.) below 9.1 m $$		T29		Tube Recovery: 100%	2			
LOGGED BY: Ryan Harras COMPLETION DEPTH: 12.19 m	10						LOCKED DV. Programmer County Strong Services	2 ===			
DEVIEWED RV. Faris Alphaidy COMDI ETION DATE: 6/25/10			A ECOM				LOGGED BY: Ryan Harras COMPLETION DEPTH: 12.19 REVIEWED BY: Faris Alobaidy COMPLETION DATE: 6/25/19				

PROJ	ECT:	Jefferson East CSR Works (C	ontract 5)	CLIENT: City of Winnipeg WWD											TE	TESTHOLE NO: TH19-03	
LOCA	NOIT	I: UTM 14 - 5533922 m N, 634	193 m E												PR	OJECT NO.: 605993	385
		TOR: Maple Leaf Drilling								125 r	nm	SSA				EVATION (m): 231.5	2
SAMF	LE T	YPE GRAB	SHELBY TUBE		SPLI	T SPC	OON		BI	JLK				NO R	RECOVE	RY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCR	IPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ Si 0	→ Dyn PT (Sta (Blog 20 4 ■ Tot 7 1: Plastic	Becker lamic Co indard F ws/300r to 60 tal Unit (kN/m³) 8 19	one <>Pen Tes mm) 0 80 Wt 20 Liquid	100 21	4	+ Tor X Q □ Lab Δ Pocke ♣ Field (k	vane + U/2 X Vane [et Pen. I Vane (Pa)	□ △ ⊕	COMMENTS	ELEVATION
- 10								20 4	10 60	0 80	100	5	0 1	00	150 200		
-11					G30			•									221 -
- - - -12					C21												220 -
- - - - - - - - - - - - - - - - - - -		END OF TEST HOLE AT 12.19 m IN Notes: 1. Seepage not observed during aug 2. Sloughing not observed during aug 3. Test hole backfilled with auger cut	ering. aerina.		G31												219 -
-14		completion.															218 -
-15																	217 -
61/07																	216 -
2010 2010 2010 2010 2010 2010 2010 2010																	215 -
																	214 -
21- 10- 10- 10- 10- 10- 10- 10- 10- 10- 1																	213 -
19																	212 -
7 20	1	4 = 6 4				1	LO	GGEL	BY:	Ryan	Har	ras		(COMPL	ETION DEPTH: 12.19	m_
5	AECOM						RE	VIEW	ED B	Y: Fai	ris A	lobaid				ETION DATE: 6/25/19	
[]	ALCOM						PR	OJEC	TEN	GINE	ER:	Jorda	n T.			Page	2 of 2

		Jefferson East CSR Works (Contract 5) : UTM 14 - 5533885 m N, 634272 m E	C	CLIEN	IT: C	ty of Winnipe	g WWD				PROJECT NO.: 60599	
		TOR: Maple Leaf Drilling	1	/FTL	IUD.	Acker MP-5 -	125 mm	1221			ELEVATION (m): 231.	
	PLE T	•			IT SPO			1 33A		NO RECO		J4
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION	TESTS	0 .		AR STRENG ane + /2 × ane □ Pen. △ /ane ♣	COMMENTS	
0		TOPSOIL - black, moist CLAY (Fill) - silty, some sand, trace gravel, trace roots - dark grey, firm, moist - intermediate to high plasticity SILT - sandy, some clay		G32A		•						2
2		- light brown, moist, low plasticity CLAY - silty, some sand - dark brown, firm to stiff, moist - high plasticity CLAY (Lacustrine) - some silt, trace sand - brown mottled grey, firm, moist - high plasticity		G32		•						2
3		- trace silt inclusions (<15 mm diam.)		G33		•						2
4				G34		•						2
, ,		- grey below 6.1 m		G35		•						2
1				7								2
}				T36							Tube Recovery: 0%	2
10				G37								2
		AECOM				LOGGED BY: REVIEWED B			ly		PLETION DEPTH: 12.19 PLETION DATE: 6/25/19	

PROJ	ECT:	Jefferson East CSR Works (C	ontract 5)	CI	LIEN	IT: C	ity (of V	Vinni	ipeg	WWD					TES	STHOLE NO: TH19-	04
LOCA	TION	I: UTM 14 - 5533885 m N, 634	272 m E													PR	OJECT NO.: 605993	885
		TOR: Maple Leaf Drilling									25 mm	n SS	SA				EVATION (m): 231.5	4
SAMF	LE T	YPE GRAB	SHELBY TUBE		SPLI	T SPC	ON			BUL	.K			NO	REC	OVE	RY TCORE	
DEРТН (m)	SOIL SYMBOL	SOIL DESCR	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ S 0	◇ I SPT (20	X Be Dynam (Stand Blows 40 Total (kN 18	/300mr 60 Unit W I/m³) 19	e)00 21	+ ; □ △P	O SHEAR Torvane X QU/2 ; Lab Van ocket Pe Field Var (kPa)	e+ X ne□ en. Δ ne �		COMMENTS	ELEVATION
- 10								20	40	60	80 10	00	50	100	150	200		
- - - - - - - 11					G38													221 -
- - - - -12																		220 -
- - - - - - - 13		END OF TEST HOLE AT 12.19 m IN Notes: 1. Seepage not observed during aug 2. Sloughing not observed during aug 3. Test hole backfilled with auger cut completion.	ering. aerina.		G39													219 -
- - - - - - - - - - 14		completion.																218 -
- - - - - - - - - - - - - - - - - - -																		217 -
- - - - - - - - - - - - - - - - - - -																		216 -
16 16 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19																		215 -
1000 1000 1000 1000 1000 1000 1000 100																		214 -
1 - 19																		213 -
20																		212 -
-		A =COA	A				LO)GG	ED E	3Y: F	Ryan Ha	arras	S alder				ETION DEPTH: 12.19 r	n
3		AECOM	7								Faris INEER			Γ.	100	ıvıPLI	ETION DATE: 6/25/19 Page	2 of 2

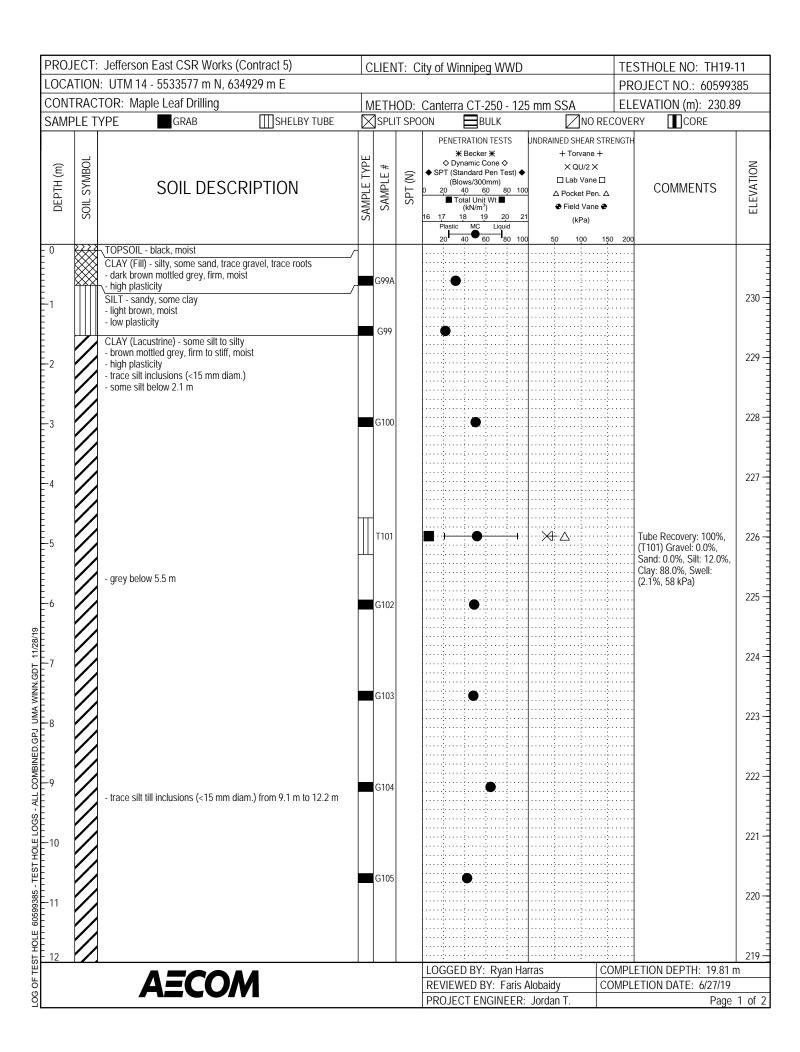
PROJ	ECT:	Jeffe	erson East CSR Works (C	Contract 5)	С	LIEN	IT: C	ity of	Winn	ipeg W	WD				TES	STHOLE NO: TH19-0)5
LOCA	MOIT	I: UT	M 14 - 5533828 m N, 634	394 m E											PR	OJECT NO.: 605993	85
			Maple Leaf Drilling		М	ETH	OD:	Acke	r MP-	5 - 12	5 mm	SSA			ELE	EVATION (m): 231.32	2
SAME	LE T	YPE	GRAB	SHELBY TUBE			T SPO	ON		BULK				O REC			
BACK	FILL	TYPE	BENTONITE	GRAVEL		SLO	JGH		<u>.</u>	GROU	JT		⊠c	UTTING	GS	SAND	
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP 0 2 16 17	Dynar T (Stand (Blows 40 Total (kl	Unit Wt II N/m³) 19 MC Liq	♦ Test) ♦ 80 100		+ Torvai X QU/2 Lab Va Pocket I Field Va (kPa	ne + 2 × ane □ Pen. △ ane �		COMMENTS	ELEVATION
-1			TOPSOIL - black, moist CLAY (Fill) - silty, some sand, - dark grey mottled brown, firm - high plasticity CLAY - silty, some sand - dark brown, firm, moist - high plasticity SILT - some clay, trace sand - light brown, moist to wet - non-plastic CLAY (Lacustrine) - some silt, - brown mottled grey, firm to s - high plasticity	trace sand tiff, moist		G40A G40			•				1000			(G41) Gravel: 0.0%, Sand: 2.4%, Silt: 86.6%, Clay: 11.0%	230 -
01/28/11 17/28/19		<u> </u>	- trace silt inclusions (<15 mm	diam.)		T42				•		×	<u></u>			Tube Recovery: 100%	227 -
LOG OF TEST HOLE 66599385 - TEST HOLE LOGS - ALL COMBINED.GPJ. UNAN WININ, GDT. 11/21/11/11/11/11/11/11/11/11/11/11/11/1			- grey below 6.1 m			T44				· · · · · · · · · · · · · · · · · · ·			- △			Tube Recovery: 33%	225 - 224 -
TEST HOLE 60599386 - TEST HOLE L						G45		LOC	GGED	BY: Ry	ran Ha	rras		COI	MPL	ETION DEPTH: 16.56 n	223 -
F			AECOA	Л								Alobaidy	,			ETION DATE: 6/26/19	
8				7 ■								Jordan					1 of 2


PRC	DJECT: Jeffe	erson East CSR Works (Co	ntract 5)	CI	LIEN	IT: C	ity of	Winn	ipeg W	/WD			TE	STHOLE NO: TH19-0	05
-		M 14 - 5533828 m N, 6343	94 m E	_									PR	OJECT NO.: 605993	85
		Maple Leaf Drilling	_						<u>5 - 125</u>				_	EVATION (m): 231.32	2
	IPLE TYPE	GRAB	SHELBY TUBE		•	T SPO	ON		BULK				RECOVE		
BAC	KFILL TYPE	BENTONITE	GRAVEL	\coprod	SLO	JGH		<u>.</u>	GROL	JT		ZCUT	TINGS	SAND	
DEPTH (m)	SOIL SYMBOL SLOTTED PIEZOMETER	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP 0 2 16 17	★ Be Dynar T (Stand (Blows 0 40 ■ Total (kl 7 18	Unit Wt N/m³) 19 MC Liq		X(□ Lal Δ Poci ⊕ Fiel	SHEAR S prvane - QU/2 X b Vane ket Pen Id Vane kPa)	+ □ ı. △	COMMENTS	ELEVATION
- 10 - 11 11 12		- trace gravel, soft to firm below	11.6 m	<u></u>	T46									Tube Recovery: 0%	221 -
- - - - - 13 - - - -		- trace silt till inclusions (< 20 m	m diam.) below 13.7 m												219 -
-14 - - - - - - - - - - - - - - - - - -		- suspected cobble/gravel encor Shelby Tube at 13.7 m SILT and SAND (Till) - some classome gravel - light brown, compact, moist			T48									Tube Recovery: 0%	217 -
A WINN.GDT 11/28/19					S49 S50	17 50/ 102mm	•				•			SPT Blows: [8/8/9], Spoon Recovery: 75% SPT Blows: [30/50 (102	216 - 215 -
S - ALL COMBINED.GPJ UM		END OF TEST HOLE AT 16.56 REFUSAL) Notes: 1. Seepage observed from silt le 2. Water to 3.1 m below ground of augering. 3. Sloughing observed from silt 4. Test hole open to 14.6 m upo 5. Auger refusal at 16.3 m on su	ayer during augering. surface upon completion layer during augering. in completion of augering. ispected cobble/boulder.			I VZIIIII								mm)], Spoon Recovery: 33%	214 –
LOG OF TEST HOLE 60599385 - TEST HOLE LOGS - ALL COMBINED.GPJ UMA WINN.GDT 11/28/ 6		6. Test hole backfilled with sand bentonite from 10.4 m to 7.3 m, m to 0.6 m, and sand from 0.6 n cover installed. 7. Groundwater monitoring: - August 6, 2019 at elev. 223. - August 20, 2019 at elev. 22. - September 3, 2019 at elev.	I from 14.6 m to 10.4 m, auger cuttings from 7.3 n to 0.3 m. Flush-mount .55 m (7.76 m bgs) 4.76 m (6.55 m bgs)												213 - 212 -
보 <u>20</u>								· · · · · ! ·	<u>.</u>						
F TE									BY: Ry					ETION DEPTH: 16.56 n	n
000		AECON									Alobaidy Jordan T		COMPL	ETION DATE: 6/26/19	2 of 2
۲I							ן אאל	ハドヘー	LINOII\	EEK:	Jordan T.			Page	2 of 2

		Jefferson East CSR Works (Contract 5) : UTM 14 - 5533801 m N, 634449 m E	С	LIEN	IT: C	ity of Winnipeg WWD TESTHOLE NO: TH1 PROJECT NO.: 6059	
		TOR: Maple Leaf Drilling		1FTL	IUD.	Acker MP-5 - 125 mm SSA ELEVATION (m): 231	
	PLE T				IOD: IT SPO		.23
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	NOF
0		TOPSOIL - black, moist CLAY (Fill) - silty, some sand, trace gravel, trace roots - dark brown, firm, moist - high plasticity					23
1		SILT - clayey, some sand - light brown, soft, moist - intermediate plasticity CLAY - silty, some sand		G55			2:
2		- dark brown, firm, moist, high plasticity SILT - clayey, some sand - light brown, soft, moist - intermediate plasticity		G56A G56B			2
3		CLAY (Lacustrine) - some silt, trace sand - brown mottled grey, firm to stiff, moist - high plasticity - trace silt inclusions (<15 mm diam.)		G56			2
4		- grey below 4.0 m		G57			2
5							2
7		- silty below 6.1 m		T58		Tube Recovery: 100%. (T58) Gravel: 0.0%, Sand: 2.0%, Silt: 30.09 Clay: 68.0%, Swell: (1.9%, 57 kPa)	
8		- trace gravel below 7.9 m		G59		(1.70, 37 N d)	2
		acco gravor boton 7.7 III					2
,				G60			2
10	7 /	A = C		1		LOGGED BY: Ryan Harras COMPLETION DEPTH: 12.1	
		AECOM				REVIEWED BY: Faris Alobaidy COMPLETION DATE: 6/26/1 PROJECT ENGINEER: Jordan T. Page	9 je 1 c

PROJECT: Jefferson East CSR Works (Contract 5) LOCATION: UTM 14 - 5533801 m N, 634449 m E CONTRACTOR: Maple Leaf Drilling SAMPLE TYPE GRAB SOIL DESCRIPTION SOIL DESCRIPTION JAMES SOIL DESCRIPTION GRAD GG1 - trace silt till inclusions (<25 mm diam.) below 10.7 m GG2 END OF TEST HOLE AT 12.19 m IN CLAY Notes: I Seepage not observed during augering.	231.23
SAMPLE TYPE GRAB SHELBY TUBE SPLIT SPOON BULK NO RECOVERY CORE SOIL DESCRIPTION SOURCE SO	S REVATION
SOIL DESCRIPTION SOIL DESCRIPTION Solid properties Solid prop	221
SOIL DESCRIPTION SOIL DESCRIPTION Solid	221 -
- trace silt till inclusions (<25 mm diam.) below 10.7 m G61 G62 END OF TEST HOLE AT 12.19 m IN CLAY Notes:	
- trace silt till inclusions (<25 mm diam.) below 10.7 m -11 END OF TEST HOLE AT 12.19 m IN CLAY Notes:	
END OF TEST HOLE AT 12.19 m IN CLAY Notes:	
	219 -
2. Sloughing not observed during augering. 3. Test hole backfilled with auger cuttings and bentonite upon completion.	218 -
	216 -
	215 -
	214 -
AECOM LOGGED BY: Ryan Harras REVIEWED BY: Faris Alobaidy PROJECT ENGINEER: Jordan T. REVIEWED BY: Faris Alobaidy PROJECT ENGINEER: Jordan T.	213 -
	212 -
LOGGED BY: Ryan Harras COMPLETION DEPTH: 12	2 10 m
REVIEWED BY: Faris Alobaidy COMPLETION DATE: 6/2 PROJECT ENGINEER: Jordan T.	

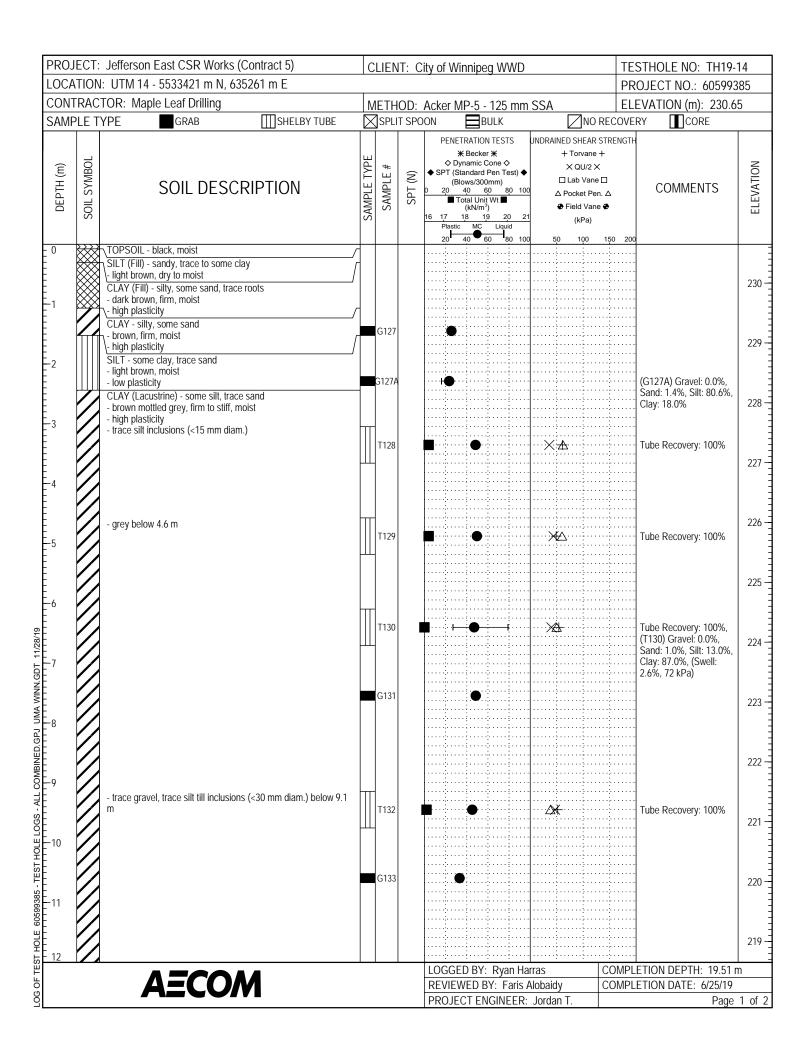
		Jefferson East CSR Works (Contract 5) : UTM 14 - 5533750 m N, 634559 m E	С	LIEN	NT: C	ity of	Winnipe	eg W	WD					STHOLE NO: TH19-	
		TOR: Maple Leaf Drilling		/FTL	1UD·	Λckor	MP-5	125	mm	122				EVATION (m): 231.1	
	PLE T	•			IT SPO			- 125 BULK	1111111	SSA		NO RI	ECOVE		IJ
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PE SPT 0 20 16 17	NETRATIO ** Becke Dynamic (Standard (Blows/30 40 ** Total Un (kN/m 18 ** stic MC	N TES er Cone Pen T Omm) 60 it Wt 3 Liqu	> est) • 80 100		INED SH + Tor × Q □ Lab Δ Pock • Field (k	HEAR ST vane + U/2 X Vane C et Pen	RENGTH	COMMENTS	NO FAVO
0		TOPSOIL - black, moist CLAY (Fill) - silty, some sand, trace gravel, trace roots - dark grey mottled brown, firm, moist - high plasticity SAND - silty, trace clay	/ /					 							23
1	00000	- light brown, moist CLAY (Lacustrine) - some silt, trace sand		G63		•									23
2		 brown mottled grey, firm to stiff, moist high plasticity trace silt inclusions (<15 mm diam.) 													2
3				G64			•								2
4				G65			•								2
5		grou bolow 5.5 m						 							2
ò		- grey below 5.5 m		G66) 							2
,		- trace gravel below 7.0 m													2
3				T67			I •			>	⟨₩			Tube Recovery: 100%	2
)				G68			•								2
10						LOG	GED BY	: Rv	n Ha	rras		ī.	COMPI	ETION DEPTH: 12.19	m
		AECOM				REVI	EWED I JECT EI	3Y: F	aris <i>F</i>	Alobaio				LETION DATE: 6/26/19 Page	


PROJ	ECT:	Jefferson East CSR Works (Contract 5)	CI	LIEN	IT: C	ity o	f Win	nipeg	WWD				TE:	STHOLE NO: TH19-	07
LOCA	TION	I: UTM 14 - 5533750 m N, 63	4559 m E											PR	OJECT NO.: 605993	385
		TOR: Maple Leaf Drilling								125 mm	i SSA				EVATION (m): 231.1	3
SAMF	LE T	YPE GRAB	SHELBY TUBE		SPLI	T SPC	OON		BU	LK			NO R	ECOVE	RY TCORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCI	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ Si 0	X I	ws/300m 0 60 al Unit V (kN/m³) 3 19 MC	# (ne ♦ en Test) ♦ (nm) 80 10 (Vt ■ 20 2 Liquid	0	+ Tor X Q □ Lab △ Pock ♣ Field (k	vane + U/2 X Vane □ et Pen. d Vane €] △ ∌	COMMENTS	ELEVATION
- 10								20 4	0 - 60	80 10		50 1	00	150 200		221 -
-11 -12		END OF TEST HOLE AT 12.19 m li	N CLAY		G69				•							220
—13 —13		Notes: 1. Seepage not observed during augenties. Sloughing not observed during at 3. Test hole backfilled with auger cucompletion.	jaerina.													218 —
115																216 -
- ALL COMBINED.GPJ UMA WINN																215 —
100 TO THE PROPERTY OF THE PRO																213 -
20							LO	GGED	BY:	Ryan Ha	arras		······································		ETION DEPTH: 12.19 r	<u> </u>
5		AECO/	И				RE	VIEW	ED BY	': Faris	Alobai				ETION DATE: 6/26/19	
3			7 4							SINEER:					Page	2 of 2

	Jefferson East CSR Works (Contract 5) I: UTM 14 - 5533718 m N, 634627 m E	С	LIEN	NT: C	City of Winnipeg WWD TESTHOLE NO: TH19-08 PROJECT NO.: 60599385	
	TOR: Maple Leaf Drilling	1/	IFTL	IUD.	Acker MP-5 - 125 mm SSA	_
SAMPLE T	· - · - · · · · · · · · · · · · ·			IT SPC		_
DEPTH (m) SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH # Becker # + Torvane +	EI EVATION
12	- soft to firm below 13.6 m SILT and SAND (Till) - clayey, trace gravel - light brown, loose, moist - low plasticity - very dense below 16.8 m END OF TEST HOLE AT 19.81 m IN TILL. Notes: 1. Seepage not observed during augering. 2. Sloughing not observed during augering. 3. Test hole backfilled with auger cuttings and bentonite upon completion.		G78	72	2 2 2 2 2 2 2 2 3 3 SPT Blows: [12/30/42], Spoon Recovery: 100%, (S81) Gravel: 0.0%, Sand: 35.2%, Silt: 43.8%, Clay: 21.0% 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	211 211 211 211 211 211 211 211 211 211
24	AECOM				LOGGED BY: Ryan Harras COMPLETION DEPTH: 19.81 m REVIEWED BY: Faris Alobaidy COMPLETION DATE: 6/26/19 PROJECT ENGINEER: Jordan T. Page 2	_

		Jefferson East CSR Works (Contract 5) : UTM 14 - 5533626 m N, 634825 m E	(CLIEN	IT: C	ity of V	Vinnipe	eg W	WD				_	STHOLE NO: TH19-	
		TOR: Maple Leaf Drilling		/ETL	ωD:	Canto	ra CT	250	125	mm	00 A			EVATION (m): 230.7	
	PLE T				T SPO	Cante			- 120)		NO RE	ECOVE		3
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE		SPT (N)	PEN	ETRATIO ** Becke Dynamic Standard Blows/30 40 Total Uni (kN/m 18 1	N TEST T ** Cone C Pen To Dmm) 60 8 t Wt 3) 9 2 Liqu	est) ♦ 30 100		INED SH + Tor X Q □ Lab Δ Pock Pield (k	IEAR ST vane + U/2 X Vane □ et Pen. 4 I Vane €	TRENGTH	COMMENTS	TWO I
0		TOPSOIL - black, moist CLAY (Fill) - silty, some sand, trace gravel, trace roots				20									
1		- dark grey, firm, moist - brown below 0.4 m - high plasticity CLAY - silty, some sand		G91A		•)								2
		- dark brown, firm, moist - high plasticity SILT - sandy, some clay - light brown, moist - low plasticity		G91		•))))			2
2		CLAY (Lacustrine) - some silt to silty, trace sand													
3		 brown mottled grey, firm to stiff, moist high plasticity trace silt inclusions (<15 mm diam.) some silt below 3.1 m 		G92			•					· · · · · · · · · · · · · · · · · · ·			
1				G93			•								
5		- grey below 4.9 m													2
)				G94			•								2
,								· · · · · · · · · · · · · · · · · · ·							2
				T95							⊀ △	3		Tube Recovery: 100%	2
				1								· · · · · · · · · · · · · · · · · · ·			:
				G96			•								
10		A = CO 1 4					ED BY							LETION DEPTH: 12.19	
		AECOM					EWED E					C	COMPL	ETION DATE: 6/27/19 Page	

