APPENDIX 'A'

GEOTECHNICAL INVESTIGATION REPORT

Stantec Consulting Ltd. 199 Henlow Bay Winnipeg MB R3Y 1G4

January 27, 2025

Project/File: 123317465

Aaron Fleming Dillon Consulting Limited 300-100 Innovation Drive Winnipeg, Manitoba R3T 6G2

Good day Aaron,

Reference: 25-R-06 2025 Local Street Renewal Program - Geotechnical Investigation

Stantec Consulting Ltd. (Stantec) was retained to undertake a factual geotechnical investigation for the 25-R-06 2025 Local Street Renewal Program in Winnipeg, Manitoba. Use of this report is subject to the Statement of General Conditions provided in Appendix A.

The coring and drilling program was conducted from December 18, 2024, to January 15, 2025. A total of 44 locations were investigated with pavement coring and/or subsurface geotechnical drilling. Pavement coring was performed by Stantec's geotechnical field technologist, and drilling services were provided by Maple Leaf Drilling Ltd. under the supervision of Stantec's technologist. A Borehole Location Plan is provided in Appendix B.

1. Pavement Coring

A total of 44 pavement core samples were recovered to determine the in-place pavement thickness. In addition, 16 concrete core samples were tested to assess the in-place compressive strength of the concrete. Three (3) concrete compressive strength tests were cancelled due to the absence of a concrete slab on Paterson Street. The existing pavement thicknesses are summarized in Table 1 below, and the core photographs are provided in Appendix C.

2. Geotechnical Drilling

A total of 3 boreholes were investigated by geotechnical drilling. The boreholes were terminated at a depth of 2.0 m below the pavement, which resulted in borehole depths of 2.2 m. Soil samples were obtained directly from the auger flights at depths of 0.6 m, 0.9 m, 1.2 m, 1.6 m, and 2.0 m from the bottom of the existing pavement. The testholes were examined for evidence of sloughing and groundwater seepage upon completion of drilling.

The borehole records are provided in Appendix D. The soil classification used in the borehole records is as per ASTM D2487 – *Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).*

3. Existing Pavement Thicknesses

Borehole No.	Street	Asphalt Thickness (mm)	Concrete Thickness (mm)	Total Pavement Thickness (mm)
120	Cromwell St	150	0	150
121	Cromwell St	140	0	140
122	Cromwell St	160	0	160
123	Desjardins Dr	0	150	150
124	Desjardins Dr	0	140	140
125	Lomond Blvd	0	160	160
126	Lomond Blvd	60	0	60
127	Lomond Blvd	0	150	150
128	Lomond Blvd	0	155	155
129	Lomond Blvd	0	160	160
130	Lomond Blvd	0	155	155
131	Lomond Blvd	90	0	90
132	Lomond Blvd	0	160	160
133	Surfside Cr	0	165	165
134	Surfside Cr	0	150	150
135	Surfside Cr	0	150	150
136	Surfside Cr	0	150	150
137	Surfside Cr	0	150	150
138	Surfside Cr	0	145	145
150	Surfside Cr	0	155	155
139	Paterson St/E End	55	0	55
140	Paterson St/E End	100	0	100
141	Paterson St/E End	70	0	70
151	Paterson St/E End	100	0	100

The existing pavement thicknesses are provided in the following table:

Reference: 25-R-06 2025 Local Street Renewal Program - Geotechnical Investigation

Borehole No.	Street	Asphalt Thickness (mm)	Concrete Thickness (mm)	Total Pavement Thickness (mm)
142	Huppe Bay	0	170	170
143	Huppe Bay	0	170	170
144	Huppe Bay	0	145	145
145	Huppe Bay	0	130	130
146	Jubinville Bay	0	150	150
147	Jubinville Bay	0	145	145
148	Jubinville Bay	0	170	170
149	Jubinville Bay	0	145	145
152	Westmount Bay	0	150	150
153	Westmount Bay	0	125	125
154	Westmount Bay	0	150	150
155	Westmount Bay	0	155	155
156	Westmount Bay	0	145	145
157	Westmount Bay	0	140	140
158	Willow Point Rd	5	150	155
159	Willow Point Rd	0	145	145
160	Willow Point Rd	0	165	165
161	Willow Point Rd	0	165	165
162	Willow Point Rd	0	165	165
163	Willow Point Rd	0	160	160

4. Laboratory Testing

Laboratory determination of moisture content (ASTM D2216) was conducted on all soil samples. The results are provided on the attached borehole records.

In addition, the following laboratory tests were conducted on select samples:

- ASTM D4318 Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- ASTM D7928 Particle-Size Distribution of Fine-Grained Soils Using The Sedimentation Analysis
- ASTM D698 Laboratory Compaction Characteristics of Soil Using Standard Effort
- ASTM D1883 California Bearing Ratio (CBR) of Laboratory-Compacted Soils
- CSA A23.2-14C Obtaining and testing drilled cores for compressive strength testing

Reference: 25-R-06 2025 Local Street Renewal Program - Geotechnical Investigation

The CBR tests were performed on test specimens compacted to 95% of the maximum dry density under soaked conditions.

Prior to compressive strength testing, the concrete core samples were conditioned in water at room temperature for 48 hours.

The laboratory test reports are provided in Appendix E.

5. Closure

Please contact the undersigned if you have any questions regarding this report.

Regards,

Stantec Consulting Ltd.

HICE

Guillaume Beauce P.Eng. Senior Associate Geotechnical Engineer, Materials Testing Services Phone: 204-928-7618 Mobile: 204-898-8290 guillaume.beauce@stantec.com

hay

Jason Thompson C.E.T. Principal – Manager, Materials Testing Services Manitoba & Northwestern Ontario Operations Phone: 204-928-4004 Mobile: 204-898-8290 jason.thompson@stantec.com

Attachment: Appendix A – Statement of General Conditions Appendix B – Borehole Location Plan Appendix C – Core Photographs Appendix D – Borehole Records Appendix E – Laboratory Test Reports

- Atterberg Limits Test Reports
- Particle-Size Analysis Reports
- Standard Proctor Test Reports
- CBR Test Reports
- Concrete Compressive Strength Test Results