PROJ	ECT:	Jefferson East CSR Works (C	ontract 5)	CI	LIEN	IT: C	ity (of V	Vinni	ipeg	WWI	D				TI	ESTHOLE NO: TH19-	-10
LOCA	NOIT	I: UTM 14 - 5533626 m N, 634	825 m E													Р	ROJECT NO.: 605993	385
		TOR: Maple Leaf Drilling						nter			<u> 50 - 1</u>	25	mm				LEVATION (m): 230.7	13
SAMF	PLE T	YPE GRAB	SHELBY TUBE	\square	SPLI	T SPC	ON			BUI	LK				NO F	RECOV	ERY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCR	IPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ S 0	\$ [SPT ((1 20 17 Plast	X Be Dynam Stand Blows 40 Total (kN 18	/300m 60 Unit W I/m³) 19	ne ♦ en Test) en) 80 Vt 20 Liquid	100		+ To X C □ Lab Δ Pock ♣ Field (H	rvane + QU/2 X Vane [set Pen. d Vane kPa)	□ . Δ •	COMMENTS	ELEVATION
- 10				+				20	40	60	80	100	5	0	100	150 20	00	
- - - - - - - - 11					G97													220 -
-12		END OF TEST HOLE AT 12.19 m IN	CLAV		G98)							··· ··· ···	219 -
-13		Notes: 1. Seepage not observed during aug 2. Sloughing not observed during aug 3. Test hole backfilled with auger cut completion.	ering. Jering.															218 -
- - -14 -																	 	217 -
- - - -15																		216 -
1000 1000 1000 1000 1000 1000 1000 100																		215 -
2 - 17 - 17 - 17																	 	214 -
MOO - 14 - 18 - 18 - 18 - 19 - 19 - 19 - 19 - 19																		213 -
1																		212 -
20								100	·ED 1	OV. 1	Dvon	 			·.····································	COMP	·· ·· ·· PLETION DEPTH: 12.19	211 -
5		AECON	Л				RE	VIE	WEI) I . I	Ryan I ': Fari	raí s A	i as Iobaid	ly			PLETION DEPTH: 12.19	111
3			' =								SINEE							2 of 2


		Jefferson East CSR Works (Contract 5) : UTM 14 - 5533577 m N, 634929 m E	С	LIEN	IT: C		STHOLE NO: TH19-7 ROJECT NO.: 605993	
		TOR: Maple Leaf Drilling	1,4	ЕТЦ	UD.		.EVATION (m): 230.89	
	LE T	· · · · · · · · · · · · · · · · · · ·		1901	T SPO			7
MIVIE		TFE GIVAD STILLED TODE		Joi Li	1 31 0			
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	COMMENTS	INOIT VALUE
12		- trace gravel, trace silt till inclusions (<50 mm diam.) below 12.2 m		G106		20 40 60 80 100 50 100 150 20		
13								21
14				G107		•		2
15		- soft to firm below 15.1 m		G108				2
16	0.00	SILT and SAND (Till) - some clay to clayey, trace to some gravel - light brown, loose, moist		G109				2
17	00000000000000000000000000000000000000			0107				2
18	00000	- compact below 19.8 m		G110				2
19	08080							2
20		END OF TEST HOLE AT 19.81 m IN TILL Notes: 1. Seepage not observed during augering. 2. Sloughing not observed during augering. 3. Test hole backfilled with auger cuttings and bentonite upon						2
21		completion.						2
22								2
23								2
24							:	2
		AECOM					LETION DEPTH: 19.81 n LETION DATE: 6/27/19 Page	

		Jefferson East CSR Works (Contract 5)	С	LIEN	IT: C	· · · ·	TESTHOLE NO: TH19-12		
		: UTM 14 - 5533542 m N, 635003 m E FOR: Maple Leaf Drilling	В	/ETI	IUD:	PROJECT NO.: 6054 Acker MP-5 - 125 mm SSA ELEVATION (m): 23			
	PLE TY				IOD: IT SPO		0.76		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	NOF		
0		TOPSOIL - black, moist CLAY (Fill) - silty, some sand, trace gravel, trace roots - dark grey, firm, moist - high plasticity	<i></i>			20 40 60 80 100 50 100 150 200	20		
I		CLAY - silty, some sand - brown, firm, moist \- high plasticity SILT - clayey, some sand - light brown, soft to firm, moist		G111/ G111			23		
2		- intermediate plasticity CLAY (Lacustrine) - some silt, trace sand					2		
3		 brown, firm to stiff, moist high plasticity trace silt inclusions (<15 mm diam.) brown mottled grey from 3.1 m to 4.3 m 		G112			2		
1							2		
5		- grey, firm below 4.3 m		G113			2		
5							2		
7				T114		■ Tube Recovery: 100%	2		
₹				G115			2		
,							2		
)				G116					
10		AECOM				LOGGED BY: Ryan Harras COMPLETION DEPTH: 12. REVIEWED BY: Faris Alobaidy COMPLETION DATE: 6/25/			

PROJ	CLIENT: City of Winnipeg WWD										TE:	TESTHOLE NO: TH19-12						
LOCA	LOCATION: UTM 14 - 5533542 m N, 635003 m E															PROJECT NO.: 60599385		
	CONTRACTOR: Maple Leaf Drilling										mm	SSA				EVATION (m): 230.7	6	
SAMF	LE T	YPE GRAB	SHELBY TUBE		SPLI	T SPC	ON		В	ULK		ı		NO R	ECOVE	RY CORE		
DEPTH (m)	SOIL SYMBOL	SOIL DESCF	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ Si 0	→ Dyr PT (Sta (Blo 20 4 To 17 1	Becke namic (andard ws/300 40 6 tal Uni (kN/m 8 1	Cone ◇ Pen Te Omm) 60 8 t Wt ■ 0) 9 20 Liqui	est) ◆ 0 100 0 21		+ Ton X QI □ Lab Δ Pocke ♣ Field (kl	vane + U/2 X Vane E et Pen. Vane (Pa)] △ ••	COMMENTS	ELEVATION	
- 10								20 4	40 6	0 8	0 100	5	0 1	00 ′	150 200			
-11					G117												220 -	
-12		TND OF TECT HOLE AT 10 10 m In	CLAV		G118												219 –	
-13		END OF TEST HOLE AT 12.19 m IN Notes: 1. Seepage not observed during aug 2. Sloughing not observed during au 3. Test hole backfilled with auger cut completion.	ering. aerina.														218 -	
- - -14																	217 -	
- - - -15																	216 -	
2007 1007 1007 1007 1007 1007 1007 1007																	215 -	
400 CL - 17 - 17 - 17 - 17 - 17 - 17 - 17 - 1																	214 -	
1																	213 -	
19																	212 -	
20								CC-	2.01	D.				; ;		ETION DEDTIL 40.40	211 -	
<u>-</u> 5		AECOM	A				RF	UIFW.	LD Ł ۱RA:	Rya SY: F	n Ha aris <i>L</i>	rras Alobaid	lv			ETION DEPTH: 12.19 r ETION DATE: 6/25/19	IJ	
3			7 ■									Jorda		+	- OIVII L		2 of 2	

		Jefferson East CSR Works (Contract 5)	С	LIEN	City of Winnipeg WWD TESTHOLE NO: TH19-1:							
		: UTM 14 - 5533487 m N, 635121 m E TOR: Maple Leaf Drilling		4C-T-1	00	PROJECT NO.: 6059938						
	PLE T	· · · · · · · · · · · · · · · · · · ·				D: Acker MP-5 - 125 mm SSA ELEVATION (m): 230. POON BULK NO RECOVERY CORE						
AIVIF	LE I	TPE GRAB GRAB SHELBY TUBE		1 1260	1 320							
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	INOIT VATION					
0		TOPSOIL - black, moist	\overline{A}									
1		CLAY (Fill) - silty, some sand, trace gravel, trace roots - dark grey, firm, moist - high plasticity CLAY - silty, some sand		G119 <i>P</i>			23					
		- brown, firm, moist, high plasticity SILT - clayey, some sand - light brown, soft, moist - intermediate plasticity		G119	G119			2:				
2		CLAY (Lacustrine) - some silt, trace sand - brown, firm to stiff, moist - high plasticity - trace silt inclusions (<15 mm diam.)					2					
3		- brown mottled grey from 3.1 m to 4.0 m		G120								
4		- grey below 4.0 m					2					
ō				T121		Tube Recovery: 100%	2					
ó				G122			2					
,							2					
;		- firm below 7.6 m		G123			223					
				G124			2					
0							2					
		AECOM				LOGGED BY: Ryan Harras COMPLETION DEPTH: 12.19 m REVIEWED BY: Faris Alobaidy COMPLETION DATE: 6/25/19	_					
						PROJECT ENGINEER: Jordan T. Page 1	_					

PROJ	ECT:	Jefferson East CSR Works (CLIENT: City of Winnipeg WWD										TESTHOLE NO: TH19-13		
LOCA	LOCATION: UTM 14 - 5533487 m N, 635121 m E									PF	PROJECT NO.: 60599385				
	CONTRACTOR: Maple Leaf Drilling SAMPLE TYPE GRAB SHELBY TUBE								<u>-5 - 12</u>		SSA			EVATION (m): 230.8	1
SAMF	LE T	YPE GRAB		SPLI	T SPC	ON		BULK	(NO	RECOVE	ERY CORE		
DEPTH (m)	SOIL SYMBOL	SOIL DESCI	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 : 16 1	₩ B Dyna T (Stan (Blow Tota (I) Tota (I) Tota Plastic	I Unit Wt l kN/m³) 19 MC Li	Test) ◆) 80 100 20 2		+ Torvane X QU/2 ∑ Lab Van Pocket Pe Field Van (kPa)	× e□ en. Δ ne �	COMMENTS	ELEVATION
- 10								20 40	60	80 100	50	100	150 20	0	
- - - - - - - 11					G125										220 -
- - -12		END OF TEST HOLE AT 12.19 m I	NI CLAV		G126				•						219 -
—13		Notes: 1. Seepage not observed during au 2. Sloughing not observed during au 3. Test hole backfilled with auger cu	gering. Jaerina.												218 -
- - - 14 - -															217 -
- - - - - - - - - - - - - - - - - - -															216 -
16 															215 -
20 2 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -															214 -
5															213 -
100 - 16 - 16 - 17 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19															212 -
=======================================								 	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	:	211 -
20							LO	GGED	BY: Ry	yan Ha	rras	<u></u>	COMP	. <u> </u> Letion Depth: 12.19	m m
5		AECO/	И				RE'	/IEWE	D BY:	Faris /	Alobaidy			LETION DATE: 6/25/19	
3							PR	OJEC	Γ ENGΙ	NEER:	Jordan	٦. T.	1	Page	2 of 2

		Jefferson East CSR Works (Contract 5) : UTM 14 - 5533421 m N, 635261 m E	CL	LIEN	T: C	ity of	Winnipe	g WWD				TESTHOLE NO: TH19-14		
		FOR: Maple Leaf Drilling	N A F		OD	۸ ما ۰ -	MDF	100				ROJECT NO.: 605993		
	LE TY	· · · · · · · · · · · · · · · · · · ·		METHOD:			<u>MP-5 -</u> ⊟BL		1 SSA		IO RECOV	<u>LEVATION (m): 230.6</u> ′ERY ∏ CORE	05	
SAIVIP	LEIY	TPE GRAB SHELBY TUBE	$\frac{\square}{\square}$	SPLI	I SPU	1							1	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	 ✓ ◆ SPT 0 20 I 16 17 	Total Unit (kN/m³)	Hen Test) ◆ nm) 80 10 Wt ■ 20 2 Liquid	00	+ Torva X QU/ □ Lab V: Δ Pocket Field V (kPa	2 X ane □ Pen. Δ ⁄ane �	COMMENTS	EI EVATION	
-13		- soft to firm from 12.2 m to 16.6 m		T134	I		•		X			Tube Recovery: 100%	21	
-14				G135			•			· · · · · · · · · · · · · · · · · · ·			21	
15				G136)				·· ·· ·· ·· ·· ··	21	
16													2	
17 18		- soft below 16.6 m		G137									2.	
19	000000000000000000000000000000000000000	SILT and SAND (Till) - some clay to clayey, trace gravel - light brown, loose to compact, moist		G138									2.	
20		END OF TEST HOLE AT 19.51 m IN TILL (AUGER REFUSAL) Notes: 1. Seepage not observed during augering. 2. Sloughing not observed during augering. 3. Auger refusal at 19.5 m on suspected cobble/boulder. 4. Test hole backfilled with auger cuttings and bentonite upon		S139								SPT Blows: [50 (0 mm)], Spoon Recovery: 100%	2	
-21		completion.											21	
22													20	
23													2	
		AECOM				REV	GED BY: EWED BY JECT EN	: Faris	Alobai			PLETION DEPTH: 19.51 PLETION DATE: 6/25/19 Page		

PROJECT: Jefferson East CSR Works (Contract 5) LOCATION: UTM 14 - 5533404 m N, 635298 m E					IT: C	ity of	Winnipeg	WWD				ESTHOLE NO: TH19-					
		I: UTM 14 - 5533404 m N, 635298 m E TOR: Maple Leaf Drilling	Ι.	/ETI	IUD:	A oleo	rMDE 1	75 mm	CC V				ROJECT NO.: 60599385				
SAMP		· · · · · · · · · · · · · · · · · · ·			IOD: IT SPO		r MP-5 - 1.		N	ELEVATION (m): 230.08 O RECOVERY TOORE							
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE		SPT (N)	P	ENETRATION T # Becker # Dynamic Con T (Standard Per (Blows/300mr 40 60 Total Unit W (kN/m³) 18 19	ESTS e ♦ n Test) ♦ n) 80 100	_ _		R STRENG ne + × ne □ Pen. △	COMMENTS	EI EVATION				
0		TOPSOIL - black, moist CLAY (Fill) - silty, some sand, trace gravel, trace roots - dark brown, firm, dry to moist - high plasticity SILT - sandy, some clay - light brown, dry to moist											23				
2		- low plasticity CLAY (Lacustrine) - some silt to silty - brown, firm to stiff, moist - high plasticity - trace silt inclusions (<15 mm diam.)		T139								Tube Recovery: 75%	22				
3		- brown mottled grey from 3.1 m to 4.6 m		T140	1!	5.9	-	1	*	<u> </u>			2				
5		- grey below 4.6 m		T141	1!	9'	•		X	+		Tube Recovery: 100%	2				
6				G142			•						2				
7 B		- trace gravel, firm below 7.6 m		T143			•		**			Tube Recovery: 100%	2.				
)				G144			•						2				
10		AECOM				REV	GED BY: F TEWED BY: DJECT ENG	Faris A	lobaidy			CLETION DEPTH: 11.28 PLETION DATE: 6/24/19 Page					

PROJECT: Jefferson East CSR Works (Contract 5) LOCATION: UTM 14 - 5533404 m N, 635298 m E CONTRACTOR: Maple Leaf Drilling SAMPLE TYPE GRAB GRAB SOIL DESCRIPTION WETHOD: Acker MP-5 - 125 mm SSA ELEVATION (m) SPLIT SPOON BULK NORECOVERY PENETRATION TESTS ** Becker ** O Dynamic Cone O SPT (Standard Pen Test) O SPT (Standard Pen Te	230.08 RE
SAMPLE TYPE GRAB SHELBY TUBE SPLIT SPOON BULK NO RECOVERY COMMENT OF STS SPLIT SPOON SECOVERY SPECIAL SPOON SECOVERY SPOON SPOON SECOVERY SECOND SECOVERY SPOON SECOVERY SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOVERY SECOND SEC	RE
SOIL DESCRIPTION SOIL DESCRIP	
SOIL DESCRIPTION	STI
20 40 60 80 100 50 100 150 200 - 10	220
Tube Recovery END OF TEST HOLE AT 11.28 m IN CLAY Notes: 1. Seepage not observed during augering. 2. Sloughing not observed during augering.	54% 219 –
3. Test hole backfilled with auger cuttings and bentonite upon completion.	218 -
	216 –
—15 —15	215 -
	214 -
No. 1	212 -
AECOM LOGGED BY: Ryan Harras REVIEWED BY: Faris Alobaidy PROJECT ENGINEER: Jordan T.	211 -
2	
LOGGED BY: Ryan Harras COMPLETION DEPTH	
REVIEWED BY: Faris Alobaidy COMPLETION DATE: PROJECT ENGINEER: Jordan T.	6/24/19 Page 2 of 2

	PROJECT: Jefferson East CSR Works (Contract 5) LOCATION: UTM 14 - 5533376 m N, 635357 m E					CLIENT: City of Winnipeg WWD TES							STHOLE NO: TH19-	16			
				, 635357 m E		_										ROJECT NO.: 605993	
			Maple Leaf Drilling							r MP-5			SSA			EVATION (m): 228.5	5
	PLE TY		GRAB	SHEL				T SPO	ON		BULk				O RECOVE		
BACK	(FILL T	YPE	BENTONITE	. GRA\	ÆL	Щ	SLO	UGH			GRO	UT	T		UTTINGS	SAND	1
DEPTH (m)	SOIL SYMBOL	PIEZOMETER	SOIL D	ESCRIPTIC	Ν	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP 0 2 16 17 P	Total U	ker ¥ c Cone rd Pen 800mm 60 Init Wt I m³) 19	Test) ◆ (a) 100	2 2	+ Torva X QU/3 □ Lab Va Δ Pocket I P Field V (kPa	2 X ane □ Pen. Δ ane �	COMMENTS	ELEVATION
- 0			TOPSOIL - black, mois			t											-
- - - - - - - -			CLAY (Fill) - silty, some - dark grey, firm, moist - high plasticity CLAY and SILT - trace - dark brown, firm, mois	sand	trace roots												228
' - -			- high plasticity SILT - clayey, some sa	nd			G146			•	1					: (G146) Gravel: 0.0%, Sand: 6.0%, Silt: 39.0%,	227 —
-2 -2			- brown, soft, moist, into SAND - silty, trace clay - light brown, moist CLAY (Lacustrine) - so	ermediate plasticity		_										Clay: 55.0%	-
- - - - - - -		¥	 brown, firm to stiff, mo high plasticity trace silt inclusions (< 	ist													226 -
-4			- brown mottled grey fro	om 3.1 m to 4.3 m			T147						×I			Tube Recovery: 100%, (T147) Gravel: 0.0%, Sand: 0.0%, Silt: 14.0%, Clay: 85.0%, Swell: (3.4%, 35 kPa)	225 —
- - - - - 5			- grey from 4.7 m to 5.2	m			Г148-2	·		•						Tube Recovery: 100%	224 —
4.GDT 11/28/19			- brown mottled grey fro	om 5.2 m to 7.6 m													223 -
LOG OF TEST HOLE 60599385 - TEST HOLE LOGS - ALL COMBINED.GPU UMA WINN.GDT 11/28/1							T149			•			×	- ∆·		. Tube Recovery: 100%	222 —
OGS - ALL COMBIN			- grey, soft to firm below	v 7.6 m			G150			•							221 —
- TEST HOLE LC																	220 -
HOLE 60599385			- trace gravel, trace silt below 9.1 m	till inclusions (<25 m	nm diam.)		T151			•			Δ₩.			Tube Recovery: 100%	219 —
- 10									IOC	GED B	γ· D	van Ha	rras		COMP	· <u> </u> _ETION DEPTH: 16.86 r	
OF 1			ΔΞΟ)M										V			11
00	AECOM								REVIEWED BY: Faris Alobaidy COMPLETION DATE: 6/24 PROJECT ENGINEER: Jordan T.						20		1 of 2

-	ROJECT: Jefferson East CSR Works (Contract 5)						CLIENT: City of Winnipeg WWD								TESTHOLE NO: TH19-16		
			M 14 - 5533376 m N, 635	357 m E										PR	ROJECT NO.: 605993	385	
-			Maple Leaf Drilling							<u>-5 - 12</u>		SSA			EVATION (m): 228.5	55	
SAMP			GRAB	SHELBY TUBE			T SPO	ON		BULI				RECOVE			
BACK	FILL	TYPE	BENTONITE	GRAVEL	<u>Ш</u>	SLO	JGH			GRO				TTINGS	SAND	1	
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	◆ SP 0 2 16 17		I Unit Wt N/m³) 19 MC Li	e ♦ Test) ♦	-1 -2 -△F	D SHEAR - Torvane X QU/2 X Lab Vane Pocket Pe Field Van (kPa)	× e □ en. Δ	COMMENTS	ELEVATION	
- 10												30	100	130 200		-	
- - - -11						G152										218 -	
- - - -12						G153				•						217 -	
- - -13																216 -	
- - - -14						T154									Tube Recovery: 100%	215 -	
- - - -15																214 -	
11/28/19						T155			•			4			Tube Recovery: 100%	213 -	
GPJ UMA WINN.GF			SILT and SAND (Till) - some of a light brown, moist to wet END OF TEST HOLE AT 16.8			G156)							212 —	
GS - ALL COMBINED. (GS - A			REFUSAL) Notes: 1. Seepage observed below 1 2. Water to 8.5 m below grour of augering. 3. Test hole open to 16.0 m up 4. Auger refusal at 16.9 m on	5.2 m during augering. Id surface upon completion												211 -	
LOG OF TEST HOLE 60599385 - TEST HOLE LOGS - ALL COMBINED. GPJ UMA WINN. GDT 11/28/1			5. Test hole backfilled with be m, auger cuttings from 14.5 m 10.1 m to 7.6 m, sand from 7.4 from 6.1 m to 0.9 m, and sand Flush-mount cover installed. 6. Groundwater monitoring: - August 6, 2019 at elev. 22 - August 20, 2019 at elev. 2	ntonite from 16.0 m to 14.5 to 10.1 m, bentonite from 5 m to 6.1 m, bentonite from 0.9 m to 0.3 m.												210 -	
909 - 1 20 - 20			- August 20, 2019 at elev. 2 - September 3, 2019 at elev	z.5.63 m (2.94 m bgs)												209 -	
۲ ا			AECON	A						BY: R					ETION DEPTH: 16.86	m	
90			AECUN	7								Alobaidy Jordan	T.	COMPL	ETION DATE: 6/24/19 Page	2 of 2	
_11							1 1 1/6	,J_U			Joiuail		1	i ayc	2 UI Z		

		Jefferson East CSR Works (Co		CLIENT: City of Winnipeg WWD TESTHOLE NO: TH19															
		I: UTM 14 - 5533349 m N, 6354	14 M E	Π		105	Α.		ID 5	40-			Λ			PROJECT NO.: 60599385			
SAMP		TOR: Maple Leaf Drilling YPE GRAB	SHELBY TUBE			I <mark>OD:</mark> IT SPO		er M		- 125 BULK		i SS/		NC) DEC		EVATION (m): 230.5 RY	4	
HIVIP	LEI	ILC RAR	MOUETRY INRE		JOPL	11 320		DEVIC				INDO							
DEPTH (m)	SOIL SYMBOL	SOIL DESCRI	PTION	SAMPLE TYPE	SAMPLE #	SPT (N)		Dy PT (St (Bl) 20	ows/30 40 otal Un (kN/m	Cone (I Pen I) Omm) 60 it Wt II 19		00	+ ·	SHEAF Torvane QU/2 .ab Van ocket Pe ield Var (kPa)	e+ X ee□ en. Δ ne �	200	COMMENTS	i i	
0		TOPSOIL - black, moist CLAY (Fill) - silty, some sand, trace roo	ate	$\sqrt{}$				<u>.</u>		<u> </u>									
		- dark grey, firm, moist - high plasticity SAND - silty, trace clay	015		G158 <i>F</i>			•										23	
1	0000	- light brown, loose, dry to moist CLAY - silty, some sand			G158					 								2	
2		- brown, firm, moist - high plasticity																	
3					G159													2	
		CLAY (Lacustrine) - some silt, trace sa - brown mottled grey, firm, moist - high plasticity - trace silt inclusions (<15 mm diam.)	nd															2	
4																		2	
5					T160	11	5.6		•			· ×	<u> </u>				Tube Recovery: 100%		
6					G161													2	
		- grey below 6.7 m								÷								2	
7																		2	
8		- trace gravel, trace silt till inclusions be	elow 7.6 m		T162				•			z	3 K				Tube Recovery: 100%		
9																		2	
					G163													2	
10							1	.: CCF	D DV	. D.	on H	rroc			<u>:</u>		ETION DEDTIL 11 20 -	<u>_</u>	
		AECOM									an Ha Faris		aidv				ETION DEPTH: 11.28 r ETION DATE: 6/24/19	Ш	
											IEER:				+ 55		Page	1 (

PROJ	DJECT: Jefferson East CSR Works (Contract 5)					CLIENT: City of Winnipeg WWD							TE	TESTHOLE NO: TH19-17		
LOCA	TION	I: UTM 14 - 5533349 m N, 635	414 m E										PR	PROJECT NO.: 60599385		
		TOR: Maple Leaf Drilling								25 mm	SSA			EVATION (m): 230.5	4	
SAMF	LE T	YPE GRAB	SHELBY TUBE	\boxtimes	SPLI	T SPO	ON		BUL	.K		NO	RECOVE	RY CORE		
DEPTH (m)	SOIL SYMBOL	SOIL DESCR	RIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	◆ SF 0 2 16 1	X F Dyna T (Star (Blow 0 40 ■ Tota (1) T 18	vs/300mm 0 60 al Unit Wi kN/m³) 19 MC L	e ♦ n Test) ♦ n) 80 100 t ■ 20 2	[2 4	+ Torvane X QU/2 > □ Lab Vane Pocket Pe Field Van (kPa)	< □ □ n. Δ e ⊕	COMMENTS	ELEVATION	
- 10								0 40	60	80 100	50	100	150 200			
-11					T164						-‡≿			Tube Recovery: 100%	220 -	
-		END OF TEST HOLE AT 11.28 m IN Notes: 1. Seepage not observed during aug 2. Sloughing not observed during aug	ering. gering.												219 -	
-12 - - - - - - - - - - - - -		Test hole backfilled with auger cut completion.	lings and bentonite upon												218 -	
- 13 															217 -	
- - - - - -15															216 -	
61/87/11 61/															215 -	
NNIM EMO CO															214 -	
100 NNIN WWW CAST TANK TO THE LOCAL TANK TO THE															213 –	
10															212 -	
- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19															211 -	
2 20		A = 00 L	A	1			LOC	GED	BY: R	Ryan Ha	ırras			ETION DEPTH: 11.28 i	n	
5		AECON	1				RE۱	/IEWI	ED BY:	Faris <i>i</i>	Alobaidy		COMPL	ETION DATE: 6/24/19		
[]			-				PRO	DJEC.	T ENGI	INEER:	Jordan	Т.		Page	2 of 2	

Appendix

Laboratory Testing Reports

- D-1: AECOM (February 2012) Laboratory Testing Results
- D-2: AECOM (October 2015) Laboratory Testing Results
- D-3: AECOM (June 2019) Laboratory Testing Results

JOB No.: 60219315

CLIENT: City of Winnipeg PROJECT: Jefferson East CSR

DATE: December 2011 - January 2012

		_	,	,,	,	
HOLE NO.	TH11-01	-	-	-	_	
SAMPLE NO.	G1	G2	G3	G4	G5	G6
DEPTH (FT)	5.0	10.0	15.0	20.0	25.0	30.0
MOISTURE CONTENT %	23.7	29.4	30.2	24.5	33.4	32.6
HOLE NO.	TH11-01	-	TH11-02	-	-	
SAMPLE NO.	G7	G8	G9	G10	G11	G12
DEPTH (FT)	35.0	40.0	5.0	10.0	15.0	20.0
MOIOTURE CONTENT OF	00.7	24.6	00.0	10.7	04.0	00.6
MOISTURE CONTENT %	33.7	34.6	28.2	16.7	24.9	28.6
HOLE NO.	TH11-02	-	-	-	TH11-03	-
SAMPLE NO.	G13	G14	G15	G16	G17	G18
DEPTH (FT)	25.0	30.0	35.0	40.0	5.0	10.0
MOISTURE CONTENT %	29.7	33.9	31.3	20.0	24.6	30.4
					A. P.	
HOLE NO.	TH11-03	-	-	-	-	
SAMPLE NO.	G19	G20	G21	G22	G23	G24
DEPTH (FT)	15.0	20.0	25.0	30.0	35.0	38.0
MOIOTUBE CONTENTS	00.1	07.0	04.5	05.1	00.1	17.0
MOISTURE CONTENT %	32.1	37.2	34.5	35.1	30.1	17.9

NOTES:

MATERIALS LABORATORY AECOM

99 Commerce Drive, Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

JOB No.: 60219315 CLIENT: City of Winnipeg

PROJECT: Jefferson East CSR

DATE: December 2011 - January 2012

HOLE NO.	TH11-03	TH11-05		-	-	-
SAMPLE NO.	G25	G26	G27	G28	G29	G30
DEPTH (FT)	40.0	5.0	10.0	15.0	20.0	25.0
MOISTURE CONTENT %	44.4	35.6	35.9	52.2	51.7	52.6
HOLE NO.	TH11-05	-	-	TH11-07	-	-
SAMPLE NO.	G31	G32	G33	G34	G35	G36
DEPTH (FT)	30.0	35.0	40.0	5.0	10.0	15.0
MOISTURE CONTENT %	52.9	58.4	54.7	21.5	40.0	54.6
HOLE NO.	TH11-07	-				TH11-06
SAMPLE NO.	G37	G38	G39	G40	G41	G42
DEPTH (FT)	20.0	25.0	30.0	35.0	40.0	5.0
MOISTURE CONTENT %	51.1	49.3	48.7	50.6	56.3	27.6
HOLE NO.	TH11-06	-	-	-	-	-
SAMPLE NO.	G43	G44	G45	G46	G47	G48
DEPTH (FT)	8.0	10.0	15.0	20.0	25.0	30.0
MOISTURE CONTENT %	22.0	33.3	58.4	58.0	53.8	50.1
WOISTURE CONTENT %	22.0	33.3	30.4	30.0	33.0	υψ. I
	<u> </u>					

NOTES:

MATERIALS LABORATORY AECOM

99 Commerce Drive, Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (204) 284-2040

JOB No.: 60219315 CLIENT: City of Winnipeg PROJECT: Jefferson East CSR DATE: December 2011 - January 2012

			Total Control of the		7	
HOLE NO.	TH11-06		TH11-04		-	·
SAMPLE NO.	G49	G50	G51	G52	G53	G54
DEPTH (FT)	35.0	40.0	5.0	10.0	15.0	20.0
MOISTURE CONTENT %	53.1	44.1	20.9	29.5	33.7	35.0
HOLE NO.	TH11-04		-	_	TH11-12	
SAMPLE NO.	G55	G56	G57	G58	G59	G60
DEPTH (FT)	25.0	30.0	35.0	40.0	5.0	7.0
MOISTURE CONTENT %	37.6	28.7	24.6	48.9	24.9	22.0
HOLE NO.	TH11-12	-	-		<u>-</u>	**
SAMPLE NO.	G61	G62	G63	G64	G65	G66
DEPTH (FT)	10.0	15.0	20.0	25.0	30.0	35.0
MOISTURE CONTENT %	42.9	52.3	55.9	44.9	44.3	44.70
HOLE NO.	TH11-12	TH11-11	_	_		_
SAMPLE NO.	G67	G68	G69	- G70	G71	- G72
DEPTH (FT)	40.0	5.0	7.0	10.0	15.0	20.0
MOISTURE CONTENT %	35.6	31.2	24.0	39.5	56.0	57.5

A**E**COM

NOTES:

MATERIALS LABORATORY AECOM

99 Commerce Drive, Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (204) 284-2040

JOB No.: 60219315 CLIENT: City of Winnipeg PROJECT: Jefferson East CSR DATE: December 2011 - January 2012

					,	
HOLE NO.	TH11-11	-	-	-	TH11-08	-
SAMPLE NO.	G73	G74	G75	G76	G77	G78
DEPTH (FT)	25.0	30.0	35.0	40.0	5.0	10.0
MOISTURE CONTENT %	43.7	50.9	50.7	46.0	29.0	33.6
HOLE NO.	TH11-08	-	-	***	-	-
SAMPLE NO.	G79	G80	G81	G82	G83	G84
DEPTH (FT)	15.0	20.0	25.0	30.0	35.0	40.0

MOISTURE CONTENT %	53.7	54.3	52.1	50.6	52.1	52.8
		:				
HOLE NO.	TH11-09	-	-	-	-	-
SAMPLE NO.	G85	G86	G87	G88	G89	G90
DEPTH (FT)	5.0	6.0	10.0	15.0	20.0	25.0
MOISTURE CONTENT %	31.4	25.6	52.6	52.5	47.3	43.3
WOISTURE CONTENT %	31.4	23.6	32.6	52.5	47.3	43.3
HOLE NO.	TH11-09	-	-	TH11-10	-	
SAMPLE NO.	G91	G92	G93	G94	G95	G96
DEPTH (FT)	30.0	35.0	40.0	1.0	7.0	10.0
MOISTURE CONTENT %	47.1	46.8	47.2	21.5	19.9	35.5

NOTES:

MATERIALS LABORATORY AECOM

99 Commerce Drive, Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

JOB No.: 60219315 CLIENT: City of Winnipeg PROJECT: Jefferson East CSR DATE: December 2011 - January 2012

- G100 30.0 54.6	- G101 35.0 44.5	G102 40.0 42.3
30.0 54.6	35.0 44.5	40.0
30.0 54.6	35.0 44.5	40.0
-		42.3
-		42.3
	-	
	-	
	G108	G109
15.0	20.0	25.0
38.0	38.7	31.5
		· TH11-13
		G115
45.0	50.0	5.0
30.1	12.3	24.4
00.1	1 to 1 V	<u>←</u> T. 1
-		-
		G122
20.0	25.0	30.0
	47.0	49.8
F6 1	4/0	45.0
	G120 20.0	G113 G114 45.0 50.0 30.1 12.3 G120 G121

NOTES:

MATERIALS LABORATORY AECOM

99 Commerce Drive, Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (204) 284-2040

JOB No.: 60219315 CLIENT: City of Winnipeg PROJECT: Jefferson East CSR DATE: December 2011 - January 2012

	,		,	· · · · · · · · · · · · · · · · · · ·		,
HOLE NO.	TH11-13	•	-	-	-	-
SAMPLE NO.	G124	G125	G126	G127	G128	G129
DEPTH (FT)	35.0	40.0	45.0	50.0	55.0	58.5
MOISTURE CONTENT %	55.5	41.9	47.5	52.6	48.9	27.7
HOLE NO. SAMPLE NO. DEPTH (FT)	TH11-13 G130 60.0	- G131 63.0				
MOISTURE CONTENT %	62.0	17.2				
HOLE NO. SAMPLE NO. DEPTH (FT)						
MOISTURE CONTENT %						
HOLE NO. SAMPLE NO. DEPTH (FT)						
MOISTURE CONTENT %						

NOTES:

MATERIALS LABORATORY AECOM

99 Commerce Drive, Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (204) 284-2040

AECOM

MATERIALS LABORATORY

AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (204) 284-2040

JOB No.: 60219315

CLIENT: City of Winnipeg

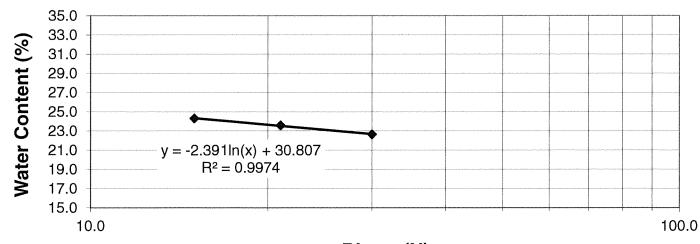
PROJECT: Jefferson East CSR

LOCATION:

DATE:	4-Jan-12
TEST HOLE:	TH11-02
SAMPLE:	G12
DEPTH:	20.0'
TECH.:	AL

Liquid Limit

WATER CONTENT


Blows	30	21	15	19
WT. SAMPLE WET + TARE (gr)	104.020	105.633	108.950	
WT. SAMPLE DRY + TARE (gr)	99.491	101.590	104,305	
WT. TARE (gr)	79.496	84.441	85.195	
WT. WATER (gr)	4.529	4.043	4.645	
WT. DRY SOIL (gr)	19.995	17.149	19.110	
MOISTURE CONTENT (%)	22.651	23.576	24.307	

Plastic Limit

WATER CONTENT

WT. SAMPLE WET + TARE (gr)	92.370	86.663		
WT. SAMPLE DRY + TARE (gr)	91.580	85.797		
WT. TARE (gr)	86.387	80.119		
WT. WATER (gr)	0.790	0.866		
WT. DRY SOIL (gr)	5.193	5.678		
MOISTURE CONTENT (%)	15.213	15.252		

Liquid Limit =	23.1	Plastic Limit =	15.2	Plasticity Index =	7.9
----------------	------	-----------------	------	--------------------	-----

AECOM

MATERIALS LABORATORY

AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

JOB No.: 60219315

CLIENT: City of Winnipeg

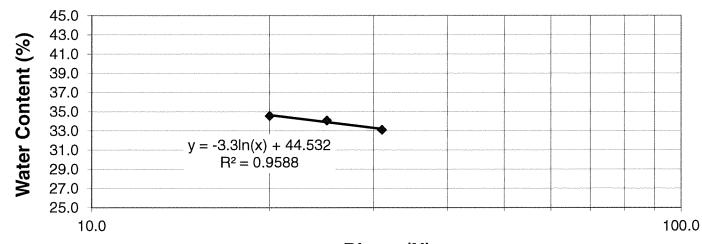
PROJECT: Jefferson East CSR

LOCATION:

DATE:	4-Jan-12
TEST HOLE:	TH11-07
SAMPLE:	G34
DEPTH:	5.0'
TECH.:	AL

Liquid Limit

WATER CONTENT


Blows	31	25	20	100	
WT. SAMPLE WET + TARE (gr)	99.544	98.151	92,131		
WT. SAMPLE DRY + TARE (gr)	96.267	94.541	89.127	la constitution	
WT. TARE (gr)	86.370	83.949	80.435		
WT. WATER (gr)	3.277	3.610	3.004		
WT. DRY SOIL (gr)	9.897	10.592	8.692		
MOISTURE CONTENT (%)	33.111	34.082	34.561		

Plastic Limit

WATER CONTENT

WT. SAMPLE WET + TARE (gr)	92.603	92.822		
WT. SAMPLE DRY + TARE (gr)	91.608	91.874		
WT. TARE (gr)	85.821	86.365		The state of the s
WT. WATER (gr)	0.995	0.948		
WT. DRY SOIL (gr)	5.787	5.509		
MOISTURE CONTENT (%)	17.194	17.208		

mit = 17.2	Plasticity Index =	16.7
r	mit = 17.2	mit = 17.2 Plasticity Index =

AECOM

MATERIALS LABORATORY

AECOM

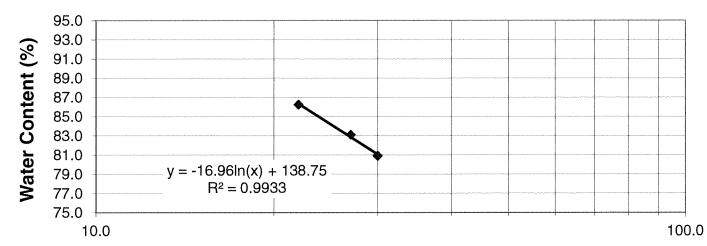
99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

JOB No.:	60219315
CLIENT:	City of Winnipeg
PROJECT:	Jefferson East CSR
LOCATION:	

DATE:	4-Jan-12
TEST HOLE:	TH11-13
SAMPLE:	T118
DEPTH:	10.0 - 12.0'
TECH.:	AL

Liquid Limit

WATER CONTENT


Blows	30	27	22	
WT. SAMPLE WET + TARE (gr)	93.527	92.186	93.261	
WT. SAMPLE DRY + TARE (gr)	88.267	86.724	88.061	
WT. TARE (gr)	81.766	80.152	82.032	
WT. WATER (gr)	5.260	5.462	5.200	
WT. DRY SOIL (gr)	6.501	6.572	6.029	
MOISTURE CONTENT (%)	80.911	83.110	86.250	

Plastic Limit

WATER CONTENT

W. C. E. C.			
WT. SAMPLE WET + TARE (gr)	84.944	83.483	
WT. SAMPLE DRY + TARE (gr)	83.829	82.010	
WT. TARE (gr)	80.237	77.286	
WT. WATER (gr)	1.115	1.473	
WT. DRY SOIL (gr)	3.592	4.724	
MOISTURE CONTENT (%)	31.041	31.181	

Liquid Limit =	84.2	Plastic Limit =	31.1	Plasticity Index =	53.0
----------------	------	-----------------	------	--------------------	------

AECOM

MATERIALS LABORATORY

AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

JOB No.: 60219315

CLIENT: City of Winnipeg

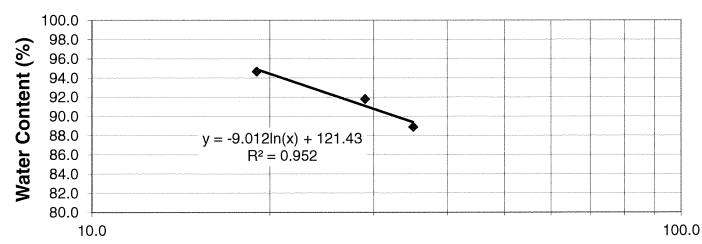
PROJECT: Jefferson East CSR

LOCATION:

DATE:	4-Jan-12
TEST HOLE:	TH11-14
SAMPLE:	T106
DEPTH:	10.0 - 12.0'
TECH.:	AL

Liquid Limit

WATER CONTENT


Blows	35	29	19	
WT. SAMPLE WET + TARE (gr)	91.139	91.936	92.988	
WT. SAMPLE DRY + TARE (gr)	86.440	86.284	87.441	
WT. TARE (gr)	81.154	80.127	81.582	
WT. WATER (gr)	4.699	5.652	5.547	
WT. DRY SOIL (gr)	5.286	6.157	5.859	
MOISTURE CONTENT (%)	88.895	91.798	94.675	

Plastic Limit

WATER CONTENT

WT. SAMPLE WET + TARE (gr)	88.930	91.154		
WT. SAMPLE DRY + TARE (gr)	87.957	89.995		
WT. TARE (gr)	84.775	86.208		
WT. WATER (gr)	0.973	1.159		
WT. DRY SOIL (gr)	3.182	3.787		
MOISTURE CONTENT (%)	30.578	30.605		

Liquid Limit =	92.4	Plastic Limit =	30.6	Plasticity Index =	61.8
----------------	------	-----------------	------	--------------------	------

AECOM AECOM

MATERIALS LABORATORY AFCOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (204) 284-2040

Job No.:

60219315

Client:

City of Winnipeg

Project:

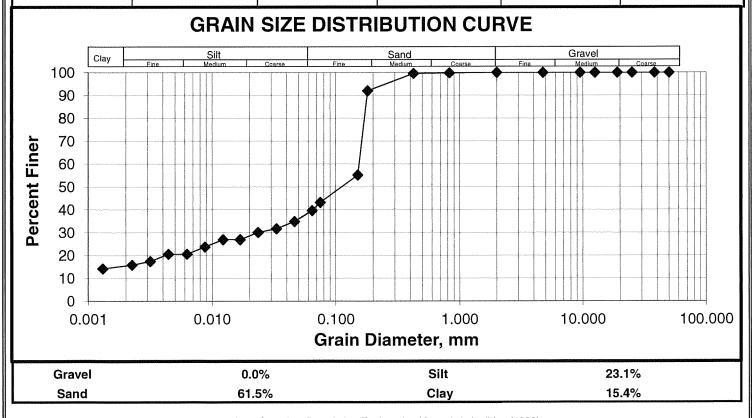
Jefferson East CSR

Tested By:

Date Tested: 4-Jan-12

Hole No.:

TH11-02


Sample No.:

G12 20.0'

Depth:
Date Sampled:

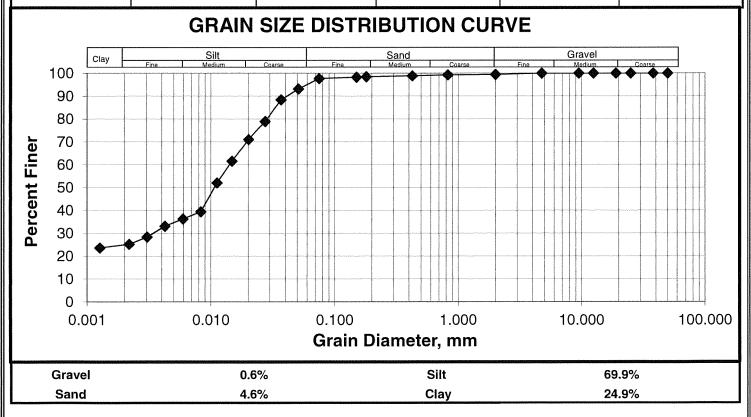
Sampled By:

GRAVEL SIZES		GRAVEL SIZES SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	43.2
38.0	100.0	0.83	99.8	0.0644	39.6
25.0	100.0	0.43	99.6	0.0463	34.9
19.0	100.0	0.18	92.0	0.0331	31.7
12.5	100.0	0.15	55.2	0.0235	30.1
9.5	100.0	0.075	43.2	0.0168	26.9
4.75	100.0			0.0123	26.9
2.00	100.0			0.0088	23.8
				0.0063	20.6
				0.0044	20.6
				0.0032	17.4
				0.0022	15.8
				0.0013	14.2

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

Tested By:

Sampled By:


MATERIALS LABORATORY

AECOM AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

60219315 Job No.: Client: City of Winnipeg Project: Jefferson East CSR Date Tested: 4-Jan-12

TH11-07 Hole No .: Sample No.: G34 Depth: 5.0' Date Sampled:

GRAVEL SIZES		SAND	SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	99.4	0.0750	97.7
38.0	100.0	0.83	99.2	0.0510	93.1
25.0	100.0	0.43	98.8	0.0370	88.4
19.0	100.0	0.18	98.4	0.0274	78.9
12.5	100.0	0.15	98.2	0.0201	71.0
9.5	100.0	0.075	97.7	0.0148	61.5
4.75	100.0			0.0112	52.1
2.00	99.4			0.0083	39.4
				0.0059	36.3
				0.0042	33.1
				0.0030	28.4
				0.0022	25.2
				0.0013	23.6
				1	

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

AECOM AECOM

MATERIALS LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.:

60219315

Client: Project: City of Winnipeg

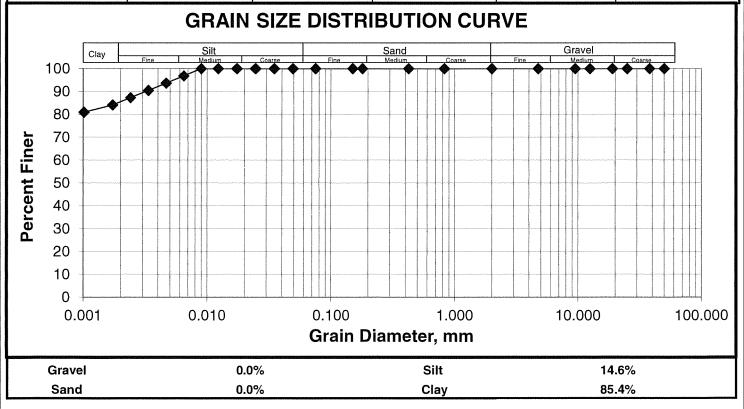
Date Tested:

Tested By:

Jefferson East CSR Depth:

4-Jan-12

Hole No.: TH11-13


Sample No.:

T118 10.0 - 12.0

Date Sampled:

Sampled By:

GRAVEL SIZES		GRAVEL SIZES SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	100.0
38.0	100.0	0.83	100.0	0.0491	100.0
25.0	100.0	0.43	100.0	0.0347	100.0
19.0	100.0	0.18	100.0	0.0246	100.0
12.5	100.0	0.15	100.0	0.0174	100.0
9.5	100.0	0.075	100.0	0.0123	100.0
4.75	100.0			0.0090	100.0
2.00	100.0			0.0065	96.8
				0.0047	93.6
				0.0033	90.5
				0.0024	87.3
				0.0017	84.1
				0.0010	80.9

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

AECOM AECOM

MATERIALS LABORATORY AFCOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: 60219315 Hole No.: TH11-14 Client: City of Winnipeg Sample No.: T106 Jefferson East CSR 10.0 - 12.0' Project: Depth: Date Tested: 4-Jan-12 Date Sampled: Tested By: Sampled By:

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	99.2
38.0	100.0	0.83	100.0	0.0500	96.8
25.0	100.0	0.43	99.8	0.0354	96.8
19.0	100.0	0.18	99.6	0.0250	96.8
12.5	100.0	0.15	99.4	0.0177	96.8
9.5	100.0	0.075	99.2	0.0125	96.8
4.75	100.0			0.0091	96.8
2.00	100.0			0.0065	96.8
				0.0047	93.6
				0.0034	88.9
				0.0024	84.1
				0.0018	79.3
				0.0011	69.8

GRAIN SIZE DISTRIBUTION CURVE Silt Sand Medium Gravel Clay 100 90 80 70 Percent Finer 60 50 40 30 20 10 0 0.100 0.001 0.010 1.000 10.000 100.000 Grain Diameter, mm Gravel 0.0% Silt 16.8% Sand 2.2% 81.0% Clay

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

Date:1/3/2012

CLIENT: City of Winnipeg **PROJECT:** Jefferson East CSR

JOB NO.: 60219315

TEST HOLE NO.:	TH11-13	
SAMPLE NO.:	T118	
SAMPLE NO	10.0 - 12.0'	
DATE TESTED:	2-Jan- 1 2	
DATE (ESTED.	2.0011.12	
SHEAR STRENGTH TESTS		
LAB VANE	Su 1	
Reading		
Spring Number	4	
Undrained Shear Strength (kPa) =	0.0	
Undrained Shear Strength (ksf) =	0.00	
TORVANE		
Reading	0.70	
Vane Size (S, M, L)	m	
Undrained Shear Strength (kPa) =	68.7	
Undrained Shear Strength (ksf) =	1.43	
POCKET PENETROMETER		
Reading - Qu (tsf)	2.25	
Undrained Shear Strength (kPa) =	107.7	
Reading - Qu (tsf)	2.25	
Undrained Shear Strength (kPa) =	107.7	
Reading - Qu (tsf)	2.50	
Undrained Shear Strength (kPa) =	119.7	
UNCONFINED COMPRESSIVE STRENGTH TEST		
Unconfined compressive strength (kPa) =	114.8	
Unconfined compressive strength (ksf) =	2.4 57.4	
Undrained Shear Strength (kPa) =		
Undrained Shear Strength (ksf) =	1.199	
MOISTURE CONTENT	Density -Su1	
MUISTURE CONTENT	A40	
Tare Number	A19	
Wt. Sample wet + tare (g)	375.0	
Wt. Sample dry + tare (g)	262.3	
Wt. Tare (g)	8.2 44.4	
Moisture Content, w% =	44.4	
BULK DENSITY		
	1040.6	
Sample Wt. (g) Diameter 1 (cm)	7.25	
Diameter (cm)	7.18	
Diameter 3 (cm)	7.21	
Avg. Diameter (cm)	7.21	
Length 1 (cm)	14.48	
Length 2 (cm)	14.45	
Length 3 (cm)	14.42	
Avg. Length (cm)	14.45	
Volume (cm3)	590.5	
Moisture content (%)	44.4	
Bulk Density (a/cm³)	1.762	
Bulk Density (kN/m³)	17.3	
Bulk Density (pcf)	110.0	
Dry Density (kN/m³)	11.97	