Appendix A

Statement of General Conditions

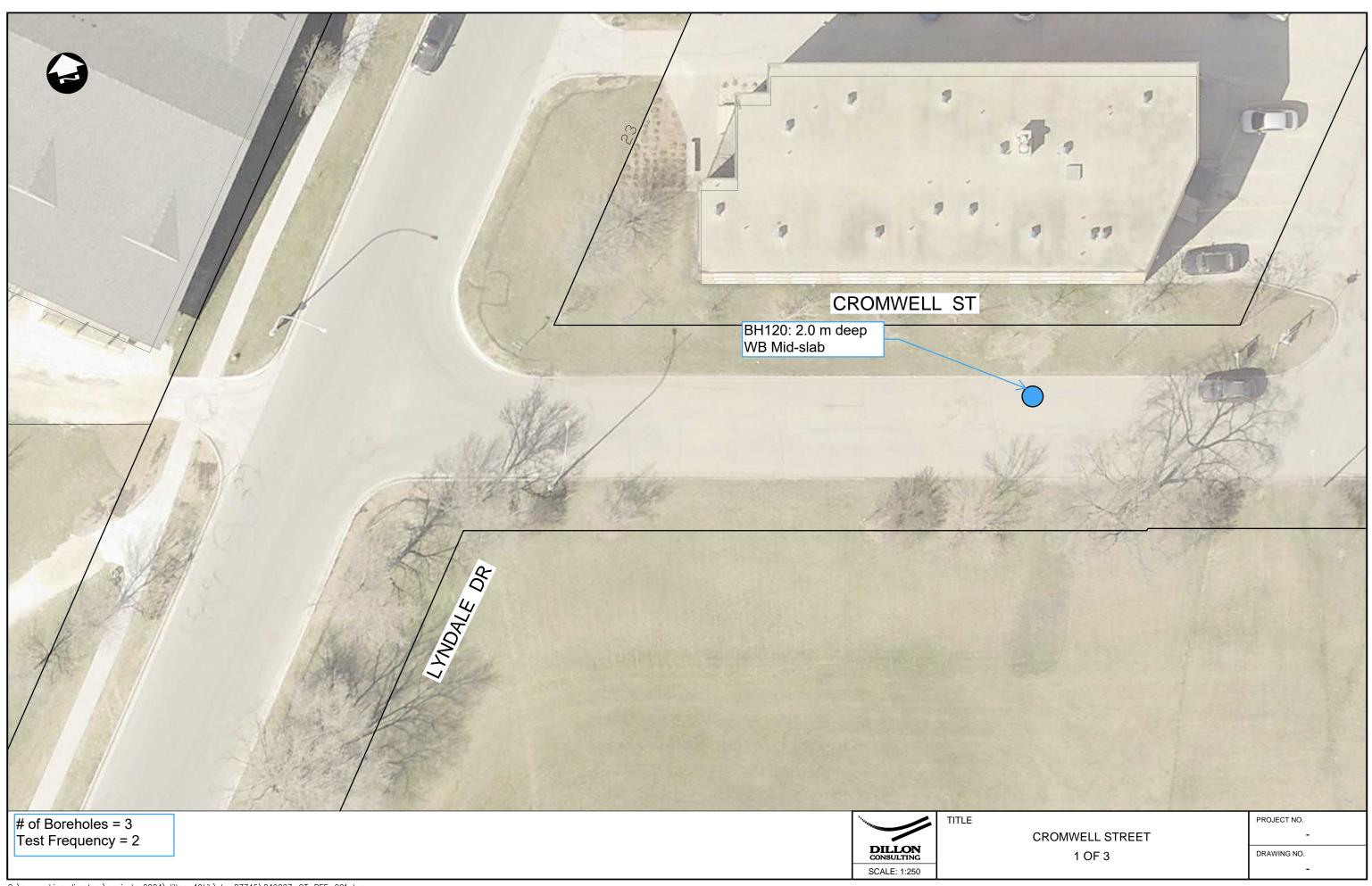
STATEMENT OF GENERAL CONDITIONS

USE OF THIS REPORT: This report has been prepared for the sole benefit of the Client or its agent and may not be used by any third party without the express written consent of Stantec and the Client. Any use which a third party makes of this report is the responsibility of such third party.

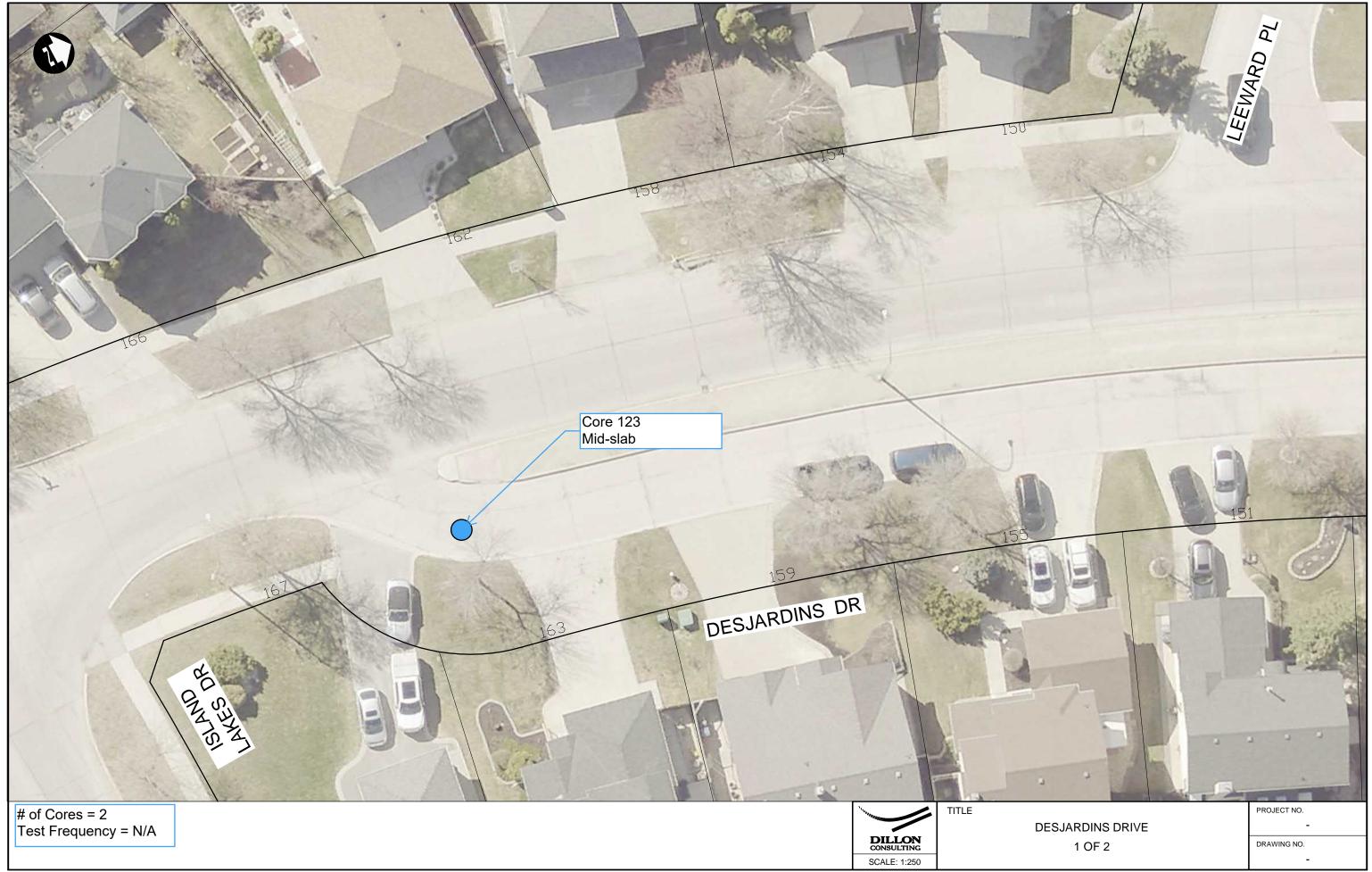
BASIS OF THE REPORT: The information, opinions, and/or recommendations made in this report are in accordance with Stantec's present understanding of the site-specific project as described by the Client. The applicability of these is restricted to the site conditions encountered at the time of the investigation or study. If the proposed site-specific project differs or is modified from what is described in this report or if the site conditions are altered, this report is no longer valid unless Stantec is requested by the Client to review and revise the report to reflect the differing or modified project specifics and/or the altered site conditions.