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

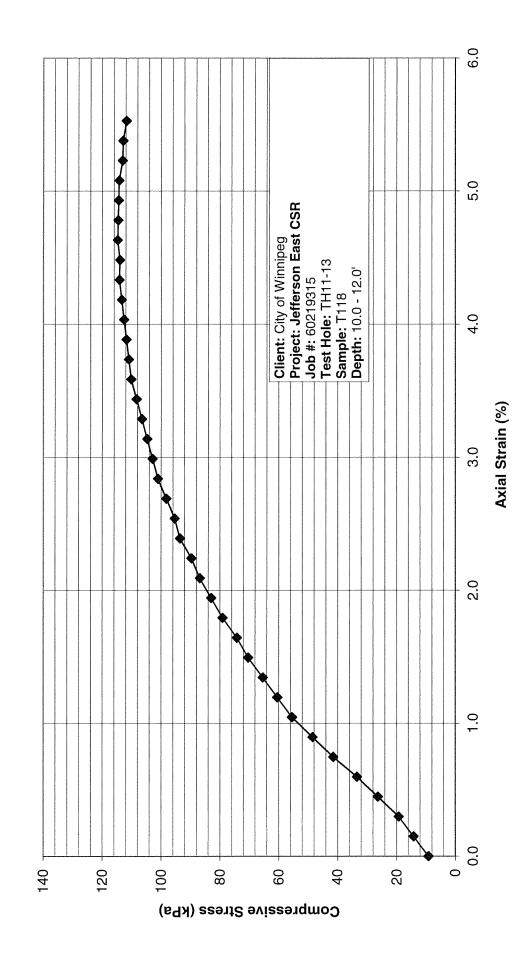
	City of Winnipeg
PROJECT:	Jefferson East CSR
JOB NO.:	60219315

TEST HOLE NO.:	TH11-13
SAMPLE NO.:	T118
SAMPLE DEPTH:	10.0 - 12.0'
SAMPLE DATE:	14-Dec-11
TEST DATE:	2-Jan-12

	SOIL D	ESCRIPTION:
CL	AY; trace silt, light brown, moist, fir	m, high plasticity, blocky
[MOISTURE CONTENT:	44.4

SAMPLE DIAM.(Do):	72.13	(mm)	INITIAL AREA, Ao:	4086. 6	(mm²)
SAMPLE LENGTH, (Lo):	144.50	(mm)	PISTON RATE:	0.051	(inches / minute)
L / D RATIO:	2.0	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.90	(0.5 <r<2 %="" minute)<="" td=""></r<2>

TEST DATA - DIAL	READINGS						
AXIAL COMPRESSION	PROVING RING	TOTAL AXIAL STRAIN, E ₁	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPRE	SSIVE STRESS, σ	С
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0009	0.00	6.33	8.43	1.33	0.192	9.2
0.02	0.0014	0.15	6.34	13.12	2.07	0.298	14.3
0.03	0.0019	0.30	6.35	17.80	2.80	0.404	19.3
0.03	0.0026	0.45	6.36	24.36	3.83	0.551	26.4
0.04	0.0033	0.60	6.37	30.92	4.85	0.699	33.5
0.05	0.0041	0.75	6.38	38.42	6.02	0.867	41.5
0.06	0.0048	0.90	6.39	44.98	7.04	1.013	48.5
0.07 0.08	0.0055	1.05	6.40	51.54	8.05	1.159	55.5
0.09	0.0060 0.0065	1.20 1.34	6.41 6.42	56.22 60.91	8.77	1.263 1.366	60.5 65.4
0.09	0.0055	1.49	6.43	65.59	9.49 10.20	1.469	70.3
0.10	0.0074	1.64	6.44	69.34	10.77	1.550	74.2
0.11	0.0079	1.79	6.45	74.02	11.48	1.653	79.1
0.12	0.0083	1.94	6.46	77.77	12.04	1.734	83.0
0.13	0.0087	2.09	6.47	81.52	12.60	1.814	86.9
0.14	0.0090	2.24	6.48	84.33	13.01	1.874	89.7
0.14	0.0094	2.39	6.49	88.08	13.57	1.954	93.6
0.15	0.0096	2.54	6.50	89.95	13.84	1.993	95.4
0.16	0.0099	2.69	6.51	92.76	14.25	2.052	98.3
0.17	0.0102	2.84	6.52	95.57	14.66	2.111	101.1
0.18	0.0104	2.99	6.53	97.45	14.92	2.149	102.9
0.19	0.0106	3.14	6.54	99.32	15.19	2.187	104.7
0.20	0.0108	3.29	6.55	101.20	15.45	2.225	106.5
0.20	0.0110	3.44	6.56	103.07	15.71	2.263	108.3
0.21	0.0112	3.59	6.57	104.94	15.97	2.300	110.1
0.22 0.23	0.0113	3.74 3.88	6.58 6.59	105.88	16.09 16.21	2,317	110.9
0.23 0.24	0.0114	4.03	6,59	106.82 107.76	16.33	2.334 2.351	111.8 112.6
0.25	0.0116	4.18	6.61	108.69	16.44	2.368	113.4
0.26	0.0117	4,33	6.62	109.63	16.56	2.384	114.2
0.26	0.0117	4.48	6.63	109.63	16.53	2.381	114.0
0.27	0.0118	4.63	6.64	110.57	16.65	2.397	114.8
0.28	0.0118	4.78	6.65	110.57	16.62	2.393	114.6
0.29	0.0118	4.93	6.66	110.57	16.59	2.390	114.4
0.30	0.0118	5.08	6.67	110.57	16.57	2.386	114.2
0.31	0.0117	5.23	6.68	109.63	16.40	2.362	113.1
0.31	0.0117	5.38	6.69	109.63	16.38	2.358	112.9
0.32	0.0116	5.53	6.70	108.69	16,21	2.334	111.8
	†	ļ					•••••••
		!					
		†					
	.	!					
	†	!					·····
•••••		İ					•••••
••••••							
	.						
	+	t		·····			


UNCONFINED COMPRESSIVE STRENGTH, qu:	114.78	kPa
(based on maximum q _u value)	2.397	ksf
UNDRAINED SHEAR STRENGTH, Su:	57.39	kPa
(based on maximum q,, value)	1.199	ksf

NOTES:

REMARKS:

AICOM

AECOM
UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS
(ASTM D2166)

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

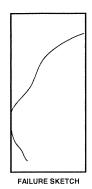
CLIENT: City of Winnipeg PROJECT: Jefferson East CSR

JOB NO.: 60219315

TEST HOLE NO.:	TH11-13	
SAMPLE NO.:	T123	
SAMPLE NO	30.0 32.0'	
DATE TESTED:	2-Jan-12	
DATE TESTED.	2.001112	T T
SHEAR STRENGTH TESTS		
LAB VANE	Su 1	
Reading		
Spring Number	4	
Undrained Shear Strength (kPa) =	0.0	
Undrained Shear Strength (ksf) =	0.00	
TORVANE		1000
Reading	0.45	
Vane Size (S, M, L)	m	
Undrained Shear Strength (kPa) =	44.1	
Undrained Shear Strength (ksf) =	0.92	
POCKET PENETROMETER		
Reading - Qu (tsf)	0.75	
Undrained Shear Strength (kPa) =	35.9	
Reading - Qu (tsf)	0.75	
Undrained Shear Strength (kPa) =	35.9	
Reading - Qu (tsf)	0.75	
Undrained Shear Strength (kPa) =	35.9	
Gridianica Gricar Griengir (Kr. a) =		
UNCONFINED COMPRESSIVE STRENGTH TEST		
Unconfined compressive strength (kPa) =	106.3	
Unconfined compressive strength (ksf) =	2.2	
Undrained Shear Strength (kPa) =	53.1	
Undrained Shear Strength (ksf) =	1.110	
	Density -Su1	
MOISTURE CONTENT		
Tare Number	7 5	
Wt. Sample wet + tare (g)	327.4	
Wt. Sample dry + tare (g)	225.1	
Wt. Tare (g)	8.3	
Moisture Content, w% =	47.2	
BULK DENSITY		
Sample Wt. (g)	1095.0	
Diameter 1 (cm)	7.22	
Diameter 2 (cm)	7,22	
Diameter 3 (cm)	7.24	
Avg. Diameter (cm)	7.23	
Length 1 (cm)	15.32	
Length 2 (cm)	15.35	
Length 3 (cm)	15.32	
Avg. Length (cm)	15.33	
Volume (cm3)	628.8	
Moisture content (%)	47.2	
Bulk Density (a/cm³)	1.741	
Bulk Density (kN/m³)	17.1	
Bulk Density (pcf)	108.7	
Dry Density (kN/m³)	11.60	

File: Qu TH11-13 T123.xls Tab: Special Data

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)


AECOM

	CLIENT:	City of Winnipeg
	PROJECT:	Jefferson East CSR
I	JOB NO.:	£031031E

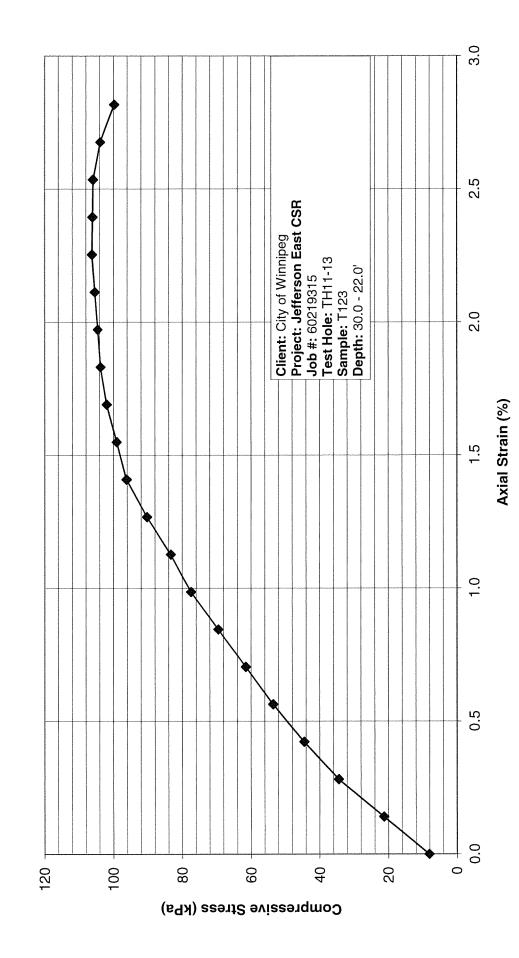
TEST HOLE NO.:	TH11-13
SAMPLE NO.:	T123
SAMPLE DEPTH:	30.0 32.0'
SAMPLE DATE:	14-Dec-11
TEST DATE:	2-Jan-12

SOIL DESCRIPTION:			
CLAY; some silt inclusions (< 5mm)	grey, moist, firm, high plasticity,		
slickensided			
MOISTURE CONTENT:	47.2		

SAMPLE DIAM.(Do):	72.27	(mm)	INITIAL AREA, Ao:	4101.7	(mm²)
SAMPLE LENGTH, (Lo):	153.30	(mm)	PISTON RATE:	0.051	(inches / minute)
L / D RATIO:	2.1	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.85	(0.5 <r<2 %="" minute)<="" td=""></r<2>

TEST DATA - DIAL	TEADINGS	TOTAL	WEDADE	ADDLIED	T		
AXIAL COMPRESSION	PROVING RING	AXIAL STRAIN, E ₁	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPR	ESSIVE STRESS, σ	2
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0008	0.00	6.36	7.50	1.18	0.170	8.1
0.02	0.0021	0.14	6.37	19.68	3.09	0.445	21.3
0.03	0.0034	0.28	6.38	31.86	5.00	0.720	34.5
0.03	0.0044	0.42	6.38	41.23	6.46	0.930	44.5
0.04	0.0053	0.56	6.39	49.66	7.77	1.118	53.6
0.05	0.0061	0.70	6.40	57.16	8.93	1.285	61.5
0.06	0.0069	0.85	6.41	64.65 72.15	10.08	1.452	69.5
0.07	0.0077	0.99	6.42	72.15	11.24	1.618	77.5
0.08	0.0083	1.13	6.43	77.77	12.09	1.742	83.4
0.09	0.0090	1.27	6.44	84.33	13.10	1.886	90.3
0.09	0.0096	1.41	6.45	89.95	13.95	2.009	96.2
0.10	0.0099	1.55	6.46	92.76	14.36	2.069	99.0
0.11	0.0102	1.69	6.47	95.57	14.78	2.128	101.9
0.12	0.0104	1.83	6.48	97.45	15.05 15.17	2.167 2.184	103.7 104.6
0.13	0.0105	1.97	6.49	98.39		2.184	
0.14	0.0106	2.11 2.25	6.49	99.32 100.26	15.29 15.41	2.220	105.4
0.14	0.0107	2.25	6.50	100.26	15.41	2.216	106. 106.
0.15	0.0107 0.0107	2.39	6.51	100.26	15.37	2.213	106.
0.16 0.17	0.0107	2.54	6.52	98.39	15.06	2.169	103.
0.17	0.0101	2.68 2.82	6.53 6.54	94.64	14.47	2.083	99.7
	- 	†		ł			
							••••••

					-		
					-		
					.		
	+				-		
	1	†			·		


UNCONFINED COMPRESSIVE STRENGTH, q_u: 106.28 kPa
(based on maximum q_u value) 2.220 ksf

UNDRAINED SHEAR STRENGTH, S_u: 53.14 kPa
(based on maximum q_u value) 1.110 ksf

NOTES:

REMARKS:

AECOM
UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS
(ASTM D2166)

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

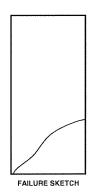
Date:1/3/2012

CLIENT: City of Winnipeg **PROJECT:** Jefferson East CSR

JOB NO.: 60219315

TEST HOLE NO.:	TH11-14	
SAMPLE NO.:	T106	
SAMPLE DEPTH:	10.0 - 12.0'	
DATE TESTED:	2-Jan-12	
SHEAR STRENGTH TESTS		
LAB VANE	Su 1	
Reading		
Spring Number	4	
Undrained Shear Strength (kPa) =	0.0	
Undrained Shear Strength (ksf) =	0.00	
TORVANE		
Reading	0.95	
Vane Size (S, M, L)	m	
Undrained Shear Strength (kPa) =	93.2	
Undrained Shear Strength (ksf) =	1.95	
POCKET PENETROMETER		
Reading - Qu (tsf)	2.00	
Undrained Shear Strength (kPa) =	95.8	
Reading - Qu (tsf)	2.00	
Undrained Shear Strength (kPa) =	95.8	
Reading - Qu (tsf)	2.00	
Undrained Shear Strength (kPa) =	95.8	
orialamod oriodr octoriger (Ni a)		
UNCONFINED COMPRESSIVE STRENGTH TEST		
Unconfined compressive strength (kPa) =	185.6	
Unconfined compressive strength (ksf) =	3.9	
Undrained Shear Strength (kPa) =	92.8	
Undrained Shear Strength (ksf) =	1.938	
	Density -Su1	
MOISTURE CONTENT		
Tare Number	14 375.3	
Wt. Sample wet + tare (g)		
Wt. Sample dry + tare (g)	264.1	
Wt. Tare (g)	8.1	
Moisture Content, w% =	43.4	
BULK DENSITY		
	1000	
Sample Wt. (g)	1099 7.24	
Diameter 1 (cm) Diameter 2 (cm)	7.24 7.20	
Diameter 2 (cm)	7.23	
Avg. Diameter (cm)	7.22	9990
Length 1 (cm)	15.36	
Length 1 (cm)	15.36	
Length 3 (cm)	15.30	
Avg. Length (cm)	15.34	
Volume (cm3)	628.6	
Moisture content (%)	43.4	
Bulk Density (a/cm³)	1.748	
Bulk Density (kN/m³)	17.1	
Bulk Density (pcf)	109.1	
Dry Density (kN/m³)	11.95	

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)



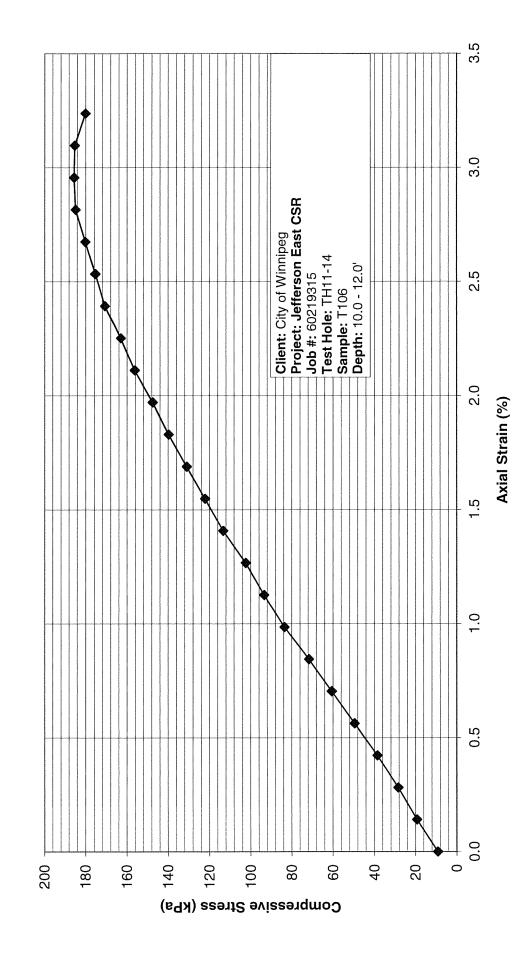
CLIENT:	City of Winnipeg
	Jefferson East C S R
JOB NO.:	

TEST HOLE NO.:	TH11-14
SAMPLE NO.:	T106
SAMPLE DEPTH:	10.0 - 12.0
SAMPLE DATE:	14-Dec-11
TEST DATE:	2-Jan-12

SOIL DESCRIPTION:			
CLAY; trace silt inclusions (<5mm),	light brown, moist, firm, intermediate		
to high plasticity, slickensided			
MOISTURE CONTENT:	43.4		

	SAMPLE DIAM.(Do):		(mm)	INITIAL AREA, Ao:	4097.9	(mm²)
	SAMPLE LENGTH, (Lo):	153.40	(mm)	PISTON RATE:	0.051	(inches / minute)
Ī	L / D RATIO:		(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.84	(0.5 <r<2 %="" minute)<="" th=""></r<2>

TEST DATA - DIAL	READINGS						
AXIAL COMPRESSION	PROVING RING	TOTAL AXIAL STRAIN, E ₁	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	СОМРЯ	ESSIVE STRESS, σ	
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0009	0.00	6.35	8.43	1.33	0.191	9.2 19.3
0.02	0.0019	0.14	6.36	17.80	2.80	0.403	19.3
0.03	0.0028	0.28	6.37	26.24	4.12	0.593	28.4
0.03	0.0038	0.42	6.38	35.61	5.58	0.804	38.5
0.04	0.0049	0.56	6.39	45,91	7.19	1.035	49.6
0.05	0.0060	0.70	6.40	56.22	8.79	1.266	60.6
0.06 0.07	0.0071	0.84 0.99	6.41 6.42	66.53 77.77	10.39	1.495 1.746	71.6 83.6
0.07	0.0083 0.0093	1.13	6.42	87.14	12.12 13.56	1.953	93.5
0.09	0.0102	1.27	6.43	95.57	14.86	2.139	102.4
0.09	0.0113	1,41	6.44	105.88	16.43	2.367	113.3
0.10	0.0122	1.55	6.45	114.31	17.72	2.551	122.2
0.11	0.0131	1.69	6.46	122.75	19.00	2.736	131.0
0.12	0.0140	1.83	6.47	131.18	20.27	2.920	139.8
0.13	0.0148	1.97	6.48	138.68	21.40 22.67	3.082	147.6
0.14	0.0157	2.11	6.49	147.11	22.67	3.265	156.3
0.14	0.0164	2.25	6.50	153.67	23.65	3.405	163.0
0.15	0.0172	2.39	6.51	161.16	24.77	3.566	170.8
0.16	0.0177	2.53	6.52	165.85	25.45	3.665	175.5
0.17	0.0182	2.67	6.53	170.53	26.13	3.763	180.2
0.18	0.0187	2,81	6.54	175.22 176.16	26.81	3.861	184.8
0.19	0.0188	2.96 3.10	6.55	176.16	26.91 26.87	3.876 3.870	185.6 185.3
0.20	0.0188 0.0183	3.10	6.55	176.16 171.47	26.12	3.762	180.1
0.20	0.0103	3.24	6.56	1/1.4/	20.12	3.702	
	<u> </u>						
	<u> </u>						
	<u> </u>						
	1	1		1	I	1	


UNCONFINED COMPRESSIVE STRENGTH, qui:	185.56	kPa
(based on maximum q _u value)	3.876	ksf
UNDRAINED SHEAR STRENGTH, Su:	92.78	kPa
(based on maximum q., value)	1.938	ksf

NOTES:

REMARKS:

ATCOM

AECOM
UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS
(ASTM D2166)

Phone: 204 477 5381

Fax: 204 284 2040

Project Name:	Jefferson East CSR
Project Number:	60219315
Client:	City of Winnipeg
Sample Location:	Varies
Sample Depth:	Varies
Sample Number:	Varies

Supplier:	N/A
Specification:	N/A
Field Technician:	MAlkiki
Sample Date:	February 24, 2015
Lab Technician:	EManimbao
Date Tested:	March 25, 2014

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

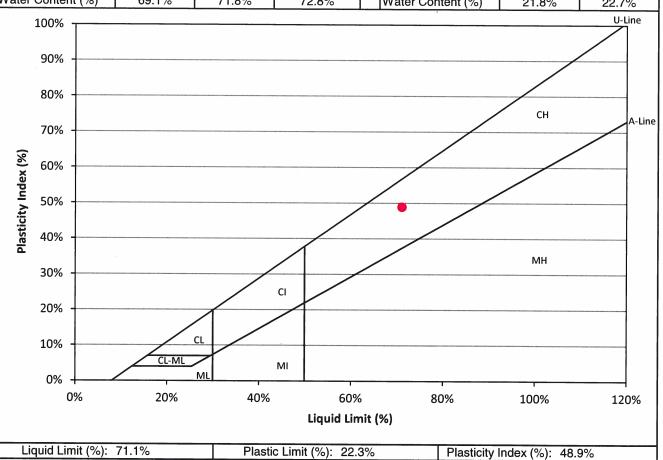
Location	Sample	Depth (m)	Moisture Content (%)
TH15-01	G1	0.30 - 0.46 m	25.3
11113-01	G2	0.76 - 0.91 m	22.9
	G3	1.22 - 1.37 m	27.3
	G5	1.68 - 1.83 m	
	G6		14.0
		2.29 - 2.44 m	42.2
	G7	2.74 - 2.90 m	43.6
	G8	3.05 - 3.20 m	39.3
	G10	4.27 - 4.42 m	37.5
	T11	4.57 - 5.18 m	39.7
	G12	5.33 - 5.49 m	39.5
	G14	6.10 - 6.25 m	41.0
	G16	7.32 - 7.47 m	39.1
	G19	8.38 - 8.53 m	36.3
	G21	9.14 - 9.30 m	48.5
	G23	10.36 - 10.52 m	48.2
	G25	11.43 - 11.58 m	57.5
	G27	12.19 - 12.34 m	57.0
	G29	13.41 - 13.56 m	51.1
	G31	14.48 - 14.63 m	27.4
	G33	16.76 - 16.92 m	54.3
			

Location	Sample	Depth (m)	Moisture Content (%)
	-		

Phone: 204 477 5381

Fax: 204 284 2040

Project Name:	Jefferson East CSR	
Project Number:	60219315	
Client:	City of Winnipeg	
Sample Location:	TH15-01	
Sample Depth:	0.30 - 0.46 m	
Sample Number:	G1	


Supplier:	AECOM
Specification:	N/A
Field Technician:	MAlkiki
Sample Date:	February 24, 2015
Lab Technician:	EManimbao
Date Tested:	April 1, 2015

Atterberg Limits

ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

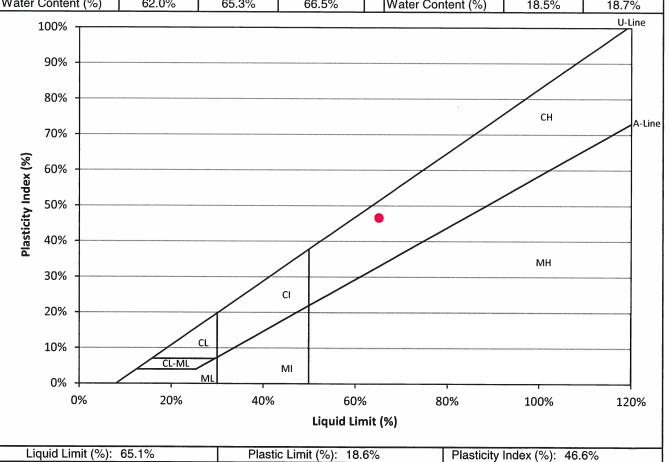
Liquid Limit					
Blows	35	23	18		
Wet Sample (g)	7.5	7.9	9.5		
Dry Sample (g)	4.5	4.6	5.5		
Water Content (%)	69.1%	71.8%	72.8%		

Plastic Limit				
Trial	1	2		
Wet Sample (g)	8.1	9.4		
Dry Sample (g)	6.7	7.7		
Water Content (%)	21.8%	22.7%		

Phone: 204 477 5381

Fax: 204 284 2040

Jefferson East CSR	
60219315	
City of Winnipeg	
TH15-01	
1.22 - 1.37 m	
G3	
	60219315 City of Winnipeg TH15-01 1.22 - 1.37 m


Supplier:	AECOM
Specification:	N/A
Field Technician:	MAlkiki
Sample Date:	February 24, 2015
Lab Technician:	EManimbao
Date Tested:	April 1, 2015

Atterberg Limits

ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

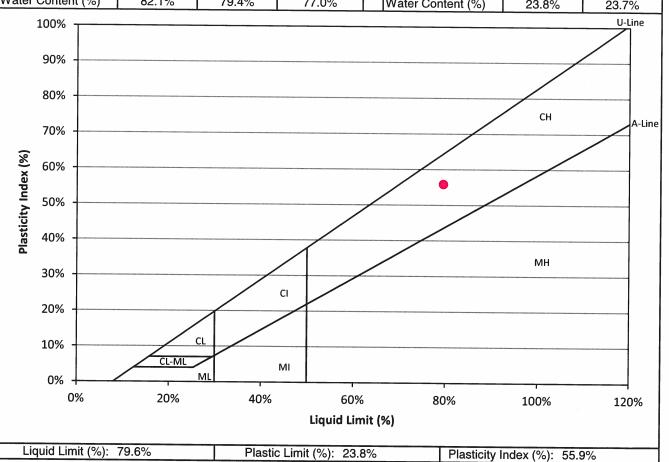
Liquid Limit				
Blows 35 26				
Wet Sample (g)	8.4	8.0	7.5	
Dry Sample (g)	4.5			
Water Content (%)	62.0%	65.3%	66.5%	

Plastic Limit				
Trial	1	2		
Wet Sample (g) 9.9 9.7				
Dry Sample (g) 8.4 8.1				
Water Content (%)	18.5%	18.7%		

Phone: 204 477 5381

Fax: 204 284 2040

Project Name:	Jefferson East CSR
Project Number:	60219315
Client:	City of Winnipeg
Sample Location:	TH15-01
Sample Depth:	4.57 - 5.18 m
Sample Number:	T11


Supplier:	AECOM
Specification:	N/A
Field Technician:	MAlkiki
Sample Date:	February 24, 2015
Lab Technician:	EManimbao
Date Tested:	April 2, 2015

Atterberg Limits

ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Liquid Limit					
Blows 17 26 35					
Wet Sample (g)	11.6	11.7	9.9		
Dry Sample (g) 6.4 6.5 5.6					
Water Content (%)	82.1%	79.4%	77.0%		

Plastic Limit				
Trial	1	2		
Wet Sample (g) 6.9 6.8				
Dry Sample (g) 5.6 5.5				
Water Content (%)	23.8%	23.7%		

(ASTM D422-63)

MATERIALS LABORATORY

AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.:

60219315

Client:

City of Winnipeg

Project:

Date Tested:

Tested By:

Jefferson East CSR

2-Apr-15

MLotecki

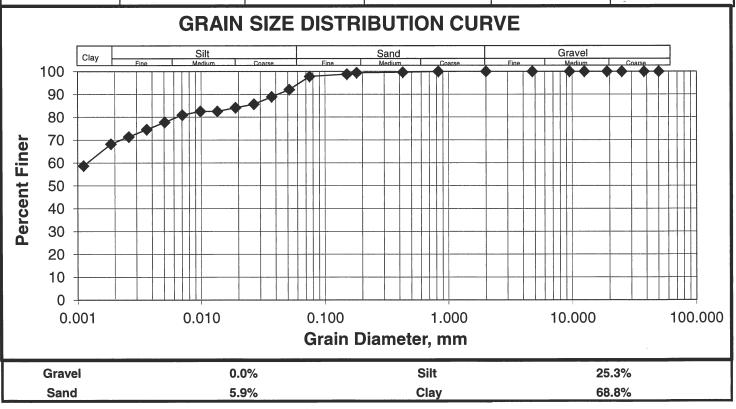
Hole No.:

TH15-01

Sample No.:

G1

Depth:


0.30 - 0.46 m

Date Sampled: 24-Feb-15

Sampled By:

AECOM

GRAVE	L SIZES	SAND SIZES		. SIZES SAND SIZES FINES		IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	
50.0	100.0	2.00	100.0	0.0750	97.8	
38.0	100.0	0.83	100.0	0.0514	92.1	
25.0	100.0	0.43	99.6	0.0370	88.9	
19.0	100.0	0.18	99.4	0.0266	85.7	
12.5	100.0	0.15	98.8	0.0189	84.1	
9.5	100.0	0.075	97.8	0.0135	82.5	
4.75	100.0			0.0099	82.5	
2.00	100.0			0.0070	80.9	
				0.0050	77.8	
				0.0036	74.6	
				0.0026	71.4	
				0.0019	68.2	
				0.0011	58.7	

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

(ASTM D422-63)

AECOM

MATERIALS LABORATORY

AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.:

60219315

Client:

City of Winnipeg

Project:

Jefferson East CSR

Date Tested:

2-Apr-15

Tested By:

MLotecki

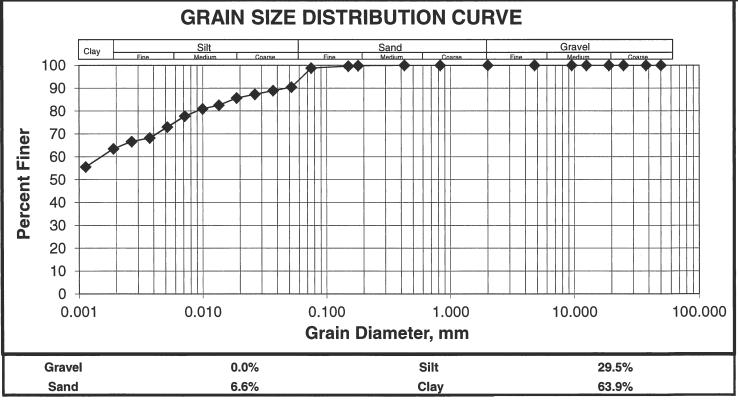
Hole No.:

TH15-01

Sample No.:

G3

Depth:


1.22 - 1.37 m

Date Sampled: 24-Feb-15

Sampled By:

AECOM

GRAVE	L SIZES	SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	98.8
38.0	100.0	0.83	100.0	0.0518	90.5
25.0	100.0	0.43	100.0	0.0370	88.9
19.0	100.0	0.18	99.8	0.0264	87.3
12.5	100.0	0.15	99.6	0.0188	85.7
9.5	100.0	0.075	98.8	0.0135	82.5
4.75	100.0			0.0099	80.9
2.00	100.0			0.0071	77.8
				0.0052	73.0
				0.0037	68.2
				0.0026	66.6
				0.0019	63.5
				0.0011	55.5

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

Phone: 204 477 5381 Fax: 204 284 2040

Project Name:	Jefferson East CSR (Phase 2)
Project Number:	60599385
Client:	City of Winnipeg
Sample Location:	Varies
Sample Depth:	Varies
Sample Number:	Varies

Supplier:	AECOM
Specification:	N/A
Field Technician:	RHarras
Sample Date:	Varies
Lab Technician:	RHarras
Date Tested:	June 24 - 27, 2019

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture
			Content (%)
TH19-01	G1A	1.07 - 1.22 m	20.5%
	G1	1.37 - 1.52 m	28.6%
	G3	4.42 - 4.57 m	47.3%
	G4	5.94 - 6.10 m	46.4%
	G6	8.99 - 9.14 m	43.9%
	G7	10.52 - 10.67 m	39.9%
	S9	13.72 - 14.17 m	10.1%
	S10	14.94 - 15.01 m	16.4%
TH19-02	G16A	0.69 - 0.84 m	19.4%
	G16	1.37 - 1.52 m	27.1%
	G17	2.90 - 3.05 m	48.9%
	G18	4.42 - 4.57 m	48.3%
	G20	7.47 - 7.62 m	43.0%
	G21	8.99 - 9.14 m	41.3%
	G22	10.52 - 10.67 m	37.3%
	G23	12.04 - 12.19 m	38.3%
TH19-03	G24	1.37 - 1.52 m	27.7%
	G25	2.90 - 3.05 m	42.6%
	G26	4.42 - 4.57 m	55.1%
	G27	5.94 - 6.10 m	38.6%
	G28	7.47 - 7.62 m	44.0%
	G30	10.52 - 10.67 m	33.8%
	G31	12.04 - 12.19 m	26.3%
TH19-04	G32A	0.91 - 1.07 m	20.8%
	G32	1.37 - 1.52 m	24.8%
	G33	2.90 - 3.05 m	48.4%
	G34	4.42 - 4.57 m	48.7%
	G35	5.94 - 6.10 m	50.9%
	G37	8.99 - 9.14 m	41.3%
	G38	10.52 - 10.67 m	47.3%
	G39	12.04 - 12.19 m	41.4%
TH19-05	G40A	0.61 - 0.76 m	25.9%
	G40	1.37 - 1.52 m	26.6%
	G41	2.90 - 3.05 m	22.9%
	G43	5.94 - 6.10 m	45.4%
	G45	8.99 - 9.14 m	45.3%
	G47	12.04 - 12.19 m	47.5%
	S49	15.24 - 15.70 m	11.5%

Location	Sample	Depth (m)	Moisture
		,	Content (%)
	S50	16.31 - 16.56 m	9.3%
TH19-06	G55	1.37 - 1.52 m	22.3%
	G56A	1.75 - 1.91 m	28.6%
	G56B	2.21 - 2.36 m	23.3%
	G56	2.90 - 3.05 m	41.5%
	G57	4.42 - 4.57 m	46.8%
	G59	7.47 - 7.62 m	44.0%
	G60	8.99 - 9.14 m	53.3%
	G61	10.52 - 10.67 m	50.8%
	G62	12.04 - 12.19 m	59.1%
TH19-07	G63	1.37 - 1.52 m	12.3%
	G64	2.90 - 3.05 m	47.1%
	G65	4.42 - 4.57 m	50.5%
	G66	5.94 - 6.10 m	53.6%
	G68	8.99 - 9.14 m	52.2%
	G69	10.52 - 10.67 m	51.4%
	G70	12.04 - 12.19 m	54.6%
TH19-08	G71A	0.69 - 0.84 m	19.7%
	G71	1.37 - 1.52 m	36.3%
	G72	2.90 - 3.05 m	53.7%
	G73	4.42 - 4.57 m	53.4%
	G75	7.47 - 7.62 m	45.2%
	G76	8.99 - 9.14 m	48.7%
	G77	10.52 - 10.67 m	49.2%
	G78	12.04 - 12.19 m	46.7%
	G79	13.56 - 13.72 m	22.9%
	G80	15.09 - 15.24 m	11.7%
	S81	16.76 - 17.22 m	12.0%
TH19-10	G91A	0.84 - 0.99 m	25.4%
	G91	1.37 - 1.52 m	22.6%
	G92	2.90 - 3.05 m	33.9%
	G93	4.42 - 4.57 m	52.3%
	G94	5.94 - 6.10 m	51.5%
	G96	8.99 - 9.14 m	41.1%
	G97	10.52 - 10.67 m	47.3%
	G98	12.04 - 12.19 m	48.3%
TH19-11	G99A	0.53 - 0.69 m	31.4%
	G99	1.37 - 1.52 m	21.7%

Phone: 204 477 5381 Fax: 204 284 2040

Project Name:	Jefferson East CSR (Phase 2)		
Project Number:	60599385		
Client:	City of Winnipeg		
Sample Location:	Varies		
Sample Depth:	Varies		
Sample Number:	Varies		


Supplier:	AECOM
Specification:	N/A
Field Technician:	RHarras
Sample Date:	Varies
Lab Technician:	RHarras
Date Tested:	June 24 - 27, 2019

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

1		D # ()	Moisture
Location	Sample	Depth (m)	Content (%)
	G100	2.90 - 3.05 m	50.3%
	G102	5.94 - 6.10 m	48.9%
	G103	7.47 - 7.62 m	48.1%
	G104	8.99 - 9.14 m	64.3%
	G105	10.52 - 10.67 m	42.2%
	G106	12.04 - 12.19 m	59.0%
	G107	13.56 - 13.72 m	44.8%
	G108	15.09 - 15.24 m	21.5%
	G109	16.61 - 16.76 m	37.7%
	G110	18.14 - 18.29 m	26.2%
TH19-12	G111A	0.99 - 1.14 m	26.6%
	G111	1.37 - 1.52 m	28.2%
	G112	2.90 - 3.05 m	39.9%
	G113	4.42 - 4.57 m	60.9%
	G115	7.47 - 7.62 m	58.3%
	G116	8.99 - 9.14 m	52.4%
	G117	10.52 - 10.67 m	51.2%
	G118	12.04 - 12.19 m	41.9%
TH19-13	G119A	0.69 - 0.84 m	31.5%
	G119	1.37 - 1.52 m	25.4%
	G120	2.90 - 3.05 m	51.8%
	G122	5.94 - 6.10 m	53.1%
	G123	7.47 - 7.62 m	48.3%
	G124	8.99 - 9.14 m	51.0%
	G125	10.52 - 10.67 m	47.3%
	G126	12.04 - 12.19 m	58.4%
TH19-14	G127	1.37 - 1.52 m	25.5%
	G127A	2.21 - 2.36 m	23.4%
	G131	7.47 - 7.62 m	48.5%
	G133	10.52 - 10.67 m	33.2%
	G135	13.56 - 13.72 m	41.0%
	G136	15.09 - 15.24 m	60.7%
	G137	16.61 - 16.76 m	28.8%
	G138	18.14 - 18.29 m	12.5%
	S139	19.51 - 19.51 m	9.5%
TH19-15	G142	5.94 - 6.10 m	52.3%
	G144	8.99 - 9.14 m	46.1%
TH19-16	G146	1.37 - 1.52 m	30.5%

	1		Moisture
Location	Sample	Depth (m)	Content (%)
	G150	7.47 - 7.62 m	48.3%
	G152	10.52 - 10.67 m	51.3%
	G153	12.04 - 12.19 m	50.7%
	G156	16.61 - 16.76 m	18.1%
TH19-17	G158A	0.69 - 0.84 m	27.0%
11113-17	G156A	1.37 - 1.52 m	14.2%
	G150	2.90 - 3.05 m	24.1%
	G161	5.94 - 6.10 m	55.0%
	G163	8.99 - 9.14 m	
	G163	8.99 - 9.14 m	47.6%
	•		

MOISTURE CONTENT OF SOIL (ASTM D2216)

			`		
CLIENT: AECOM		TEST NO:	19- 001	PROJECT NO:	112-1909
PROJECT: Jefferson East	CSR (Phase 2)	DATE SAMPLED:	26-Jul-2019	SAMPLED BY:	Client
PROJECT CONTACT:	Ryan Harras	DATE TESTED:	29-Jul-2019	TESTED BY:	Navpreet Singh
TEST LOCATION:	Winnipeg Manitoba				
Description	TH 19 - 16	TH 19 - 16			
Sample	T148-2	T154			
Wt Wet Sample + Tare	127.40	201.70			
Wt Dry Sample + Tare	88.40	125.50			
Wt Water	39.00	76.20			
Wt Tare	4.30	4.20			
Wt Dry Sample	84.10	121.30			
Moisture Content (%)	46.4	62.8			
Description					
Sample					
Wt Wet Sample + Tare					
Wt Dry Sample + Tare					
Wt Water					
Wt Tare					
Wt Dry Sample					
Moisture Content (%)					
Description					
Sample					
Wt Wet Sample + Tare					
Wt Dry Sample + Tare					
Wt Water					
Wt Tare					
Wt Dry Sample					
Moisture Content (%)					
Description					
Sample					
Wt Wet Sample + Tare					
Wt Dry Sample + Tare					
Wt Water					
Wt Tare					
Wt Dry Sample					
Moisture Content (%)					

1402 Notre Dame Avenue, Winnipeg, MB R3E 3G5

PHONE: 204 697-3854 CELL: 204 997-1355

hmanalo@mts.net

CLIENT: AECOM PROJECT NO.: 112-1909

99 Commerce Drive,

Winnipeg, MB R3P 0Y7

ATTENTION: Ryan Harras

PROJECT: Jefferson East CSR (Phase 2)

Summary of Particle Size Analysis and Atterberg Limits

Hole No	Sample No.	% Clay	% Silt	% Sand
TH 19-05	G41	11	86.6	2.4
TH 19-08	T74	64	35	1.0
TH 19-08	S81	21	43.8	35.2
TH 19-14	G127A	18	80.6	1.4
TH 19-15	T140	80	20	0
TH 19-16	G146	55	39	6.0

Liquid Limit	•			
	Non plastic			
60	25	35		
22	10	12		
24	16	8		
70	31	39		
53	23	30		

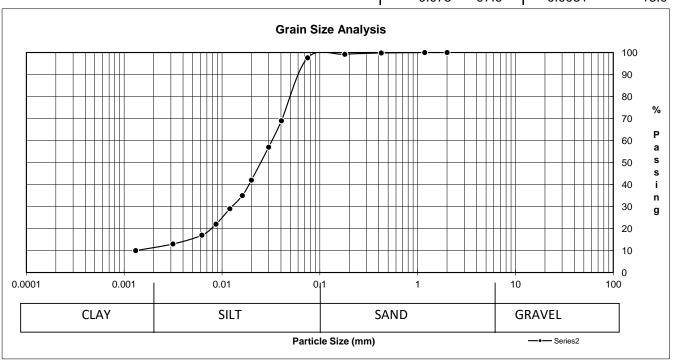
1402 Notre Dame Avenue, Winnipeg, MB R3E 3G5 Phone: 204 697 3854 Cell: 204 997-1355

hmanalo@mts.net

PARTICLE SIZE ANALYSIS OF SOILS TEST REPORT

CLIENT: AECOM PROJECT NO. 112-1909

99 Commerce Drive, Test No: 1


Winnipeg, MB R3P 0Y7 Lab No: HM 314

ATTENTION: Ryan Harras

PROJECT: Jefferson East CSR (Phase 2)

Winnipeg, Manitoba

	vvinnipeg, ivia	nitoba						
Date Sampled:	Date Sampled: 6/24-27/2019 Date Received:		Date Sampled: 6/24-27/2019 Date Received: 27-Jul-19		Sieve An	alysis	Hydromete	r Analysis
Sampled By:	Client	Date Tested:	1-Aug-19	Sieve (mm) 9	% Passing	Diameter	% Finer	
				50.00	100.0			
				37.50	100.0			
				25.00	100.0			
				19.00	100.0			
				16.00	100.0			
Material Identific	cation			12.50	100.0	0.0405	69.0	
B.H./T.H. No.		TH 19-05		9.50	100.0	0.0300	57.0	
Sample No.		G41		4.75	100.0	0.0200	42.0	
Sample depth		10'		2.00	100.0	0.0162	35.0	
Specific Gravity of	of Material:	2.65		1.18	100.0	0.0120	29.0	
				0.425	99.8	0.0087	22.0	
				0.180	99.2	0.0062	17.0	
				0.075	97.6	0.0031	13.0	

SOIL DESCRIPTION	% Cor	% Composition		0.00130
SOIL DESCRIPTION		Gravel	D30	0.01205
	2.4	Sand	D60	0.03245
	86.6	Silt	Cu	24.96
	11.0	Clay	Сс	3.44

Remarks: Test Method: ASTM D422, D2216, D4318

Technician: Navi

P. Bevil

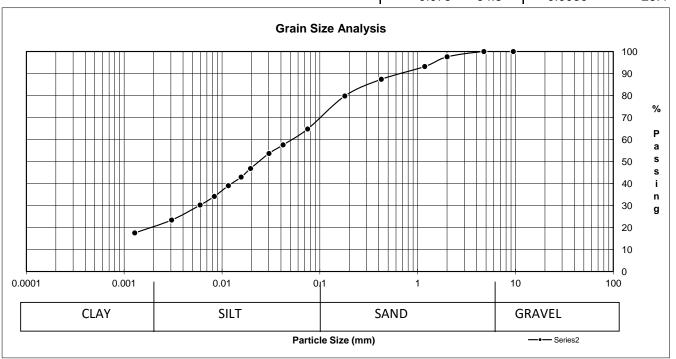
1402 Notre Dame Avenue, Winnipeg, MB R3E 3G5 Phone: 204 697 3854 Cell: 204 997-1355

hmanalo@mts.net

PARTICLE SIZE ANALYSIS OF SOILS TEST REPORT

CLIENT: AECOM PROJECT NO. 112-1909

99 Commerce Drive, Test No: 2


Winnipeg, MB R3P 0Y7 Lab No: HM 314

ATTENTION: Ryan Harras

PROJECT: Jefferson East CSR (Phase 2)

Winnipeg, Manitoba

	winnipeg, ivia	nitoba					
Date Sampled:	6/24-27/2019	Date Received	l: 27-Jul-19	Sieve An	alysis	Hydromete	r Analysis
Sampled By:	Client	Date Tested:	1-Aug-19	Sieve (mm) 9	% Passing	Diameter	% Finer
				50.00	100.0		
				37.50	100.0		
				25.00	100.0		
				19.00	100.0		
				16.00	100.0		
Material Identifi	cation			12.50	100.0	0.0421	57.6
B.H./T.H. No.		TH 19-08		9.50	100.0	0.0302	53.7
Sample No.		S81		4.75	100.0	0.0196	46.8
Sample depth		55'		2.00	97.6	0.0157	42.9
Specific Gravity	of Material:	2.65		1.18	93.2	0.0116	39.0
				0.425	87.4	0.0083	34.2
				0.180	79.8	0.0060	30.3
				0.075	64.8	0.0030	23.4

SOIL DESCRIPTION	% Cor	nposition	D10	
SOIL DESCRIPTION		Gravel	D30	0.00590
	35.2	Sand	D60	0.00184
	43.8	Silt	Cu	#DIV/0!
	21.0	Clay	Сс	#DIV/0!

Remarks: Test Method: ASTM D422, D2216, D4318

Technician: Navi

P. Bevil

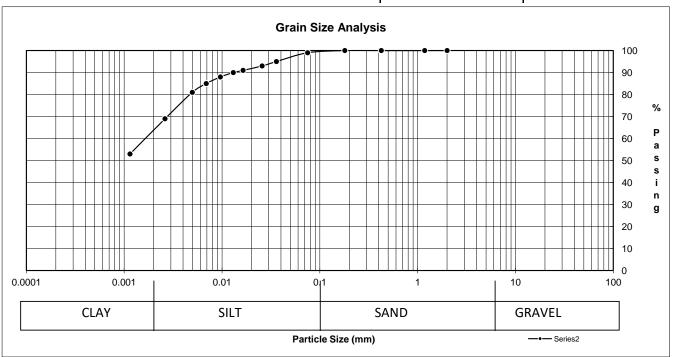
1402 Notre Dame Avenue, Winnipeg, MB R3E 3G5 Phone: 204 697 3854 Cell: 204 997-1355

hmanalo@mts.net

PARTICLE SIZE ANALYSIS OF SOILS TEST REPORT

CLIENT: AECOM PROJECT NO. 112-1909

99 Commerce Drive, Test No: 3


Winnipeg, MB R3P 0Y7 Lab No: HM 314

ATTENTION: Ryan Harras

PROJECT: Jefferson East CSR (Phase 2)

Winnipeg, Manitoba

	Winnipeg, Ma	nitoba					
Date Sampled:	6/24-27/2019	Date Received	: 27-Jul-19	Sieve An	alysis	Hydromete	r Analysis
Sampled By:	Client	Date Tested:	1-Aug-19	Sieve (mm) 9	% Passing	Diameter	% Finer
				50.00	100.0		
				37.50	100.0		
				25.00	100.0		
				19.00	100.0		
				16.00	100.0		
Material Identific	cation			12.50	100.0	0.0360	95.0
B.H./T.H. No.		TH 19-08		9.50	100.0	0.0257	93.0
Sample No.		T74		4.75	100.0	0.0164	91.0
Sample depth		20'		2.00	100.0	0.0130	90.0
Specific Gravity of	of Material:	2.65		1.18	100.0	0.0096	88.0
				0.425	100.0	0.0069	85.0
				0.180	100.0	0.0050	81.0
				0.075	99.0	0.0026	69.0

SOIL DESCRIPTION	% Composition		D10	
SOIL DESCRIPTION		Gravel	D30	
	1.0	Sand	D60	0.00184
	35.0	Silt	Cu	#DIV/0!
	64.0	Clay	Сс	#DIV/0!

Remarks: Test Method: ASTM D422, D2216, D4318

Technician: Navi

P. Bevil

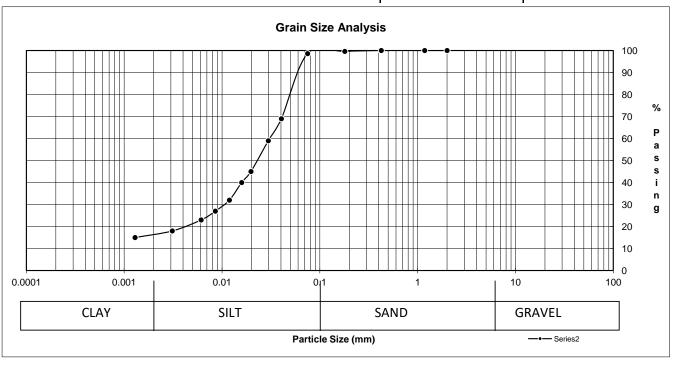
1402 Notre Dame Avenue, Winnipeg, MB R3E 3G5 Phone: 204 697 3854 Cell: 204 997-1355

hmanalo@mts.net

PARTICLE SIZE ANALYSIS OF SOILS TEST REPORT

CLIENT: AECOM PROJECT NO. 112-1909

99 Commerce Drive, Test No: 4


Winnipeg, MB R3P 0Y7 Lab No: HM 314

ATTENTION: Ryan Harras

PROJECT: Jefferson East CSR (Phase 2)

Winnipeg, Manitoba

	wirinipeg, ivia	HILODA					
Date Sampled:	6/24-27/2019	Date Received: 27-Jul-19		Sieve An	alysis	Hydromete	r Analysis
Sampled By:	Client	Date Tested:	1-Aug-19	Sieve (mm) 9	% Passing	Diameter	% Finer
				50.00	100.0		
				37.50	100.0		
				25.00	100.0		
				19.00	100.0		
				16.00	100.0		
Material Identific	cation			12.50	100.0	0.0405	69.0
B.H./T.H. No.		TH 19-14		9.50	100.0	0.0297	59.0
Sample No.		G127A		4.75	100.0	0.0198	45.0
Sample depth		7.5'		2.00	100.0	0.0159	40.0
Specific Gravity	of Material:	2.65		1.18	100.0	0.0119	32.0
				0.425	100.0	0.0085	27.0
				0.180	99.6	0.0061	23.0
				0.075	98.6	0.0031	18.0

SOIL DESCRIPTION		% Composition		
		Gravel	D30	0.01268
	1.4	Sand	D60	0.02970
	80.6	Silt	Cu	#DIV/0!
	18.0	Clay	Сс	#DIV/0!