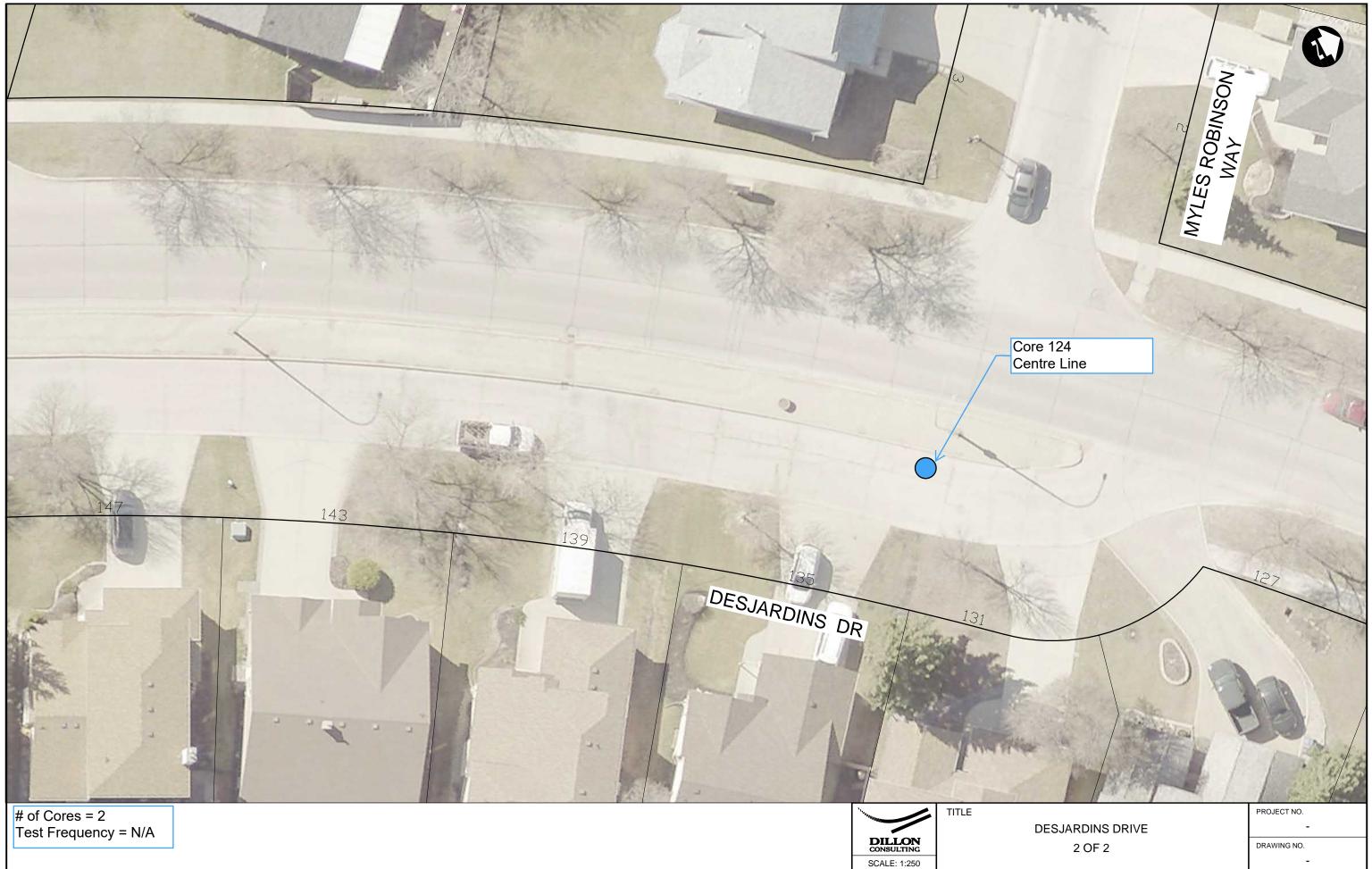
STANDARD OF CARE: Preparation of this report, and all associated work, was carried out in accordance with the normally accepted standard of care in the state or province of execution for the specific professional service provided to the Client. No other warranty is made.

INTERPRETATION OF SITE CONDITIONS: Soil, rock, or other material descriptions, and statements regarding their condition, made in this report are based on site conditions encountered by Stantec at the time of the work and at the specific testing and/or sampling locations. Classifications and statements of condition have been made in accordance with normally accepted practices which are judgmental in nature; no specific description should be considered exact, but rather reflective of the anticipated material behavior. Extrapolation of in situ conditions can only be made to some limited extent beyond the sampling or test points. The extent depends on variability of the soil, rock, and groundwater conditions as influenced by geological processes, construction activity, and site use.

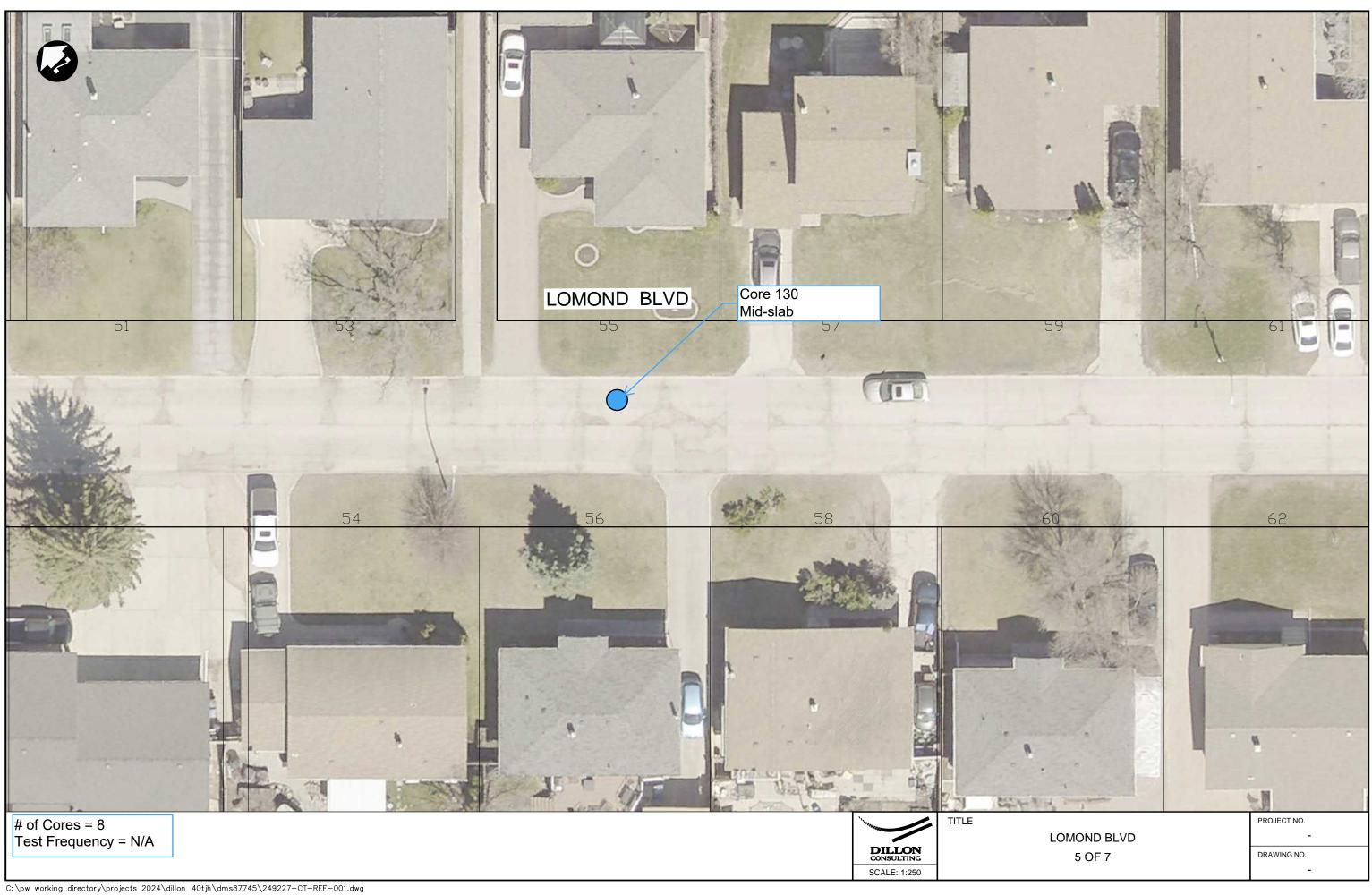

VARYING OR UNEXPECTED CONDITIONS: Should any site or subsurface conditions be encountered that are different from those described in this report or encountered at the test locations, Stantec must be notified immediately to assess if the varying or unexpected conditions are substantial and if reassessments of the report conclusions or recommendations are required. Stantec will not be responsible to any party for damages incurred as a result of failing to notify Stantec that differing site or sub-surface conditions are present upon becoming aware of such conditions.

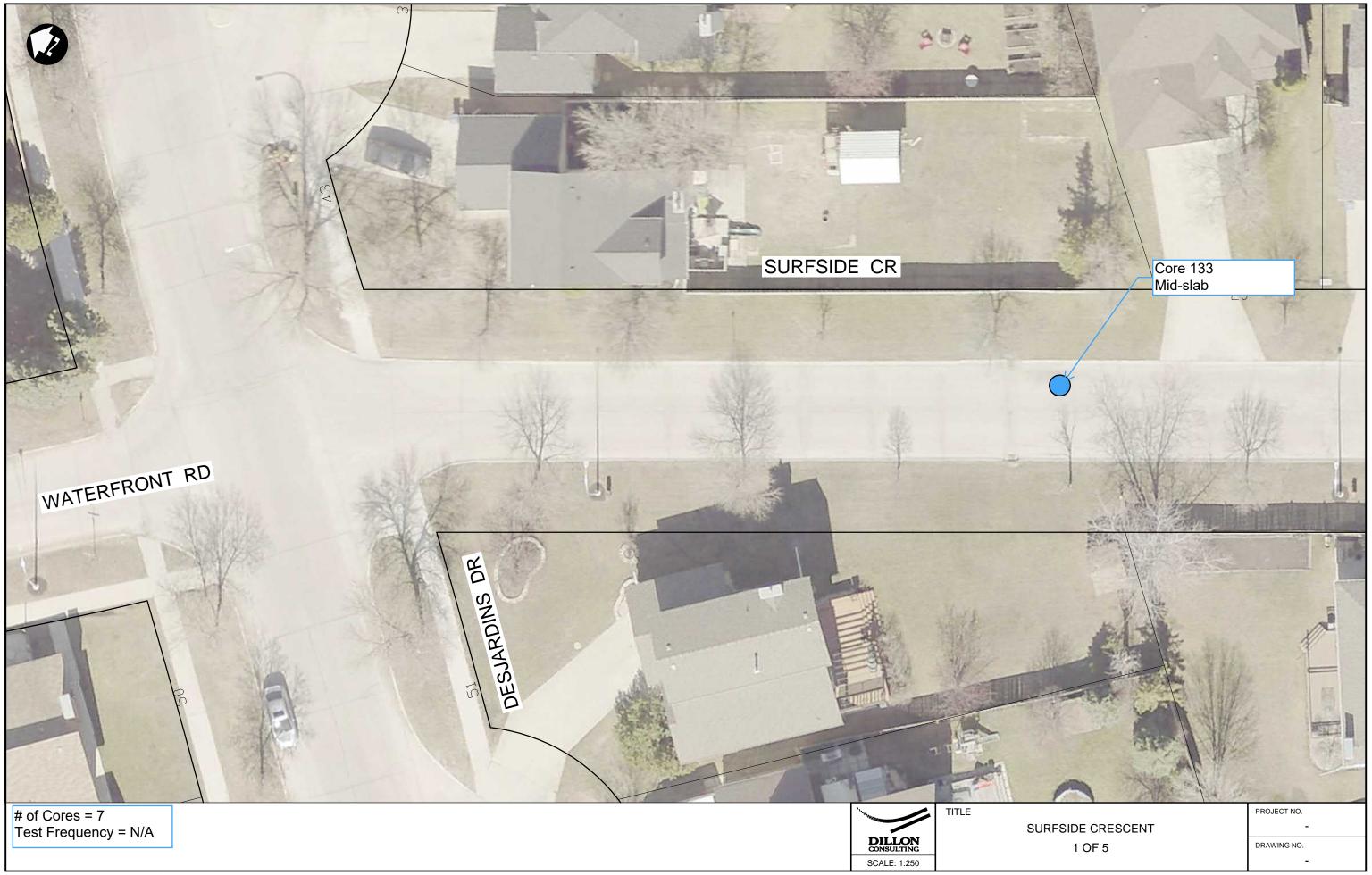
PLANNING, DESIGN, OR CONSTRUCTION: Development or design plans and specifications should be reviewed by Stantec, sufficiently ahead of initiating the next project stage (property acquisition, tender, construction, etc.), to confirm that this report completely addresses the elaborated project specifics and that the contents of this report have been properly interpreted. Specialty quality assurance services (field observations and testing) during construction are a necessary part of the evaluation of sub-subsurface conditions and site preparation works. Site work relating to the recommendations included in this report should only be carried out in the presence of a qualified geotechnical engineer; Stantec cannot be responsible for site work carried out without being present.