Remarks: Test Method: ASTM D422, D2216, D4318

Technician: Navi

P. Bevil

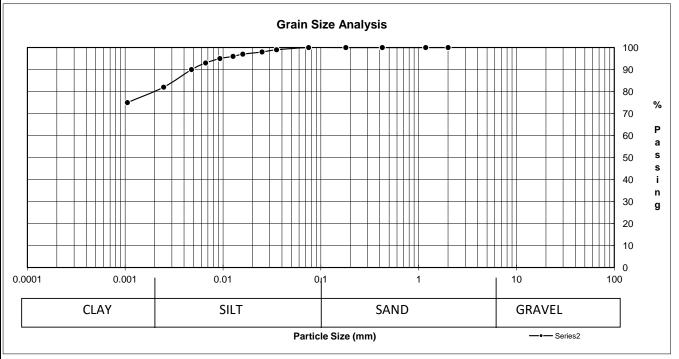
1402 Notre Dame Avenue, Winnipeg, MB R3E 3G5 Phone: 204 697 3854 Cell: 204 997-1355

hmanalo@mts.net

PARTICLE SIZE ANALYSIS OF SOILS TEST REPORT

CLIENT: AECOM PROJECT NO. 112-1909

99 Commerce Drive, Test No: 5


Winnipeg, MB R3P 0Y7 Lab No: HM 314

ATTENTION: Ryan Harras

PROJECT: Jefferson East CSR (Phase 2)

Winnipeg, Manitoba

	winnipeg, ivia	niloba					
Date Sampled:	6/24-27/2019	Date Received: 27-Jul-19		Sieve Ar	nalysis	Hydromete	r Analysis
Sampled By:	Client	Date Tested:	1-Aug-19	Sieve (mm)	% Passing	Diameter	% Finer
				50.00	100.0		
				37.50	100.0		
				25.00	100.0		
				19.00	100.0		
				16.00	100.0		
Material Identific	cation			12.50	100.0	0.0353	99.0
B.H./T.H. No.		TH 19-15		9.50	100.0	0.0251	98.0
Sample No.		T140		4.75	100.0	0.0159	97.0
Sample depth		10'		2.00	100.0	0.0127	96.0
Specific Gravity	of Material:	2.65		1.18	100.0	0.0093	95.0
				0.425	100.0	0.0066	93.0
				0.180	100.0	0.0048	90.0
				0.075	100.0	0.0025	82.0

SOIL DESCRIPTION	% Composition		D10	
SOIL DESCRIPTION		Gravel	D30	
		Sand	D60	
	20.0	Silt	Cu	#DIV/0!
	80.0	Clay	Cc	#DIV/0!

Remarks: Test Method: ASTM D422, D2216, D4318

Technician: Navi

P. Bevil

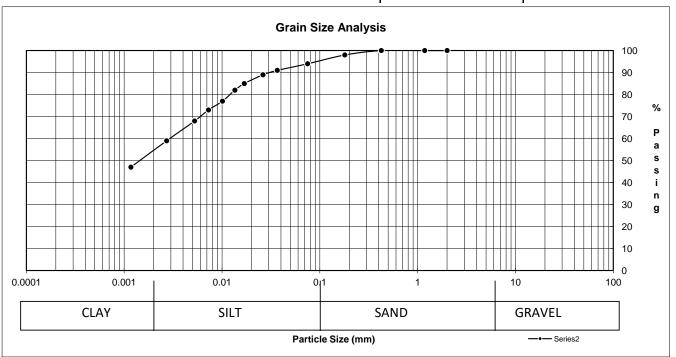
1402 Notre Dame Avenue, Winnipeg, MB R3E 3G5 Phone: 204 697 3854 Cell: 204 997-1355

hmanalo@mts.net

PARTICLE SIZE ANALYSIS OF SOILS TEST REPORT

CLIENT: AECOM PROJECT NO. 112-1909

99 Commerce Drive, Test No: 6


Winnipeg, MB R3P 0Y7 Lab No: HM 314

ATTENTION: Ryan Harras

PROJECT: Jefferson East CSR (Phase 2)

Winnipeg, Manitoba

	Winnipeg, Ma	nitoba					
Date Sampled:	6/24-27/2019	Date Received	Date Received: 27-Jul-19		alysis	s Hydrometer Analysi	
Sampled By:	Client	Date Tested:	1-Aug-19	Sieve (mm)	% Passing	Diameter	% Finer
				50.00	100.0		
				37.50	100.0		
				25.00	100.0		
				19.00	100.0		
				16.00	100.0		
Material Identifi	cation			12.50	100.0	0.0367	91.0
B.H./T.H. No.		TH 19-15		9.50	100.0	0.0262	89.0
Sample No.		T146		4.75	100.0	0.0169	85.0
Sample depth		5'		2.00	100.0	0.0135	82.0
Specific Gravity	of Material:	2.65		1.18	100.0	0.0101	77.0
				0.425	100.0	0.0073	73.0
				0.180	98.0	0.0052	68.0
				0.075	94.0	0.0027	59.0

SOIL DESCRIPTION	% Composition		D10	
		Gravel	D30	
	6.0	Sand	D60	0.00272
	39.0	Silt	Cu	#DIV/0!
	55.0	Clay	Сс	#DIV/0!

Remarks: Test Method: ASTM D422, D2216, D4318

Technician: Navi

P. Bevil

						hmanalo@mts.net
		Atterbe	erg Limits ((ASTM D	4318)	
Client:	AECOM 99 Commerce Drive Winnipeg, MB R3P 0Y7			Project No.: Test No.: Lab No.:	,	
Attention:	Ryan Harras			Date Rec		
Project:	-	st CSR (Phase	2)		ted / By: 2-Aug-19	/ NS
1 10,000.	0011010011 Eu	01 0011 (1 11000	Liquid Limit De		Z Aug 10	7 110
Dish No.:		1	2	3		Liquid Limit
Wet Soil + D	Dish:	·	_			25 Blows
Dry Soil + D						
Moisture:						
Dish:						
Dry Soil:		Liquid Lim	nit could not b	e determined	(See Remarks)	
% Moisture:		_				
No. of Blows	S:					
Liquid Limits	S:					
		Liquid Limit			Material Identificati	on:
40.00	i				T.H./B.H. No.	TH 19-05, G41
39.00 —					Depth:	10 ft
37.00	<u> </u>					,
36.00					Liquid Limit, %: Plastic Limit, %:	
35.00					Plasticity Index: (LL-PL)	
34.00 10	<u> </u>		100		(== : =)	
	No. o	of Blows, N				
		Plastic Li	imit Determinatio	ın		Γ
Dish No.:		riasiic Li	iiiii DeteriiiiatiO	11		
Wet Soil + D	Dish:					
Dry Soil + D						
Moisture:						
Dish:						
Dry Soil:				Non-Pla	stic	
0/ 1/1-1-1						I

Test Method: ASTM: D4318, D2216

Remarks: ASTM D4318 - Section 12.5: When successive trials have been made where the number of

drops required to close the groove is always less than 25, record that the Liquid Limit could not

be determined and report the soil as Non-Plastic.

Reviewed by:

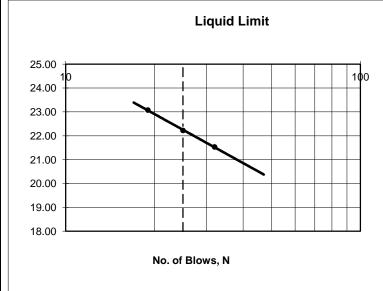
Gladys Paciente, P.Eng

% Moisture: Average:

1402 Notre Dame Avenue, Winnipeg, MB R3E 3 PHONE: 204 697-3854 CELL: 204 997-1355

hmanalo@mts.net

Atterbera	Limits	(ASTM	D4318)
/ IIICIDCIA		\	$\mathbf{D}\mathbf{T}\mathbf{U}1\mathbf{U}\mathbf{I}$


Client: AECOM Project No.: 112-1909

99 Commerce Drive Test No. 2

Winnipeg, MB R3P 0Y7 Lab No.: HM 314
Attention.: Ryan Harras Date Received: 27-Jul-19

Project: Jefferson East CSR (Phase 2) Date Tested / By: 2-Aug-19 / NS

i Toject. Generatin La	St OOK (I Hase	<u>~)</u>	Date 1 cott	Jarby. 2 Mag 15	/ 110
	Lic	uid Limit Deter	mination		
Dish No.:	1	2	3		Liquid Limit
Wet Soil + Dish:	13	15.4	13.9		25 Blows
Dry Soil + Dish:	12.1	13.40	12.1		
Moisture:	0.9	2	1.8		
Dish:	4.4	4.4	4.3		
Dry Soil:	4.18	9	7.8		
% Moisture:	21.53	22.22	23.08		
No. of Blows:	32	25	19		
Liquid Limits:	22.18	22.22	22.32		22

Material Identification:

T.H./B.H. No. **TH 19-08, S81**

Depth: 55ft

Liquid Limit, %: 22
Plastic Limit, %: 10
Plasticity Index: 12

(LL-PL)

Plastic Limit Determination					
Dish No.:	1	2	3		
Wet Soil + Dish:	12.5	12.35	12.14		
Dry Soil + Dish:	11.8	11.62	11.49		
Moisture:	0.7	0.73	0.65		
Dish:	4.53	4.28	4.43		
Dry Soil:	7.27	7.34	7.06		
% Moisture:	9.63	9.95	9.21		
Average:					10

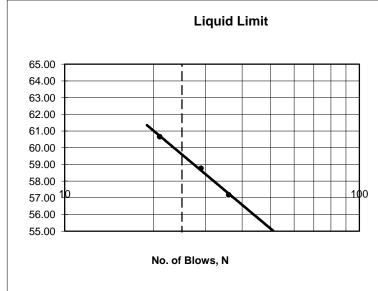
Test Method: ASTM: D4318, D2216

P. Bevil

1402 Notre Dame Avenue, Winnipeg, MB R3E 3 PHONE: 204 697-3854 CELL: 204 997-1355

hmanalo@mts.net

Atterberg Limits (ASTM D4318)


Client: AECOM Project No.: 112-1909

99 Commerce Drive Test No. 3

Winnipeg, MB R3P 0Y7 Lab No.: HM 314
Attention.: Ryan Harras Date Received: 27-Jul-19

Project: Jefferson East CSR (Phase 2) Date Tested / By: 2-Aug-19 / NS

i Tojoot. Ochorson Ed	131 OO11 (1 1143C	~)	Date 1 cott	Jarby. 2 Mag 15	/ 110
	Lic	quid Limit Deter	mination		
Dish No.:	1	2	3		Liquid Limit
Wet Soil + Dish:	11.51	12.73	11.54		25 Blows
Dry Soil + Dish:	9.12	9.58	8.78		
Moisture:	2.39	3.15	2.76		
Dish:	4.45	4.22	4.23		
Dry Soil:	4.18	5.36	4.55		
% Moisture:	57.18	58.77	60.66		
No. of Blows:	36	29	21		
Liquid Limits:	59.76	59.83	59.39		60
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			·

Material Identification:

T.H./B.H. No. TH 19-08, T74

Depth: 20ft

Liquid Limit, %: 60
Plastic Limit, %: 25
Plasticity Index: 35

(LL-PL)

Plastic Limit Determination					
Dish No.:	1	2	3		
Wet Soil + Dish:	9.8	9.69	9.42		
Dry Soil + Dish:	8.68	8.6	8.38		
Moisture:	1.12	1.09	1.04		
Dish:	4.25	4.28	4.29		
Dry Soil:	4.43	4.32	4.09		
% Moisture:	25.28	25.23	25.43		
Average:					25

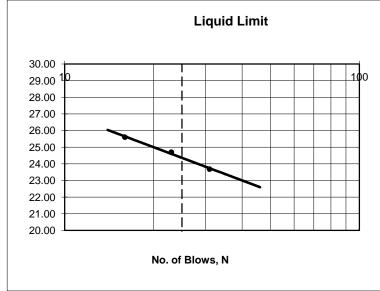
Test Method: ASTM: D4318, D2216

P. Bevil

1402 Notre Dame Avenue, Winnipeg, MB R3E 3 PHONE: 204 697-3854 CELL: 204 997-1355

hmanalo@mts.net

Atterberg Limits (ASTM D4318)


Client: AECOM Project No.: 112-1909

99 Commerce Drive Test No. 4

Winnipeg, MB R3P 0Y7 Lab No.: HM 314
Attention.: Ryan Harras Date Received: 27-Jul-19

Project: Jefferson East CSR (Phase 2) Date Tested / By: 2-Aug-19 / NS

	Lic	uid Limit Deter	mination	
Dish No.:	1	2	3	Liquid Limit
Wet Soil + Dish:	12.4	14.7	14.8	25 Blows
Dry Soil + Dish:	11.41	12.62	12.68	
Moisture:	0.99	2.08	2.12	
Dish:	4.2	4.2	4.4	
Dry Soil:	4.18	8.42	8.28	
% Moisture:	23.68	24.70	25.60	
No. of Blows:	31	23	16	
Liquid Limits:	24.31	24.46	24.26	24

Material Identification:

T.H No **TH 19-14, G127 A**

Depth: **7.5ft**

Liquid Limit, %: 24
Plastic Limit, %: 16
Plasticity Index: 8

(LL-PL)

Plastic Limit Determination					
Dish No.:	1	2	3		
Wet Soil + Dish:	12.1	11.8	12.2		
Dry Soil + Dish:	11	10.72	11.1		
Moisture:	1.1	1.08	1.1		
Dish:	4.2	4.1	4.3		
Dry Soil:	6.8	6.62	6.8		
% Moisture:	16.18	16.31	16.18		
Average:					16

Test Method: ASTM: D4318, D2216

P. Bevil

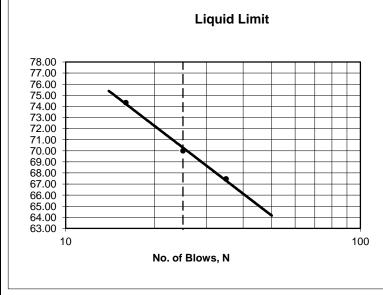
Attention.:

H. MANALO CONSULTING LTD.

1402 Notre Dame Avenue, Winnipeg, MB R3E (PHONE: 204 697-3854 CELL: 204 997-1355

hmanalo@mts.net

Atterberg Limits ('ASTM D4318)	
--------------------	--------------	--


Client: AECOM Project No.: 112-1909

99 Commerce Drive Test No. 5

Winnipeg, MB R3P 0Y7 Lab No.: HM 314
Ryan Harras Date Received: 27-Jul-19

Project: Jefferson East CSR (Phase 2) Date Tested / By: 2-Aug-19 / Navi

- 1					
	Lic	quid Limit Deter	mination		
Dish No.:	1	2	3		Liquid Limit
Wet Soil + Dish:	12.75	13.02	12.07		25 Blows
Dry Soil + Dish:	9.93	9.38	8.71		
Moisture:	2.82	3.64	3.36		
Dish:	4.17	4.18	4.19		
Dry Soil:	4.18	5.2	4.52		
% Moisture:	67.46	70.00	74.34		
No. of Blows:	35	25	16		
Liquid Limits:	70.27	70.00	70.43		70
	·	<u> </u>		·	

Material Identification:

T.H No **TH 19-14, G127 A**

Depth: **7.5ft**

Liquid Limit, %: 70
Plastic Limit, %: 31
Plasticity Index: 39

(LL-PL)

	Plastic Lim	it Determination	on	
Dish No.:	1	2	3	
Wet Soil + Dish:	10.04	9.9	10.62	
Dry Soil + Dish:	8.65	8.58	9.1	
Moisture:	1.39	1.32	1.52	
Dish:	4.22	4.21	4.28	
Dry Soil:	4.43	4.37	4.82	
% Moisture:	31.38	30.21	31.54	
Average:				31

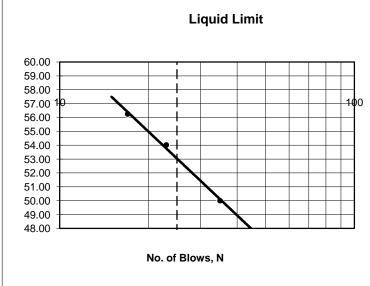
Test Method: ASTM: D4318, D2216

P. Bevil

1402 Notre Dame Avenue, Winnipeg, MB R3E 3 PHONE: 204 697-3854 CELL: 204 997-1355

hmanalo@mts.net

Atterberg Limits (ASTM D431)	Atterbera	Limits	(ASTM	D4318
------------------------------	-----------	--------	-------	-------


Client: AECOM Project No.: 112-1909

99 Commerce Drive Test No. 6

Winnipeg, MB R3P 0Y7 Lab No.: HM 314
Attention.: Ryan Harras Date Received: 27-Jul-19

Project: Jefferson East CSR (Phase 2) Date Tested / By: 2-Aug-19 / NS

1 = 400 0011 (1 11400	_ /	2 01.0 . 0 01.		,
Liq	uid Limit Dete	mination		
1	2	3		Liquid Limit
13.6	11.12	13.24		25 Blows
11.51	8.70	10		
2.09	2.42	3.24		
4.19	4.22	4.24		
4.18	4.48	5.76		
50.00	54.02	56.25		
35	23	17		
52.08	53.48	53.69		53
	Liq 1 13.6 11.51 2.09 4.19 4.18 50.00 35	Liquid Limit Deter 1 2 13.6 11.12 11.51 8.70 2.09 2.42 4.19 4.22 4.18 4.48 50.00 54.02 35 23	Liquid Limit Determination 1 2 3 13.6 11.12 13.24 11.51 8.70 10 2.09 2.42 3.24 4.19 4.22 4.24 4.18 4.48 5.76 50.00 54.02 56.25 35 23 17	Liquid Limit Determination 1 2 3 13.6 11.12 13.24 11.51 8.70 10 2.09 2.42 3.24 4.19 4.22 4.24 4.18 4.48 5.76 50.00 54.02 56.25 35 23 17

Material Identification:

T.H No **TH 19-16, G126**

Depth: 5ft

Liquid Limit, %: 53
Plastic Limit, %: 23
Plasticity Index: 30

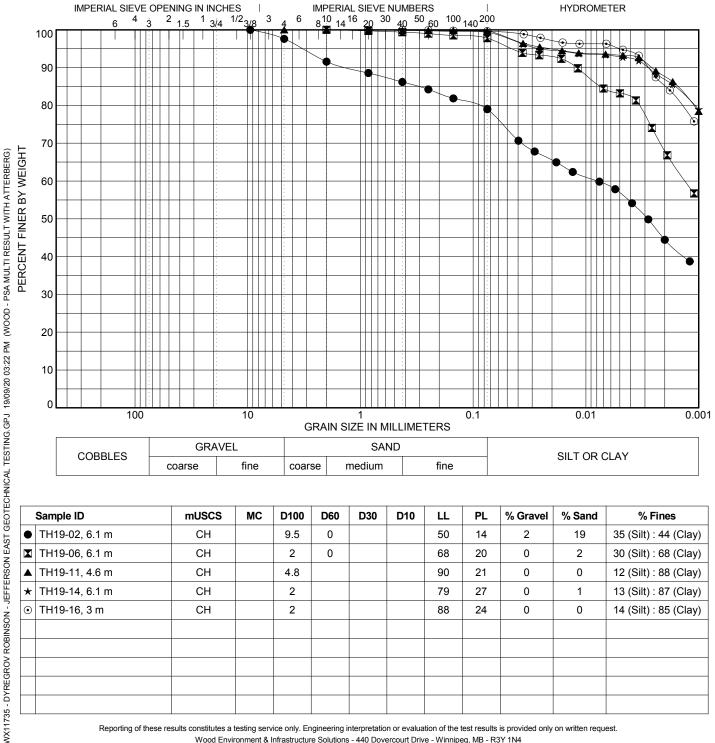
(LL-PL)

	Plastic Lim	it Determination	on	
Dish No.:	1	2	3	
Wet Soil + Dish:	10.26	10.13	10.03	
Dry Soil + Dish:	9.15	9	8.95	
Moisture:	1.11	1.13	1.08	
Dish:	4.43	4.18	4.31	
Dry Soil:	4.72	4.82	4.64	
% Moisture:	23.52	23.44	23.28	
Average:				23

Test Method: ASTM: D4318, D2216

P. Bevil

PARTICLE SIZE ANALYSIS


20 September 2019 Report Date:

Client Project

Name: AECOM C/O Dyregrov Robinson Inc. Name: Jefferson East CSR (Phase 2) Address: 1692 Dublin Avenue, Winnipeg, MB Address: Jefferson Avenue, Winnipeg MB

Attention: Gil Robinson Project No.: WX11735 JW PO Number: Manager:

Gradation Specification:

	Sample ID	mUSCS	МС	D100	D60	D30	D10	LL	PL	% Gravel	% Sand	% Fines
•	TH19-02, 6.1 m	СН		9.5	0			50	14	2	19	35 (Silt) : 44 (Clay)
	TH19-06, 6.1 m	СН		2	0			68	20	0	2	30 (Silt) : 68 (Clay)
•	TH19-11, 4.6 m	СН		4.8				90	21	0	0	12 (Silt) : 88 (Clay)
*	TH19-14, 6.1 m	СН		2				79	27	0	1	13 (Silt): 87 (Clay)
•	TH19-16, 3 m	СН		2				88	24	0	0	14 (Silt) : 85 (Clay)

UNCONFINED COMPRESSION TEST

Test Hole	19-01	Depth	10	feet	Test Hole	19-01	Depth	25	feet
=		Sample No.	T2				Sample No.	T5	-
Wet + Tare Wt.	209.02 g	Length	176	mm	Wet + Tare Wt.	231.83 g	Length	170	mm
Dry + Tare Wt.	151.52 g	Diameter	71	mm	Dry + Tare Wt.	165.20 g	Diameter	71	mm
Tare Wt.	30.73 g	Area	3959	mm²	Tare Wt.	31.28 g	Area	3959	mm²
Wt. Water	57.50 g	Weight	1178.15	a	Wt. Water	66.63 g	Weight	1215.96	а
Dry Wt.	120.79 g	Strain	5.82	-	Dry Wt.	133.92 g	Strain	4.26	•
Moisture Cont.	47.6 %	Avg. Area	4204		Moisture Cont.	49.8 %	Avg. Area	4136	
Wet Density	105.55 lb/ft³	16.58			Wet Density	112.78 lb/ft ³	17.72		
Pocket Pen: Rdg	1.45 tsf	Torvane: Rdg	0.56	tsf	Pocket Pen: Rdg	1.50 tsf	Torvane: Rdg	0.59	tsf
Su	1.45 ksf	Std vane Su	1.15	ksf	Su	1.50 ksf	Std vane Su	1.21	ksf
Su	69.4 kPa	Su	54.9	kPa	Su	71.8 kPa	Su	57.9	
Qu: Displacement	10.25 mm	GeoPen: Rdg		kg	Qu: Displacemen	7.25 mm	GeoPen: Rdg		kg
Load Cell	0.288 kN	10 mm tip Su		ksf	Load Cell	0.282 kN	10 mm tip Su		ksf
Su	34.3 kPa	10 mm tip Su		kPa	Su	34.1 kPa	10 mm tip Su		kPa
Su	0.72 ksf	·			Su	0.71 ksf	·		
Test Hole	19-01	<u>Depth</u>		feet	Test Hole	19-02	<u>Depth</u>	20	feet
		Sample No.	T8				Sample No.	T19	=
Wet + Tare Wt.	243.69 g	Length		mm	Wet + Tare Wt.	208.56 g	Length		mm
Dry + Tare Wt.	192.72 g	Diameter		mm	Dry + Tare Wt.	151.18 g	Diameter		mm
Tare Wt.	31.10 g	Area		mm²	Tare Wt.	31.16 g	Area	4072	
Wt. Water	50.97 g	Weight		g	Wt. Water	57.38 g	Weight	1204.54	g
Dry Wt.	161.62 g	Strain		%	Dry Wt.	120.02 g	Strain	7.16	%
Moisture Cont.	31.5 %	Avg. Area		mm²	Moisture Cont.	47.8 %	Avg. Area	4386	mm²
Wet Density	lb/ft³		kN/m³		Wet Density	108.01 lb/ft ³	16.97		
Pocket Pen: Rdg	0.75 tsf	Torvane: Rdg	0.50	tsf	Pocket Pen: Rdg	1.50 tsf	Torvane: Rdg	0.55	tsf
Su	0.75 ksf	Std vane Su	1.02		Su	1.50 ksf	Std vane Su	1.13	
Su	35.9 kPa	Su	49.0		Su	71.8 kPa	Su	53.9	kPa
Qu: Displacement	mm	GeoPen: Rdg		kg	Qu: Displacemen	12.25 mm	GeoPen: Rdg		kg
Load Cell	kN	10 mm tip Su		ksf	Load Cell	0.554 kN	10 mm tip Su		ksf
Su	kPa	10 mm tip Su		kPa	Su	63.2 kPa	10 mm tip Su		kPa
Su	ksf				Su	1.32 ksf			
Test Hole	19-03	Depth	30	feet	Test Hole	19-05	Depth	15	feet
		Sample No.	T29				Sample No.	T42	-
Wet + Tare Wt.	222.10 g	Length	170	mm	Wet + Tare Wt.	314.81 g	Length		mm
Dry + Tare Wt.	174.56 g	Diameter	71	mm	Dry + Tare Wt.	217.20 g	Diameter		mm
Tare Wt.	30.54 g	Area	3959		Tare Wt.	30.56 g	Area	3848	
Wt. Water	47.54 g		1236.40		Wt. Water	97.61 g		1193.74	
Dry Wt.	144.02 g	Strain	6.62	-	Dry Wt.	186.64 g	Strain	4.55	-
Moisture Cont.	33.0 %	Avg. Area	4240		Moisture Cont.	52.3 %	Avg. Area		mm²
Wet Density	114.68 lb/ft ³	18.01			Wet Density	110.02 lb/ft ³	17.28		
Pocket Pen: Rdg	0.85 tsf	Torvane: Rdg	0.50	tsf	Pocket Pen: Rdg	1.40 tsf	Torvane: Rdg	0.60	tsf
Su	0.85 ksf	Std vane Su	1.02		Su	1.40 ksf	Std vane Su	1.23	
Su	40.7 kPa	Su	49.0		Su	67.0 kPa	Su	58.8	
Qu: Displacement	11.25 mm	GeoPen: Rdg		kg	Qu: Displacemen	8.00 mm	GeoPen: Rdg		kg
Load Cell	0.278 kN	10 mm tip Su		ksf	Load Cell	0.380 kN	10 mm tip Su		ksf
Su	32.8 kPa	10 mm tip Su		kPa	Su	47.1 kPa	10 mm tip Su		kPa
II .			•••••						
Su	0.68 ksf				Su	0.98 ksf			