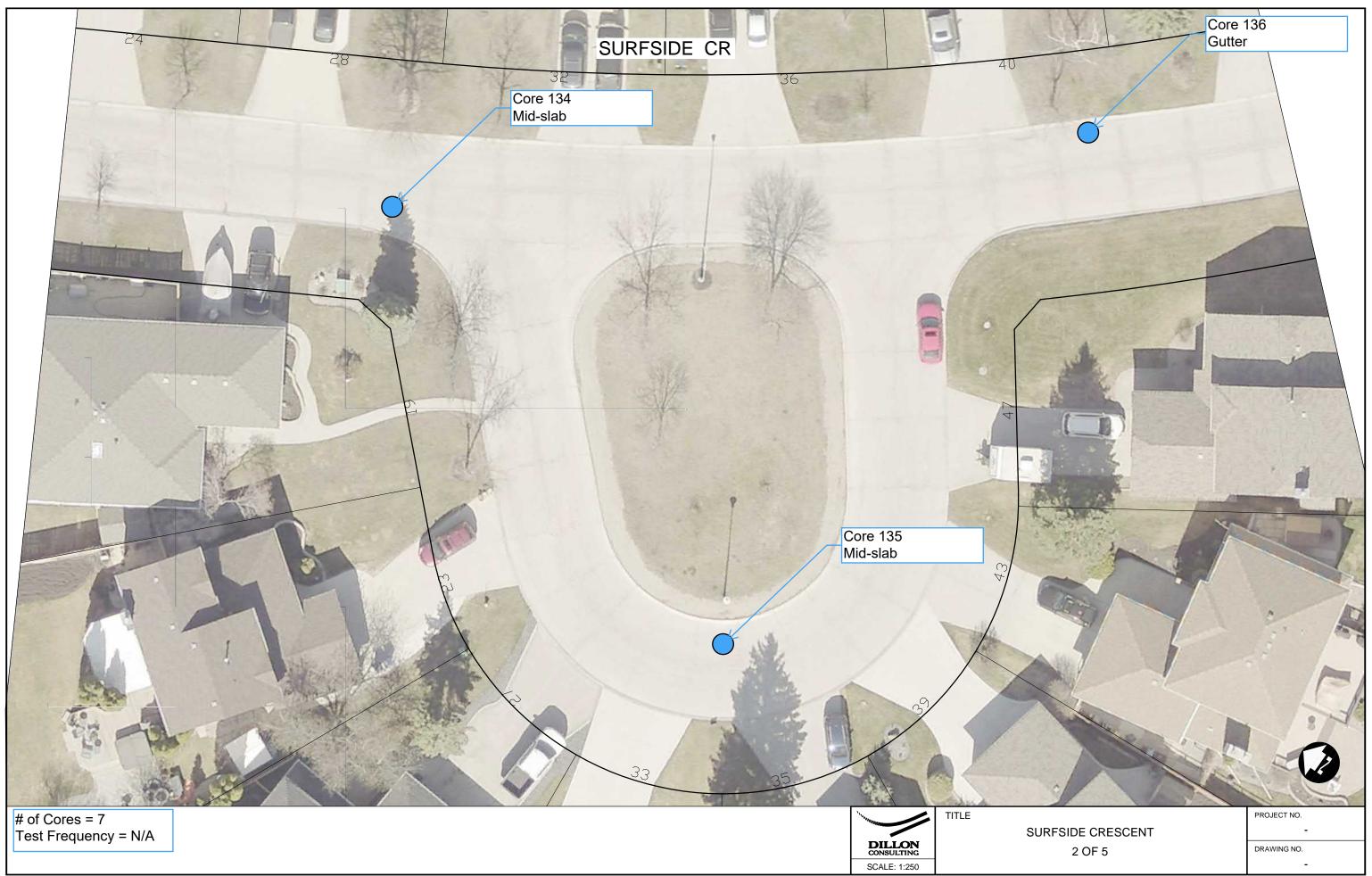

Appendix B


Borehole Location Plan

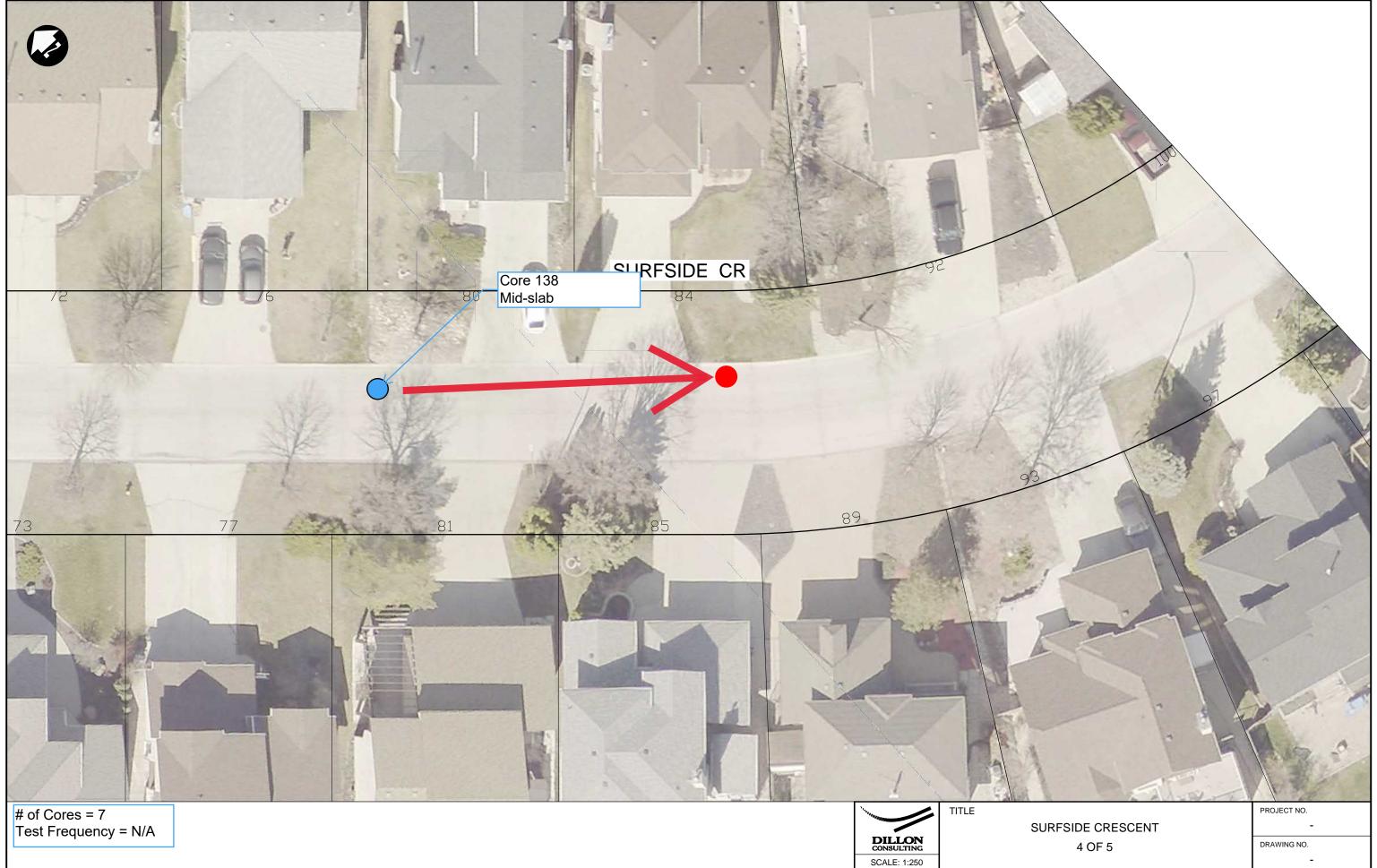


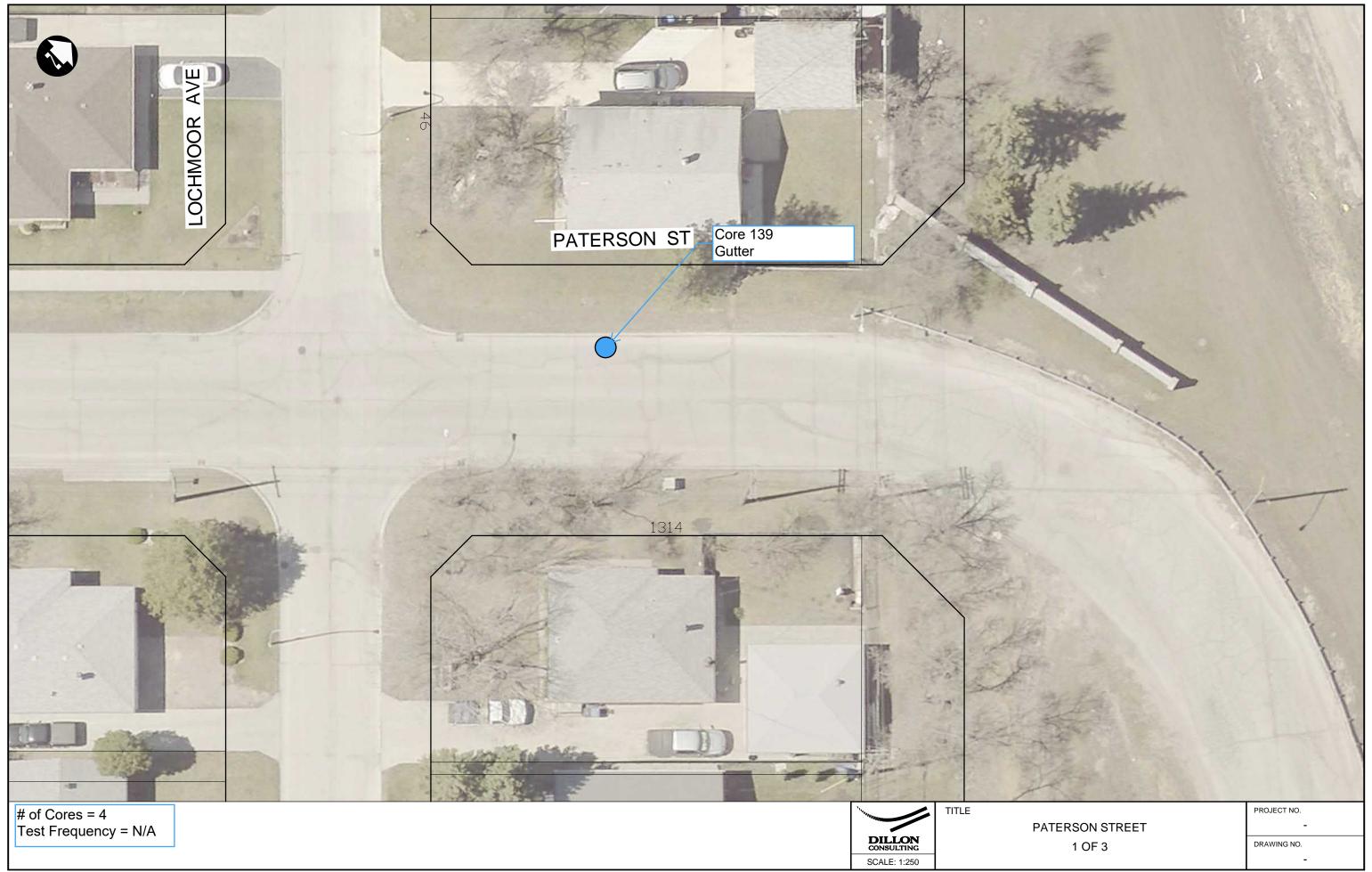


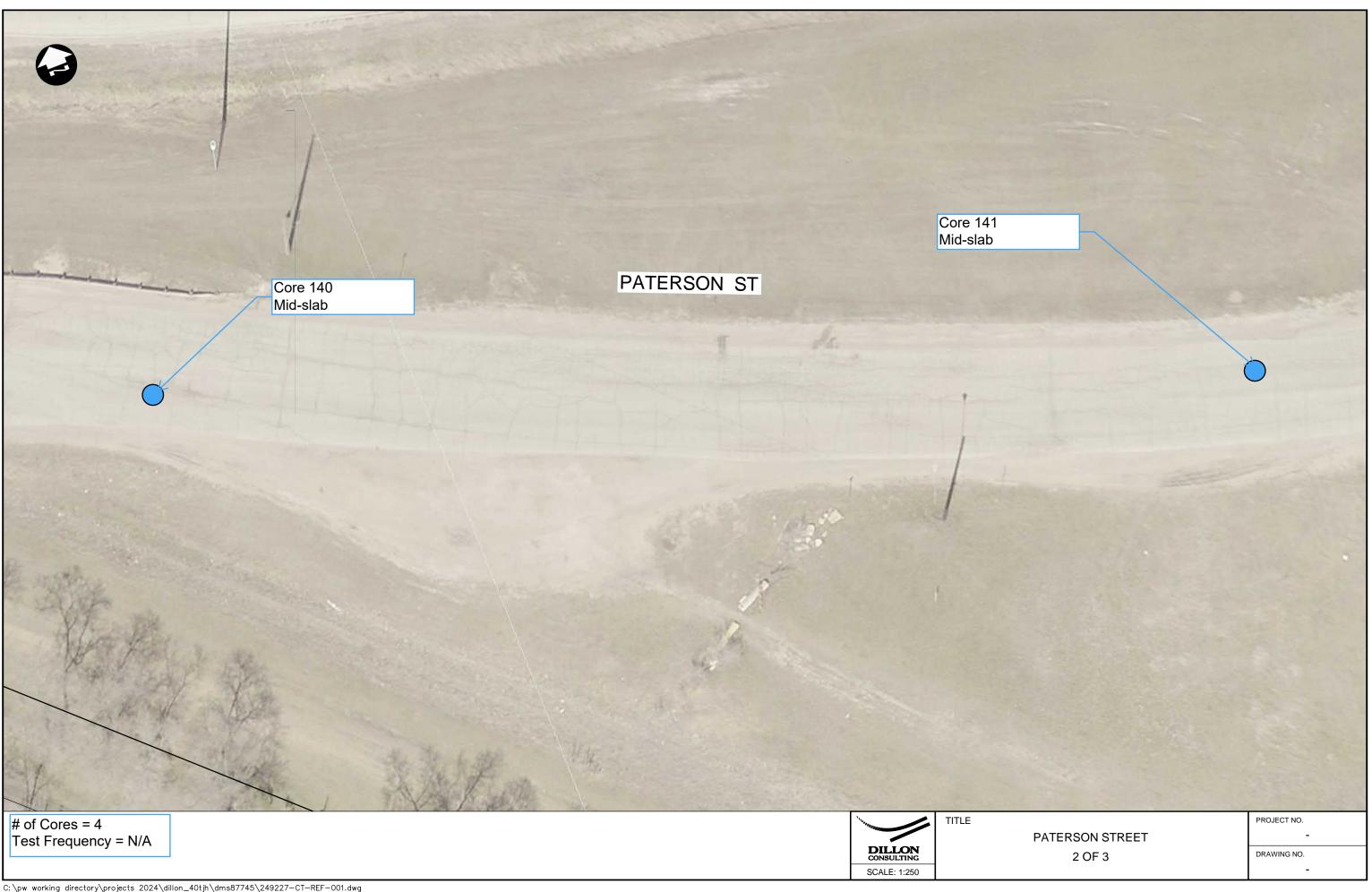