UNCONFINED COMPRESSION TEST

Test Hole	19-05	Depth	25	feet	Test Hole	19-06	Depth	20 feet
		Sample No.	T44				Sample No.	T58
Wet + Tare Wt.	223.96 g	Length		mm	Wet + Tare Wt.	199.52 g	Length	172 mm
Dry + Tare Wt.	164.88 g	Diameter		mm	Dry + Tare Wt.	146.96 g	Diameter	72 mm
Tare Wt.	30.67 g	Area		mm²	Tare Wt.	30.89 g	Area	4072 mm²
Wt. Water	59.08 g	Weight		g	Wt. Water	52.56 g	Weight	1217.33 g
Dry Wt.	134.21 g	Strain		%	Dry Wt.	116.07 g	Strain	5.23 %
Moisture Cont.	44.0 %	Avg. Area		mm²	Moisture Cont.	45.3 %	Avg. Area	4296 mm²
Wet Density	lb/ft³		kN/m³		Wet Density	108.52 lb/ft³	17.05	
Pocket Pen: Rdg	1.65 tsf	Torvane: Rdg	0.60	tsf	Pocket Pen: Rdg	1.35 tsf	Torvane: Rdg	0.53 tsf
Su	1.65 ksf	Std vane Su	1.23		Su	1.35 ksf	Std vane Su	1.09 ksf
Su	79.0 kPa	Su	58.8		Su	64.6 kPa	Su	52.0 kPa
Qu: Displacement	mm	GeoPen: Rdg		kg	Qu: Displacemen	9.00 mm	GeoPen: Rdg	kg
Load Cell	kN	10 mm tip Su	0.00	-	Load Cell	0.364 kN	10 mm tip Su	ksf
Su	kPa	10 mm tip Su	0.0		Su	42.4 kPa	10 mm tip Su	kPa
Su	ksf		0.0		Su	0.88 ksf	. 0 up 0a	, , , , , , , , , , , , , , , , , , ,
Su	nəi				Su	0.00 K31		
Test Hole	19-07	<u>Depth</u>	25	feet	Test Hole	19-08	<u>Depth</u>	20 feet
	_	Sample No.	T67			_	Sample No.	T74
Wet + Tare Wt.	199.34 g	Length	175	mm	Wet + Tare Wt.	205.36 g	Length	174 mm
Dry + Tare Wt.	144.83 g	Diameter	71	mm	Dry + Tare Wt.	150.29 g	Diameter	71 mm
Tare Wt.	31.48 g	Area	3959	mm²	Tare Wt.	31.05 g	Area	3959 mm²
Wt. Water	54.51 g	Weight	1214.45	g	Wt. Water	55.07 g	Weight	1191.08 g
Dry Wt.	113.35 g	Strain	5.29	%	Dry Wt.	119.24 g	Strain	5.60 %
Moisture Cont.	48.1 %	Avg. Area	4180	mm²	Moisture Cont.	46.2 %	Avg. Area	4194 mm²
Wet Density	109.42 lb/ft ³	17.19	kN/m³		Wet Density	107.94 lb/ft ³	16.96	kN/m³
Pocket Pen: Rdg	1.50 tsf	Torvane: Rdg	0.60	tsf	Pocket Pen: Rdg	1.60 tsf	Torvane: Rdg	0.53 tsf
Su	1.50 ksf	Std vane Su	1.23	ksf	Su	1.60 ksf	Std vane Su	1.09 ksf
Su	71.8 kPa	Su	58.8	kPa	Su	76.6 kPa	Su	52.0 kPa
Qu: Displacement	9.25 mm	GeoPen: Rdg		kg	Qu: Displacemen	9.75 mm	GeoPen: Rdg	kg
Load Cell	0.388 kN	10 mm tip Su		ksf	Load Cell	0.316 kN	10 mm tip Su	ksf
Su	46.4 kPa	10 mm tip Su		kPa	Su	37.7 kPa	10 mm tip Su	kPa
Su	0.97 ksf				Su	0.79 ksf	***************************************	
Test Hole	19-10	<u>Depth</u>		feet	Test Hole	19-11	<u>Depth</u>	15 feet
\A/+4 + T \A/4	044.05	Sample No.	T95		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	045.70	Sample No.	T101
Wet + Tare Wt.	214.95 g	Length	170		Wet + Tare Wt.	215.72 g	Length	172 mm
Dry + Tare Wt.	157.80 g	Diameter		mm	Dry + Tare Wt.	152.69 g	Diameter	72 mm
Tare Wt.	30.59 g	Area	4072		Tare Wt.	30.56 g	Area	4072 mm²
Wt. Water	57.15 g	•	1170.50	-	Wt. Water	63.03 g	•	1162.57 g
Dry Wt.	127.21 g	Strain	5.44		Dry Wt.	122.13 g	Strain	4.51 %
Moisture Cont.	44.9 %	Avg. Area	4306	mm²	Moisture Cont.	51.6 %	Avg. Area	4264 mm²
Wet Density	105.57 lb/ft³	16.58		4.6	Wet Density	103.64 lb/ft³	16.28	
Pocket Pen: Rdg	1.45 tsf	Torvane: Rdg	0.54		Pocket Pen: Rdg	1.45 tsf	Torvane: Rdg	0.47 tsf
Su	1.45 ksf	Std vane Su	1.11		Su	1.45 ksf	Std vane Su	0.96 ksf
Su	69.4 kPa	Su	53.0		Su	69.4 kPa	Su	46.1 kPa
Qu: Displacement	9.25 mm	GeoPen: Rdg		kg	Qu: Displacemen	7.75 mm	GeoPen: Rdg	kg
Load Cell	0.427 kN	10 mm tip Su		ksf	Load Cell	0.300 kN	10 mm tip Su	ksf
Su	49.6 kPa	10 mm tip Su		kPa	Su	35.2 kPa	10 mm tip Su	kPa
Su	1.04 ksf				Su	0.73 ksf		
Su	1.U4 KST				Su	U./3 KST		

UNCONFINED COMPRESSION TEST

Test Hole	19-12	Depth	20	feet	Test Hole	19-13	Depth	15	feet
_		Sample No.	T114	•	_		Sample No.	T121	-
Wet + Tare Wt.	212.23 g	Length	177	mm	Wet + Tare Wt.	221.59 g	Length	171	mm
Dry + Tare Wt.	149.10 g	Diameter	71	mm	Dry + Tare Wt.	153.91 g	Diameter	71	mm
Tare Wt.	30.44 g	Area	3959	mm²	Tare Wt.	31.42 g	Area	3959	mm²
Wt. Water	63.13 g	Weight	1160.97	g	Wt. Water	67.68 g	Weight	1142.30	g
Dry Wt.	118.66 g	Strain	5.65	%	Dry Wt.	122.49 g	Strain	5.12	%
Moisture Cont.	53.2 %	Avg. Area	4196	mm²	Moisture Cont.	55.3 %	Avg. Area	4173	mm²
Wet Density	103.42 lb/ft ³	16.25	kN/m³		Wet Density	105.33 lb/ft ³	16.55	kN/m³	
Pocket Pen: Rdg	1.05 tsf	Torvane: Rdg	0.48	tsf	Pocket Pen: Rdg	1.00 tsf	Torvane: Rdg	0.63	tsf
Su	1.05 ksf	Std vane Su	0.98	ksf	Su	1.00 ksf	Std vane Su	1.28	ksf
Su	50.3 kPa	Su	47.1	kPa	Su	47.9 kPa	Su	61.3	kPa
Qu: Displacement	10.00 mm	GeoPen: Rdg		kg	Qu: Displacemen	8.75 mm	GeoPen: Rdg		kg
Load Cell	0.287 kN	10 mm tip Su		ksf	Load Cell	0.304 kN	10 mm tip Su		ksf
Su	34.2 kPa	10 mm tip Su		kPa	Su	36.4 kPa	10 mm tip Su		kPa
Su	0.71 ksf				Su	0.76 ksf			
Test Hole	19-14	Depth	10	feet	Test Hole	19-14	Depth	15	feet
		Sample No.	T128	•			Sample No.	T129	-
Wet + Tare Wt.	246.30 g	Length	175	mm	Wet + Tare Wt.	184.35 g	Length	176	mm
Dry + Tare Wt.	176.16 g	Diameter	72	mm	Dry + Tare Wt.	133.37 g	Diameter	72	mm
Tare Wt.	30.90 g	Area	4072	mm²	Tare Wt.	30.52 g	Area	4072	mm²
Wt. Water	70.14 g	Weight	1179.65	g	Wt. Water	50.98 g	Weight	1183.22	g
Dry Wt.	145.26 g	Strain	6.14	%	Dry Wt.	102.85 g	Strain	6.11	%
Moisture Cont.	48.3 %	Avg. Area	4338	mm²	Moisture Cont.	49.6 %	Avg. Area	4336	mm²
Wet Density	103.36 lb/ft ³	16.24	kN/m³		Wet Density	103.08 lb/ft ³	16.19	kN/m³	
Pocket Pen: Rdg	1.30 tsf	Torvane: Rdg	0.63	tsf	Pocket Pen: Rdg	1.25 tsf	Torvane: Rdg	0.50	tsf
Su	1.30 ksf	Std vane Su	1.28	ksf	Su	1.25 ksf	Std vane Su	1.02	ksf
Su	62.2 kPa	Su	61.3	kPa	Su	59.9 kPa	Su	49.0	kPa
Qu: Displacement	10.75 mm	GeoPen: Rdg		kg	Qu: Displacemen	10.75 mm	GeoPen: Rdg		kg
Load Cell	0.314 kN	10 mm tip Su		ksf	Load Cell	0.380 kN	10 mm tip Su		ksf
Su	36.2 kPa	10 mm tip Su		kPa	Su	43.8 kPa	10 mm tip Su		kPa
Su	0.76 ksf				Su	0.92 ksf			
Test Hole	19-14	Depth	20	feet	Test Hole	19-14	Depth	30	feet
		Sample No.	T130				Sample No.	T132	-
Wet + Tare Wt.	323.84 g	Length	176	mm	Wet + Tare Wt.	208.64 g	Length	158	mm
Dry + Tare Wt.	230.29 g	Diameter	72	mm	Dry + Tare Wt.	153.44 g	Diameter	73	mm
Tare Wt.	31.11 g	Area	4072	mm²	Tare Wt.	31.30 g	Area	4185	mm²
Wt. Water	93.55 g	Weight	1171.11	g	Wt. Water	55.20 g	Weight	1084.67	g
Dry Wt.	199.18 g	Strain	4.40	%	Dry Wt.	122.14 g	Strain	4.91	%
Moisture Cont.	47.0 %	Avg. Area	4259	mm²	Moisture Cont.	45.2 %	Avg. Area	4401	mm²
Wet Density	102.03 lb/ft ³	16.03	kN/m³		Wet Density	102.40 lb/ft ³	16.09	kN/m³	
Pocket Pen: Rdg	1.05 tsf	Torvane: Rdg	0.55	tsf	Pocket Pen: Rdg	0.80 tsf	Torvane: Rdg	0.53	tsf
Su	1.05 ksf	Std vane Su	1.13	ksf	Su	0.80 ksf	Std vane Su	1.08	ksf
Su	50.3 kPa	Su	53.9	kPa	Su	38.3 kPa	Su	51.5	kPa
Qu: Displacement	7.75 mm	GeoPen: Rdg		kg	Qu: Displacemen	7.75 mm	GeoPen: Rdg		kg
Load Cell	0.338 kN	10 mm tip Su		ksf	Load Cell	0.417 kN	10 mm tip Su		ksf
Su	39.7 kPa	10 mm tip Su		kPa	Su	47.4 kPa	10 mm tip Su		kPa
Su	0.83 ksf				Su	0.99 ksf			

UNCONFINED COMPRESSION TEST

Test Hole	19-14	Depth	40	feet	Test Hole	19-15	Depth	5	feet
		Sample No.	T134				Sample No.	T139	_
Wet + Tare Wt.	287.03 g	Length	161	mm	Wet + Tare Wt.	217.25 g	Length		mm
Dry + Tare Wt.	196.75 g	Diameter		mm	Dry + Tare Wt.	195.20 g	Diameter		mm
Tare Wt.	31.21 g	Area	4072		Tare Wt.	31.49 g	Area		mm²
Wt. Water	90.28 g		1079.26		Wt. Water	22.05 g	Weight		g
Dry Wt.	165.54 g	Strain	2.02	-	Dry Wt.	163.71 g	Strain		%
Moisture Cont.	54.5 %	Avg. Area	4155		Moisture Cont.	13.5 %	Avg. Area		mm²
Wet Density	102.78 lb/ft³	16.15			Wet Density	Ib/ft³		kN/m³	
Pocket Pen: Rdg	0.85 tsf	Torvane: Rdg	0.50	tsf	Pocket Pen: Rdg	tsf	Torvane: Rdg		tsf
Su	0.85 ksf	Std vane Su	1.02		Su	ksf	Std vane Su		ksf
Su	40.7 kPa	Su	49.0	_	Su	kPa	Su		kPa
Qu: Displacement	3.25 mm	GeoPen: Rdg	•••••	kg	Qu: Displacement	mm	GeoPen: Rdg		kg
Load Cell	0.140 kN	10 mm tip Su		ksf	Load Cell	kN	10 mm tip Su		ksf
Su	16.8 kPa	10 mm tip Su		kPa	Su	kPa	10 mm tip Su		kPa
Su	0.35 ksf	1			Su	ksf	<u> </u>		
Su	0.00 1.01				Su	NO1			
Test Hole	19-15	<u>Depth</u>	10	feet	Test Hole	19-15	<u>Depth</u>	15	feet
		Sample No.	T140				Sample No.	T141	_
Wet + Tare Wt.	166.50 g	Length	176	mm	Wet + Tare Wt.	244.03 g	Length	176	mm
Dry + Tare Wt.	121.39 g	Diameter	72	mm	Dry + Tare Wt.	177.53 g	Diameter	72	mm
Tare Wt.	31.07 g	Area	4072	mm²	Tare Wt.	30.55 g	Area	4072	mm²
Wt. Water	45.11 g	Weight	1164.05	g	Wt. Water	66.50 g	Weight	1162.97	g
Dry Wt.	90.32 g	Strain	7.39	%	Dry Wt.	146.98 g	Strain	5.82	%
Moisture Cont.	49.9 %	Avg. Area	4396	mm²	Moisture Cont.	45.2 %	Avg. Area	4323	mm²
Wet Density	101.41 lb/ft ³	15.93	kN/m³		Wet Density	101.32 lb/ft ³	15.92	kN/m³	
Pocket Pen: Rdg	1.25 tsf	Torvane: Rdg	0.58	tsf	Pocket Pen: Rdg	0.95 tsf	Torvane: Rdg	0.68	tsf
Su	1.25 ksf	Std vane Su	1.18	ksf	Su	0.95 ksf	Std vane Su	1.38	ksf
Su	59.9 kPa	Su	56.4	kPa	Su	45.5 kPa	Su	66.2	kPa
Qu: Displacement	13.00 mm	GeoPen: Rdg		kg	Qu: Displacemen	10.25 mm	GeoPen: Rdg		kg
Load Cell	0.477 kN	10 mm tip Su		ksf	Load Cell	0.302 kN	10 mm tip Su		ksf
Su	54.3 kPa	10 mm tip Su		kPa	Su	34.9 kPa	10 mm tip Su		kPa
Su	1.13 ksf				Su	0.73 ksf			
	10.15					40.45			
Test Hole	19-15	<u>Depth</u>		feet	Test Hole	19-15	<u>Depth</u>	35	feet
\\/ot T \\/'	000.00	Sample No.	T143		\\/at T=== \\\/4	266.00	Sample No.	T145	_
Wet + Tare Wt.	222.36 g	Length	171		Wet + Tare Wt.	266.96 g	Length		mm
Dry + Tare Wt.	160.00 g	Diameter		mm	Dry + Tare Wt.	197.42 g	Diameter		mm
Tare Wt.	30.67 g	Area	3959		Tare Wt.	30.60 g	Area		mm²
Wt. Water	62.36 g		1158.32		Wt. Water	69.54 g	Weight		g 0/
Dry Wt.	129.33 g	Strain	3.65		Dry Wt.	166.82 g	Strain		% mm²
Moisture Cont.	48.2 %	Avg. Area	4109	111111"	Moisture Cont.	41.7 %	Avg. Area	LN1/m3	mm²
Wet Density	106.81 lb/ft³ 1.00 tsf	16.78		tof	Wet Density	Ib/ft³	:	kN/m³	tof
Pocket Pen: Rdg Su		Torvane: Rdg	0.35		Pocket Pen: Rdg Su	tsf	Torvane: Rdg	0.00	tsf
	1.00 ksf	Std vane Su	0.72			0.00 ksf	Std vane Su	0.00	
Su Our Displacement	47.9 kPa	Su Coopers Bdg	34.3		Su Ow Displacement	0.0 kPa	Su Coopers Rds	0.0	kPa ka
Qu: Displacement	6.25 mm	GeoPen: Rdg		kg ko f	Qu: Displacement	mm	GeoPen: Rdg		kg kof
Load Cell	0.306 kN	10 mm tip Su		ksf kBo	Load Cell	kN kBo	10 mm tip Su		ksf kBo
Su	37.2 kPa	10 mm tip Su		kPa	Su	kPa Isaf	10 mm tip Su		kPa
Su	0.78 ksf				Su	ksf			
<u> </u>									

UNCONFINED COMPRESSION TEST

Test Hole	19-16	Depth	10	feet	Test Hole	19-16	Depth	20	feet
		Sample No.	T147				Sample No.	T149	-
Wet + Tare Wt.	173.98 g	Length	172	mm	Wet + Tare Wt.	219.86 g	Length	177	mm
Dry + Tare Wt.	123.97 g	Diameter	71	mm	Dry + Tare Wt.	163.55 g	Diameter	72	mm
Tare Wt.	30.71 g	Area	3959	mm²	Tare Wt.	30.96 g	Area	4072	mm²
Wt. Water	50.01 g	Weight	1130.22	a	Wt. Water	56.31 g	Weight	1216.82	а
Dry Wt.	93.26 g	Strain	7.27	-	Dry Wt.	132.59 g	Strain	4.24	Ū
Moisture Cont.	53.6 %	Avg. Area	4269		Moisture Cont.	42.5 %	Avg. Area	4252	
Wet Density	103.61 lb/ft³	16.28			Wet Density	105.41 lb/ft³	16.56		
Pocket Pen: Rdg	1.35 tsf	Torvane: Rdg	0.50	tsf	Pocket Pen: Rdg	1.45 tsf	Torvane: Rdg	0.53	tsf
Su	1.35 ksf	Std vane Su	1.02	ksf	Su	1.45 ksf	Std vane Su	1.09	ksf
Su	64.6 kPa	Su	49.0	kPa	Su	69.4 kPa	Su	52.0	
Qu: Displacement	12.50 mm	GeoPen: Rdg	• • • • • • • • • • • • • • • • • • • •	kg	Qu: Displacemen	7.50 mm	GeoPen: Rdg		kg
Load Cell	0.284 kN	10 mm tip Su		ksf	Load Cell	0.314 kN	10 mm tip Su		ksf
Su	33.3 kPa	10 mm tip Su		kPa	Su	36.9 kPa	10 mm tip Su		kPa
Su	0.69 ksf	3			Su	0.77 ksf	······································		
Test Hole	19-16	<u>Depth</u>		feet	Test Hole	19-16	<u>Depth</u>	50	feet
		Sample No.	T151				Sample No.	T155	_
Wet + Tare Wt.	310.11 g	Length	174		Wet + Tare Wt.	263.47 g	Length		mm
Dry + Tare Wt.	224.24 g	Diameter		mm	Dry + Tare Wt.	203.21 g	Diameter		mm
Tare Wt.	31.32 g	Area	3848		Tare Wt.	31.44 g	Area	3959	
Wt. Water	85.87 g	_	1285.00	g	Wt. Water	60.26 g	Weight	993.55	g
Dry Wt.	192.92 g	Strain	7.33	%	Dry Wt.	171.77 g	Strain	0.00	%
Moisture Cont.	44.5 %	Avg. Area	4153	mm²	Moisture Cont.	35.1 %	Avg. Area	3959	mm²
Wet Density	119.80 lb/ft ³	18.82			Wet Density	105.85 lb/ft ³	16.63		
Pocket Pen: Rdg	0.50 tsf	Torvane: Rdg	0.38		Pocket Pen: Rdg	0.60 tsf	Torvane: Rdg	0.36	
Su	0.50 ksf	Std vane Su	0.77		Su	0.60 ksf	Std vane Su	0.74	
Su	23.9 kPa	Su	36.8	•••••	Su	28.7 kPa	Su	35.3	
Qu: Displacement	12.75 mm	GeoPen: Rdg		kg	Qu: Displacement	mm	GeoPen: Rdg		kg
Load Cell	0.290 kN	10 mm tip Su		ksf	Load Cell	kN	10 mm tip Su		ksf
Su	34.9 kPa	10 mm tip Su		kPa	Su	kPa	10 mm tip Su		kPa
Su	0.73 ksf				Su	ksf			
Test Hole	19-17	Depth	15	feet	Test Hole	19-17	Depth	25	feet
		Sample No.	T160				Sample No.	T162	-
Wet + Tare Wt.	286.57 g	Length	149	mm	Wet + Tare Wt.	249.61 g	Length		mm
Dry + Tare Wt.	201.89 g	Diameter	72	mm	Dry + Tare Wt.	180.67 g	Diameter	72	mm
Tare Wt.	31.14 g	Area	4072	mm²	Tare Wt.	31.33 g	Area	4072	mm²
Wt. Water	84.68 g		962.80		Wt. Water	68.94 g		1135.74	
Dry Wt.	170.75 g	Strain	3.86	-	Dry Wt.	149.34 g	Strain	8.39	%
Moisture Cont.	49.6 %	Avg. Area	4235	mm²	Moisture Cont.	46.2 %	Avg. Area	4444	mm²
Wet Density	99.08 lb/ft³	15.56			Wet Density	108.16 lb/ft ³	16.99		
Pocket Pen: Rdg	0.90 tsf	Torvane: Rdg	0.57	tsf	Pocket Pen: Rdg	0.80 tsf	Torvane: Rdg	0.43	tsf
Su	0.90 ksf	Std vane Su	1.17	ksf	Su	0.80 ksf	Std vane Su	0.87	ksf
Su	43.1 kPa	Su	55.9		Su	38.3 kPa	Su	41.7	
Qu: Displacement	5.75 mm	GeoPen: Rdg		kg	Qu: Displacemen	13.50 mm	GeoPen: Rdg		kg
Load Cell	0.253 kN	10 mm tip Su		ksf	Load Cell	0.416 kN	10 mm tip Su		ksf
Su	29.9 kPa	10 mm tip Su		kPa	Su	46.8 kPa	10 mm tip Su		kPa
Su	0.62 ksf				Su	0.98 ksf			
			-						

UNCONFINED COMPRESSION TEST

Test Hole	19-17	Depth	35 feet	Test Hole		Depth	feet
_		Sample No.	T164			Sample No.	
Wet + Tare Wt.	320.44 g	Length	176 mm	Wet + Tare Wt.	g	Length	mm
Dry + Tare Wt.	235.45 g	Diameter	71 mm	Dry + Tare Wt.	g	Diameter	mm
Tare Wt.	31.27 g	Area	3959 mm²	Tare Wt.	g	Area	mm²
Wt. Water	84.99 g	Weight	1246.37 g	Wt. Water	g	Weight	g
Dry Wt.	204.18 g	Strain	5.97 %	Dry Wt.	g	Strain	%
Moisture Cont.	41.6 %	Avg. Area	4210 mm²	Moisture Cont.	%	Avg. Area	mm²
Wet Density	111.66 lb/ft ³	17.54	kN/m³	Wet Density	lb/ft³	_	:N/m³
Pocket Pen: Rdg	0.65 tsf	Torvane: Rdg	0.26 tsf	Pocket Pen: Rdg	tsf	Torvane: Rdg	tsf
Su	0.65 ksf	Std vane Su	0.53 ksf	Su	ksf	Std vane Su	ksf
Su	31.1 kPa	Su	25.5 kPa	Su	kPa	Su	kPa
Qu: Displacement	10.50 mm	GeoPen: Rdg	kg	Qu: Displacement	mm	GeoPen: Rdg	kg
Load Cell	0.322 kN	10 mm tip Su	ksf	Load Cell	kN	10 mm tip Su	ksf
Su	38.2 kPa	10 mm tip Su	kPa	Su	kPa	10 mm tip Su	kPa
Su	0.80 ksf	i		Su	ksf	1	
Ju							
Test Hole		<u>Depth</u>	feet	Test Hole		<u>Depth</u>	feet
		Sample No.				Sample No.	
Wet + Tare Wt.	g	Length	mm	Wet + Tare Wt.	g	Length	mm
Dry + Tare Wt.	g	Diameter	mm	Dry + Tare Wt.	g	Diameter	mm
Tare Wt.	g	Area	mm²	Tare Wt.	g	Area	mm²
Wt. Water	g	Weight	g	Wt. Water	g	Weight	g
Dry Wt.	g	Strain	%	Dry Wt.	g	Strain	%
Moisture Cont.	%	Avg. Area	mm²	Moisture Cont.	%	Avg. Area	mm²
Wet Density	lb/ft³	0.00		Wet Density	lb/ft³	0.00	
Pocket Pen: Rdg	tsf	Torvane: Rdg	tsf	Pocket Pen: Rdg	tsf	Torvane: Rdg	tsf
Su	ksf	Std vane Su	ksf	Su	ksf	Std vane Su	ksf
Su	kPa	Su	kPa	Su	kPa	Su	kPa
Qu: Displacement	mm	GeoPen: Rdg	kg	Qu: Displacement	mm	GeoPen: Rdg	kg
Load Cell	kN	10 mm tip Su	ksf	Load Cell	kN	10 mm tip Su	ksf
Su	kPa	10 mm tip Su	kPa	Su	kPa	10 mm tip Su	kPa
Su	ksf			Su	ksf	***************************************	
Test Hole		<u>Depth</u>	feet	Test Hole		<u>Depth</u>	feet
		Sample No.				Sample No.	
Wet + Tare Wt.	g	Length	mm	Wet + Tare Wt.	g	Length	mm
Dry + Tare Wt.	g	Diameter	mm	Dry + Tare Wt.	g	Diameter	mm
Tare Wt.	g	Area	mm²	Tare Wt.	g	Area	mm²
Wt. Water	g	Weight	g	Wt. Water	g	Weight	g
Dry Wt.	g	Strain	%	Dry Wt.	g	Strain	%
Moisture Cont.	%	Avg. Area	mm²	Moisture Cont.	%	Avg. Area	mm²
Wet Density	lb/ft³	0.00		Wet Density	lb/ft³	0.00	
Pocket Pen: Rdg	tsf	Torvane: Rdg	tsf	Pocket Pen: Rdg	tsf	Torvane: Rdg	tsf
Su	ksf	Std vane Su	ksf	Su	ksf	Std vane Su	ksf
Su	kPa	Su	kPa	Su	kPa	Su	kPa
Qu: Displacement	mm	GeoPen: Rdg	kg	Qu: Displacement	mm	GeoPen: Rdg	kg
Load Cell	kN	10 mm tip Su	ksf	Load Cell	kN	10 mm tip Su	ksf
Su	kPa	10 mm tip Su	kPa	Su	kPa	10 mm tip Su	kPa
Su	ksf			Su	ksf		

1402 Notre Dame Ave., Winnipeg, MB R3E (Phone: 204 697 3854 Cell: 204 997-1355 hmanalo@mts.net

HYDRAULIC CONDUCTIVITY TEST REPORT

CLIENT: Aecom PROJECT NO. 112-1909

99 Comerce Drive

Winnipeg, MB R3P 0Y7

ATTENTION: Ryan Harras

PROJECT: Jefferson East CSR (Phase 2)

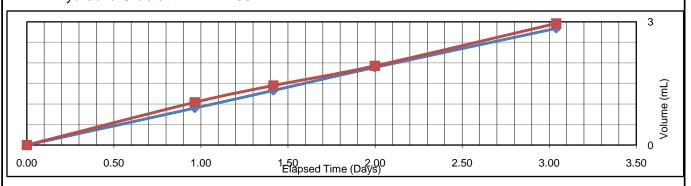
Date Sampled: 24-27-Jun-19 Date Received: 26-Jul-19 Sampled By: Client

Test Started: 26-Jul-19 Test Ended: 15-Aug-19 Sample ID: TH 19-08, T74

Test Result

Corrected Saturated Hydraulic Conductivity, Ks (cm/sec) 1.52 x 10 ⁻⁸

Consolidation Data


	Avg. Height (m)	Avg. Diameter (m)	Moisture Content %	Degree of Saturation %	Cell Pressure kPa	Back Pressure kPa
Initial	0.058	0.072	50.6	95.1	120.0	100.0
Final	0.059	0.072	53.8	99.2	120.0	100.0

Permeation Data

Time Increment	Elapsed Time	Q (ml)		Average Flow	Temperature	Corrected
(Days)	(Days)	In	Out	In/Out Ratio	(ml)	Correction	Conductivity, Ks (m/s)
0.96	0.96	0.90	1.04	0.865	0.97	0.95	1.62E-10
0.45	1.42	0.43	0.41	1.049	0.42	0.95	1.50E-10
0.58	2.00	0.56	0.48	1.167	0.52	0.95	1.44E-10
1.04	3.04	0.95	1.03	0.922	0.99	0.95	1.53E-10

Permeant: De-aired tap water

Hydraulic Gradient: 17.30

Comments

Specific gravity of soil was assumed to be 2.75

Remarks: Test Method: ASTM D5084 (Constant Head)

Technician: NS

P. Bevil

1402 Notre Dame Ave., Winnipeg, MB R3E (Phone: 204 697 3854 Cell: 204 997-1355 hmanalo@mts.net

HYDRAULIC CONDUCTIVITY TEST REPORT

CLIENT: Aecom PROJECT NO. 112-1909

99 Comerce Drive

Winnipeg, MB R3P 0Y7

ATTENTION: Ryan Harras

PROJECT: Jefferson East CSR (Phase 2)

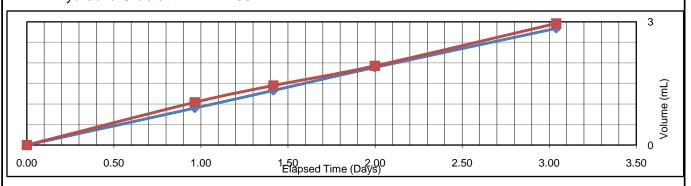
Date Sampled: 24-27-Jun-19 Date Received: 26-Jul-19 Sampled By: Client

Test Started: 26-Jul-19 Test Ended: 15-Aug-19 Sample ID: TH 19-08, T74

Test Result

Corrected Saturated Hydraulic Conductivity, Ks (cm/sec) 1.52 x 10 ⁻⁸

Consolidation Data


	Avg. Height (m)	Avg. Diameter (m)	Moisture Content %	Degree of Saturation %	Cell Pressure kPa	Back Pressure kPa
Initial	0.058	0.072	50.6	95.1	120.0	100.0
Final	0.059	0.072	53.8	99.2	120.0	100.0

Permeation Data

Time Increment	Elapsed Time	Q (ml)		Average Flow	Temperature	Corrected
(Days)	(Days)	In	Out	In/Out Ratio	(ml)	Correction	Conductivity, Ks (m/s)
0.96	0.96	0.90	1.04	0.865	0.97	0.95	1.62E-10
0.45	1.42	0.43	0.41	1.049	0.42	0.95	1.50E-10
0.58	2.00	0.56	0.48	1.167	0.52	0.95	1.44E-10
1.04	3.04	0.95	1.03	0.922	0.99	0.95	1.53E-10

Permeant: De-aired tap water

Hydraulic Gradient: 17.30

Comments

Specific gravity of soil was assumed to be 2.75

Remarks: Test Method: ASTM D5084 (Constant Head)

Technician: NS

P. Bevil

1402 Notre Dame Ave., Winnipeg, MB R3E 3 Phone: 204 697 3854 Cell: 204 997-1355 hmanalo@mts.net

HYDRAULIC CONDUCTIVITY TEST REPORT

CLIENT: Aecom PROJECT NO. 112-1909

99 Comerce Drive

Winnipeg, MB R3P 0Y4

ATTENTION: Ryan Harras

PROJECT: Jefferson East CSR (Phase 2)

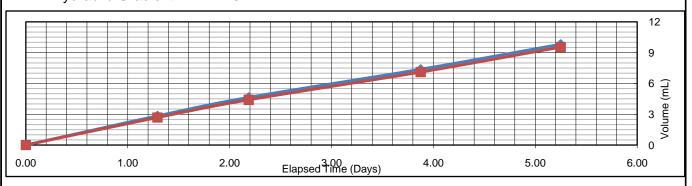
Date Sampled: June 24-27 Date Received: 26-Jul-19 Sampled By: Client

Test Started: 05-Aug-19 Test Ended: 26-Aug-19 Sample ID: TH 19-15 (T140)

Test Result

Corrected Saturated Hydraulic Conductivity, Ks (cm/sec) 2.98x 10 -8

Consolidation Data


	Avg. Height (m)	Avg. Diameter (m)	Moisture Content %	Degree of Saturation %	Cell Pressure kPa	Back Pressure kPa
Initial	0.086	0.070	50.8	92.8	130.0	100.0
Final	0.087	0.071	58.8	99.1	130.0	100.0

Permeation Data

Time Increment	Elapsed Time	Q (ml)		Average Flow	Temperature	Corrected
(Days)	(Days)	In	Out	In/Out Ratio	(ml)	Correction	Conductivity, Ks (m/s)
1.29	1.29	2.84	2.68	1.060	2.76	0.95	3.40E-10
0.90	2.19	1.80	1.72	1.047	1.76	0.95	3.13E-10
1.69	3.88	2.74	2.70	1.015	2.72	0.95	2.57E-10
1.38	5.25	2.44	2.43	1.004	2.44	0.95	2.82E-10

Permeant: De-aired tap water

Hydraulic Gradient: 17.54

Comments

Specific gravity of soil was assumed to be 2.75

Remarks: Test Method: ASTM D5084 (Constant Head)

Technician: NS

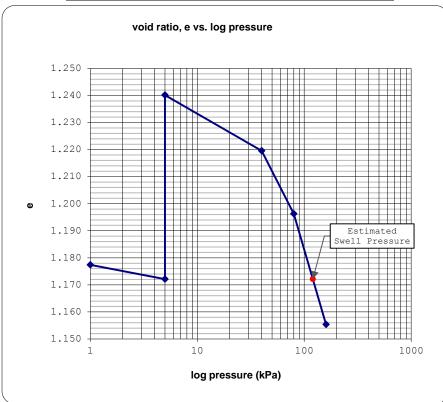
P. Bevil

ASTM D4546-14 TEST METHOD A

Client AECOM C/O Dyregrov Robinson Inc. Test Hole TH19-02 Test Start: 5-Sep-19
Project Jefferson East CST (Phase 2) Sample T19 Tested By: NM
Project No. WX11735 Depth 20 ft

Before Test After Test

Consolidation ring no.	(new) #4		Mass(samplewet+ring+tare)	360.87	g
Mass of ring	110.17	g	Mass of tare	114.46	g
Inside diameter of the ring	6.367	ст	Mass (wet soil + ring)	246.41	g
Height of the specimen, H_{o}	2.474	ст	Mass of wet sample	136.24	g
Area of the specimen	31.839	cm2	Mass (dry soil+ring+can)	322.27	g
Mass (specimen + ring)	246.23	g	Mass of dry specimen	97.64	g
Mass of wet sample	136.1	g	Final MC of specimen	39.5%	
Initial Moisture Content	39.3%		Specific gravity of Solids	2.7	
			Seating pressure	1	kPa


Visual Description of Soil

Clay (CH) - silty, trace sand, high plastic, moist,

dark greyish brown

Soil Properties

Mass of solids	97.64 <i>g</i>
Mass of water in specimen before test	38.42 g
Mass of water in specimen after test	38.60 g
Height of Solids	1.1358 cm
Height of water before test	1.2067 cm
Height of water after test	1.2123 cm
Change in height of specimen after test	0.0259 cm
Height of specimen after test	2.4481 cm
Void ratio before test	1.178
Void ratio after test	1.155
Degree of saturation before test	90.17%
Degree of saturation after test	92.38%
Dry Density before test	1.240 g/cm ³

|--|

Load No.	Pressure	Void Ratio
Seating	1	1.177
1	5	1.172
2	5	1.240
3	40	1.220
4	80	1.196
5	160	1.155

Final Results:

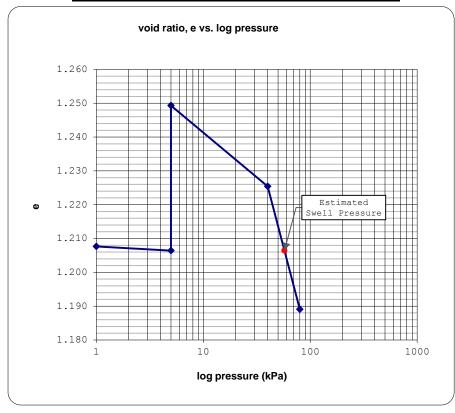
Swell (+) / Collpase (-) Strain Estimated Swell Pressure 3.1% Swell 120 kPa

ASTM D4546-14 TEST METHOD B

Client AECOM C/O Dyregrov Robinson Inc. Test Hole TH19-06 Test Start: 6-Sep-19
Project Jefferson East CST (Phase 2) Sample T19 Tested By: NM
Project No. WX11735 Depth 20 ft

Before Test After Test

#12	Mass(samplewet+ring+tare)	340.60 <i>g</i>
90.64 <i>g</i>	Mass of tare	114.74 <i>g</i>
6.494 cm	Mass (wet soil + ring)	225.86 g
2.324 cm	Mass of wet sample	135.22 g
33.122 cm2	2 Mass (dry soil+ring+can)	299.44 <i>g</i>
224.19 <i>g</i>	Mass of dry specimen	94.06 g
133.6 <i>g</i>	Final MC of specimen	43.8%
42.0%	Specific gravity of Solids	2.7
	Seating pressure	1 kP
	90.64 g 6.494 cm 2.324 cm 33.122 cm ² 224.19 g 133.6 g	90.64 g Mass of tare 6.494 cm Mass (wet soil + ring) 2.324 cm Mass of wet sample 33.122 cm2 Mass (dry soil+ring+can) 224.19 g Mass of dry specimen 133.6 g Final MC of specimen 42.0% Specific gravity of Solids


Visual Description of Soil

Clay (CH) - silty, trace sand, high plastic, moist,

dark greyish brown

Soil Properties

Mass of solids	94.06 g
Mass of water in specimen before test	39.49 g
Mass of water in specimen after test	41.16 g
Height of Solids	1.0518 cm
Height of water before test	1.1923 cm
Height of water after test	1.2427 cm
Change in height of specimen after test	0.0216 cm
Height of specimen after test	2.3024 cm
Void ratio before test	1.210
Void ratio after test	1.189
Degree of saturation before test	93.72%
Degree of saturation after test	99.37%
Dry Density before test	1.222 g/cm ₃

TABLE 1:	Test	Summary
----------	------	----------------

Load No.	Pressure	Void Ratio
Seating	1	1.208
1	5	1.206
2	5	1.249
3	40	1.225
4	80	1.189

Final Results:

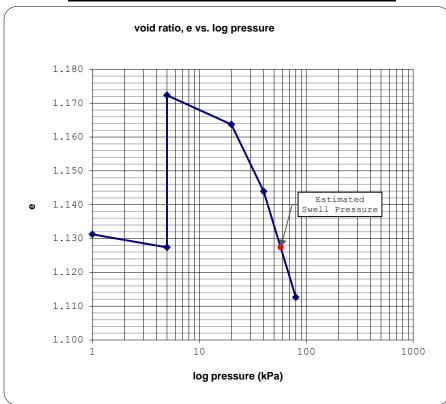
Swell (+) / Collpase (-) Strain Estimated Swell Pressure 1.9% Swell 57 kPa

ASTM D4546-14 TEST METHOD B

ClientAECOM C/O Dyregrov Robinson Inc.Test HoleTH19-11Test Start:13-Sep-19ProjectJefferson East CST (Phase 2)SampleT101Tested By:NMProject No. WX11735Depth15 ft

Before Test After Test

Consolidation ring no.	#12	Mass(samplewet+ring+tare)	341.47 g	7
Mass of ring	90.64 g	Mass of tare	114.74 g	9
Inside diameter of the ring	6.494 cm	Mass (wet soil + ring)	226.73 g	9
Height of the specimen, Ho	2.386 cm	Mass of wet sample	136.09 g	9
Area of the specimen	33.122 cm2	Mass (dry soil+ring+can)	305.35 g	9
Mass (specimen + ring)	224.85 <i>g</i>	Mass of dry specimen	99.97 g	9
Mass of wet sample	134.2 <i>g</i>	Final MC of specimen	36.1%	
Initial Moisture Content	34.3%	Specific gravity of Solids	2.7	
		Seating pressure	1 k	ďΡ


Visual Description of Soil

Clay (CH) - silty, trace sand, high plastic, moist,

dark greyish brown

Soil Properties

Mass of solids	99.97 g
Mass of water in specimen before test	34.24 g
Mass of water in specimen after test	36.12 g
Height of Solids	1.1179 cm
Height of water before test	1.0338 cm
Height of water after test	1.0905 cm
Change in height of specimen after test	0.0244 cm
Height of specimen after test	2.3616 cm
Void ratio before test	1.134
Void ratio after test	1.113
Degree of sat	81.52%
Degree of saturation after test	87.68%
Dry Density before test	1.265 g/cm ₃

TABLE 1: Test Summary			
Load No.	Pressure	Void Ratio	
Seating	1	1.131	
1	5	1.127	
2	5	1.172	
3	20	1.164	
4	40	1.144	
5	80	1.113	

Final Results:

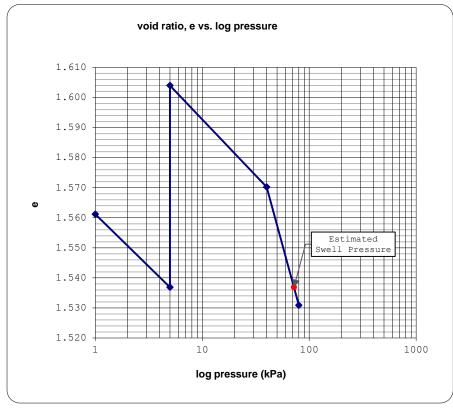
Swell (+) / Collpase (-) Strain Estimated Swell Pressure 2.1% Swell 58 kPa

ASTM D4546-14 TEST METHOD A

ClientAECOM C/O Dyregrov Robinson Inc.Test HoleTH19-14Test Start:13-Sep-19ProjectJefferson East CST (Phase 2)SampleT130Tested By:NMProject No. WX11735Depth20 ft

Before Test After Test

Consolidation ring no.	(new) #4	Mass(samplewet+ring+tare)	353.94 g
Mass of ring	110.17 <i>g</i>	Mass of tare	114.23 <i>g</i>
Inside diameter of the ring	6.366 cm	m Mass (wet soil + ring)	239.71 g
Height of the specimen, Ho	2.449 cm	m Mass of wet sample	129.54 g
Area of the specimen	31.829 cm	m2 Mass (dry soil+ring+can)	306.54 g
Mass (specimen + ring)	238.47 g	Mass of dry specimen	82.14 g
Mass of wet sample	128.3 <i>g</i>	Final MC of specimen	57.7%
Initial Moisture Content	56.2%	Specific gravity of Solids	2.7
		Seating pressure	1 kF


Visual Description of Soil

Clay (CH) - silty, trace sand, high plastic, moist,

dark greyish brown

Soil Properties

Mass of solids	82.14 g
Mass of water in specimen before test	46.16 <i>g</i>
Mass of water in specimen after test	47.40 g
Height of Solids	0.9558 cm
Height of water before test	1.4502 cm
Height of water after test	1.4892 cm
Change in height of specimen after test	cm
Height of specimen after test	2.4490 cm
Void ratio before test	1.562
Void ratio after test	1.562
Degree of saturation before test	97.12%
Degree of saturation after test	99.73%
Dry Density before test	1.054 g/cm ³

TABLE 1:	Test Summary
----------	---------------------

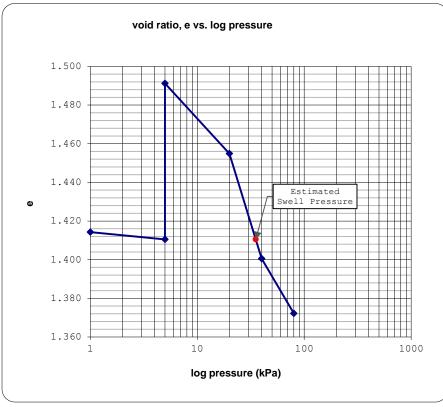
Load No.	Pressure	Void Ratio
Seating	1	1.561
1	5	1.537
2	5	1.604
3	40	1.570
4	80	1.531

Final Results:

Swell (+) / Collpase (-) Strain Estimated Swell Pressure 2.6% Swell 72 kPa

ASTM D4546-14 TEST METHOD B

Client AECOM C/O Dyregrov Robinson Inc. Test Hole TH19-16 Test Start: 13-Sep-19
Project Jefferson East CST (Phase 2) Sample T147 Tested By: NM
Project No. WX11735 Depth 10 ft


Before Test <u>After Test</u> <u>Soil Properties</u>

Consolidation ring no.	#12	Mass(samplewet+ring+tare)	353.80 <i>g</i>
Mass of ring	110.19 g	Mass of tare	114.30 <i>g</i>
Inside diameter of the ring	6.367 cm	Mass (wet soil + ring)	239.50 <i>g</i>
Height of the specimen, Ho	2.438 cm	Mass of wet sample	129.31 <i>g</i>
Area of the specimen	31.839 cm.	2 Mass (dry soil+ring+can)	311.27 <i>g</i>
Mass (specimen + ring)	239.18 <i>g</i>	Mass of dry specimen	86.78 g
Mass of wet sample	129.0 <i>g</i>	Final MC of specimen	49.0%
Initial Moisture Content	48.6%	Specific gravity of Solids	2.7
		Seating pressure	1 kP

Visual Description of Soil

Clay (CH) - silty, trace sand, high plastic, moist, dark greyish brown

86.78 g
42.21 g
42.53 g
1.0095 cm
1.3257 cm
1.3358 cm
0.0433 cm
2.3947 cm
1.415
1.372
92.80%
96.43%
1.118 g/cm ₃

,		
Load No.	Pressure	Void Ratio
Seating	1	1.414
1	5	1.410
2	5	1.491
3	20	1.455
4	40	1.401
5	80	1.372

TABLE 1: Test Summary

Final Results:

Swell (+) / Collpase (-) Strain Estimated Swell Pressure 3.4% Swell 35 kPa

AECOM Canada Ltd. ATTN: RYAN HARRAS 99 Commerce Drive Winnipeg MB R3P 0Y7 Date Received: 29-JUL-19

Report Date: 08-AUG-19 14:00 (MT)

Version: FINAL

Client Phone: 204-928-7444

Certificate of Analysis

Lab Work Order #: L2318801 Project P.O. #: 60599385 Job Reference: 60599385

C of C Numbers: Legal Site Desc:

Hua Wo

Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2318801 CONTD.... PAGE 2 of 3 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2318801-1 TH19-01; G3 @ 15'							
Sampled By: CLIENT on 24-JUL-19							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	31.8		0.10	%	01-AUG-19	02-AUG-19	R4737126
Resistivity	561		1.0	ohm*cm		08-AUG-19	
Sulphate	927		20	mg/kg	02-AUG-19	06-AUG-19	R4742614
pH (1:2 soil:water)	7.96		0.10	pН	07-AUG-19	07-AUG-19	R4740588
Conductivity	1.78		0.0040	mS/cm		08-AUG-19	R4743353
L2318801-2 TH19-05; G43 @ 20'							
Sampled By: CLIENT on 24-JUL-19							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	31.7		0.10	%	01-AUG-19	02-AUG-19	R4737126
Resistivity	1400		1.0	ohm*cm		08-AUG-19	
Sulphate	511		20	mg/kg	02-AUG-19	06-AUG-19	R4742614
pH (1:2 soil:water)	8.12		0.10	pН	07-AUG-19	07-AUG-19	R4740588
Conductivity	0.713		0.0040	mS/cm		08-AUG-19	R4743353
L2318801-3 TH19-10; G91 @ 5'							
Sampled By: CLIENT on 24-JUL-19							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	16.8		0.10	%	01-AUG-19	02-AUG-19	R4737126
Resistivity	4950		1.0	ohm*cm		08-AUG-19	
Sulphate	46		20	mg/kg	02-AUG-19	06-AUG-19	R4742614
pH (1:2 soil:water)	9.13		0.10	pН	07-AUG-19	07-AUG-19	R4740588
Conductivity	0.202		0.0040	mS/cm		08-AUG-19	R4743353
L2318801-4 TH19-13; G120 @ 10'							
Sampled By: CLIENT on 24-JUL-19							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	34.9		0.10	%	01-AUG-19	02-AUG-19	R4737126
Resistivity	3580		1.0	ohm*cm		08-AUG-19	
Sulphate	30		20	mg/kg	02-AUG-19	06-AUG-19	R4742614
pH (1:2 soil:water)	8.18		0.10	pН	07-AUG-19	07-AUG-19	R4740588
Conductivity	0.279		0.0040	mS/cm		08-AUG-19	R4743353
L2318801-5 TH19-15; G142 @ 20'							
Sampled By: CLIENT on 24-JUL-19							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	35.0		0.10	%	01-AUG-19	02-AUG-19	R4737126
Resistivity	940		1.0	ohm*cm		08-AUG-19	
Sulphate	890		20	mg/kg	02-AUG-19	06-AUG-19	R4742614
pH (1:2 soil:water)	8.28		0.10	pН	07-AUG-19	07-AUG-19	R4740588
Conductivity	1.06		0.0040	mS/cm		08-AUG-19	R4743353

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

60599385 L2318801 CONTD....

Reference Information

PAGE 3 of 3 Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
EC-WT	Soil	Conductivity (EC)	MOEE E3138

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MOISTURE-WT Soil % Moisture CCME PHC in Soil - Tier 1 (mod)

PH-1:2-SK Soil pH (1:2 Soil:Water Extraction) AB Ag (1988) p.7

1 part dry soil and 2 parts de-ionized water (by volume) is mixed. The slurry is allowed to stand with occasional stirring for 30 - 60 minutes. After

equilibration, pH of the slurry is measured using a pH meter.

RESISTIVITY-CALC-WT Soil Resistivity Calculation APHA 2510 B

Resistivity are calculated based on the conductivity using APHA 2510B where Conductivity is the inverse of Resistivity.

RESISTIVITY-CALC-WT Soil Resistivity Calculation MOECC E3138

Resistivity are calculated based on the conductivity using APHA 2510B where Conductivity is the inverse of Resistivity.

SO4-WT Soil Sulphate EPA 300.0

5 grams of soil is mixed with 50 mL of distilled water for a minimum of 30 minutes. The extract is filtered and analyzed by ion chromatography.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laborate	ory Location Control of the Control
SK ALS ENV	(IRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
WT ALS EN	IRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

Workorder: L2318801 Report Date: 08-AUG-19 Page 1 of 2

Client: AECOM Canada Ltd.

99 Commerce Drive

Winnipeg MB R3P 0Y7

Contact: RYAN HARRAS

Analyzed	Limit	RPD	Units	Qualifier	Result	Reference	Matrix		Test
							Soil		EC-WT
								743353	Batch R4
0 08-AUG-19	70-130		%		86.4	WT SAR3		IRM	WG3126300-2 Conductivity
0 08-AUG-19	90-110		%		97.5			LCS	WG3126843-1 Conductivity
08-AUG-19	0.004		mS/cm		<0.0040			МВ	WG3126300-1 Conductivity
							Soil		MOISTURE-WT
								737126 LCS	WG3122283-2
0 02-AUG-19	90-110		%		100.8				% Moisture
02-AUG-19	0.1		%		<0.10			MB	WG3122283-1 % Moisture
							Soil		PH-1:2-SK
3.25 07-AUG-19	7.65-8.25		рН		7.90	SAL814		740588 IRM er)	Batch R4 WG3121916-2 pH (1:2 soil:wate
7.06 07-AUG-19	6.66-7.06		рН		6.88			LCS er)	WG3121916-3 pH (1:2 soil:wate
							Soil		SO4-WT
						AN-CRM-WT		742614 CRM	Batch R4 WG3123166-4
0 06-AUG-19	60-140		%		96.2	, J			Sulphate
0 06-AUG-19	80-120		%		103.3			LCS	WG3123166-2 Sulphate
06-AUG-19	20		mg/kg		<20			MB	WG3123166-1 Sulphate
	80-120		%		96.2	AN-CRM-WT		CRM	WG3123166-4 Sulphate WG3123166-2 Sulphate WG3123166-1

Quality Control Report

Workorder: L2318801 Report Date: 08-AUG-19 Page 2 of 2

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.