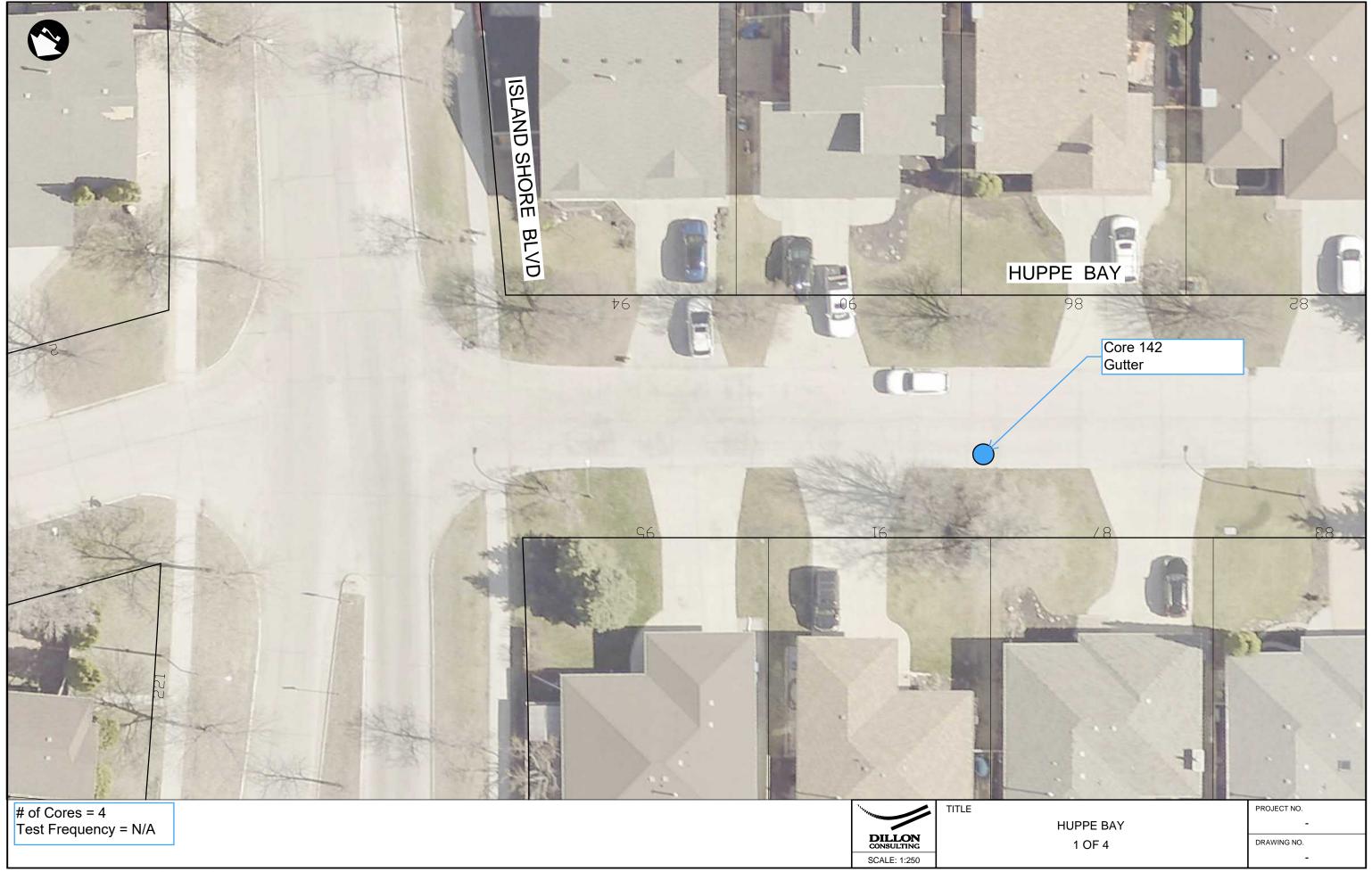
C:\pw working directory\projects 2024\dillon_40tjh\dms87745\249227-CT-REF-001.dwg

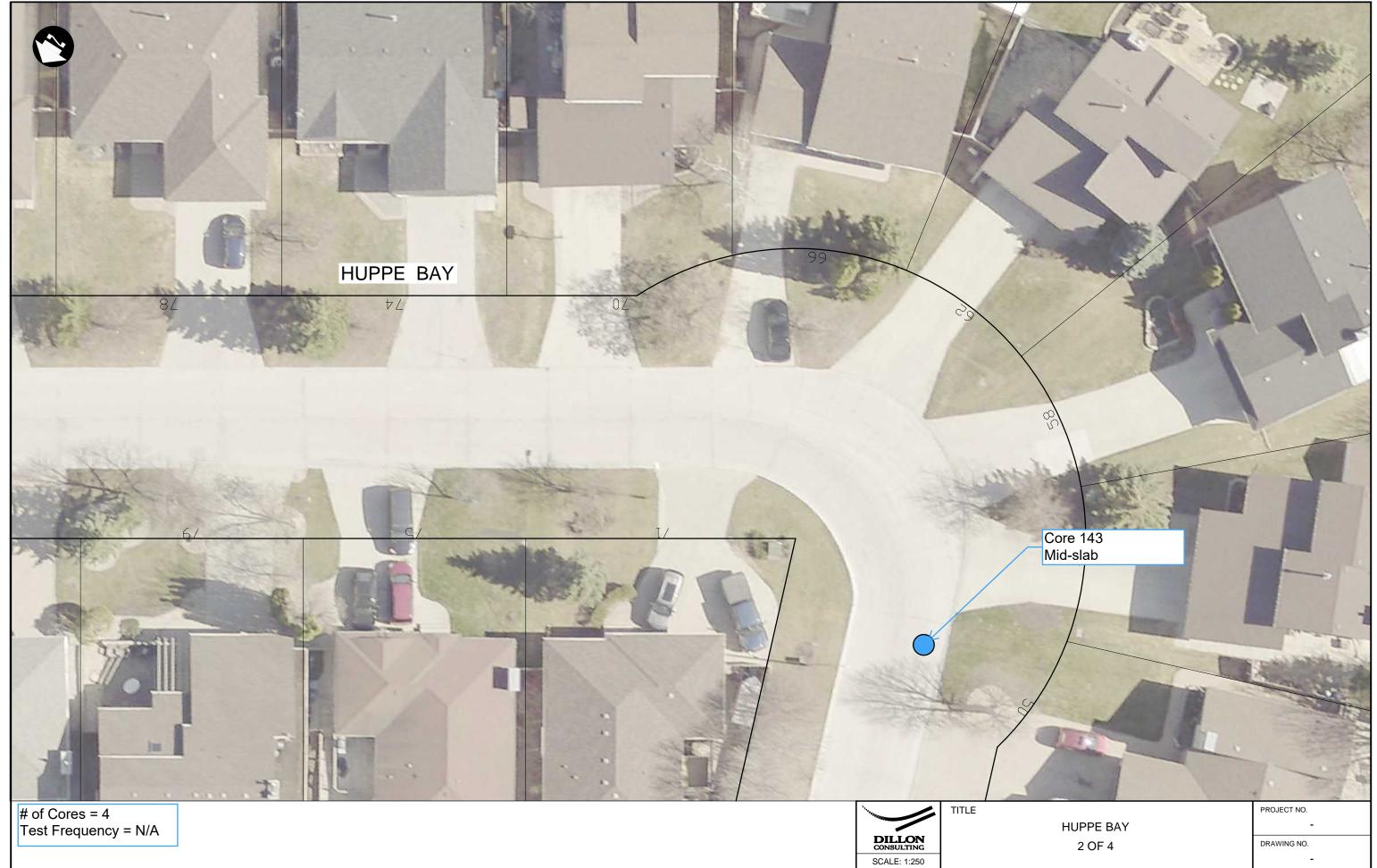


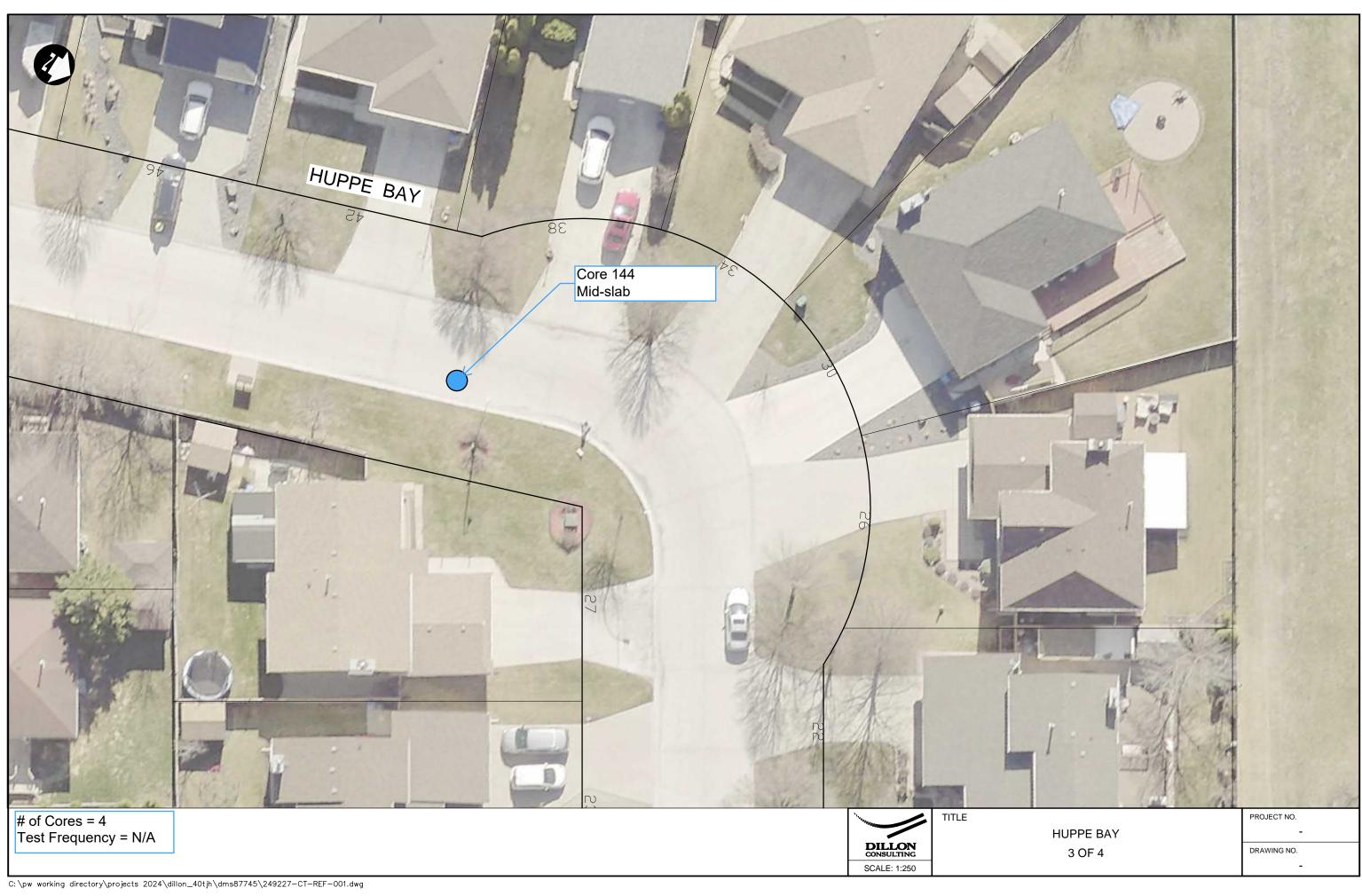


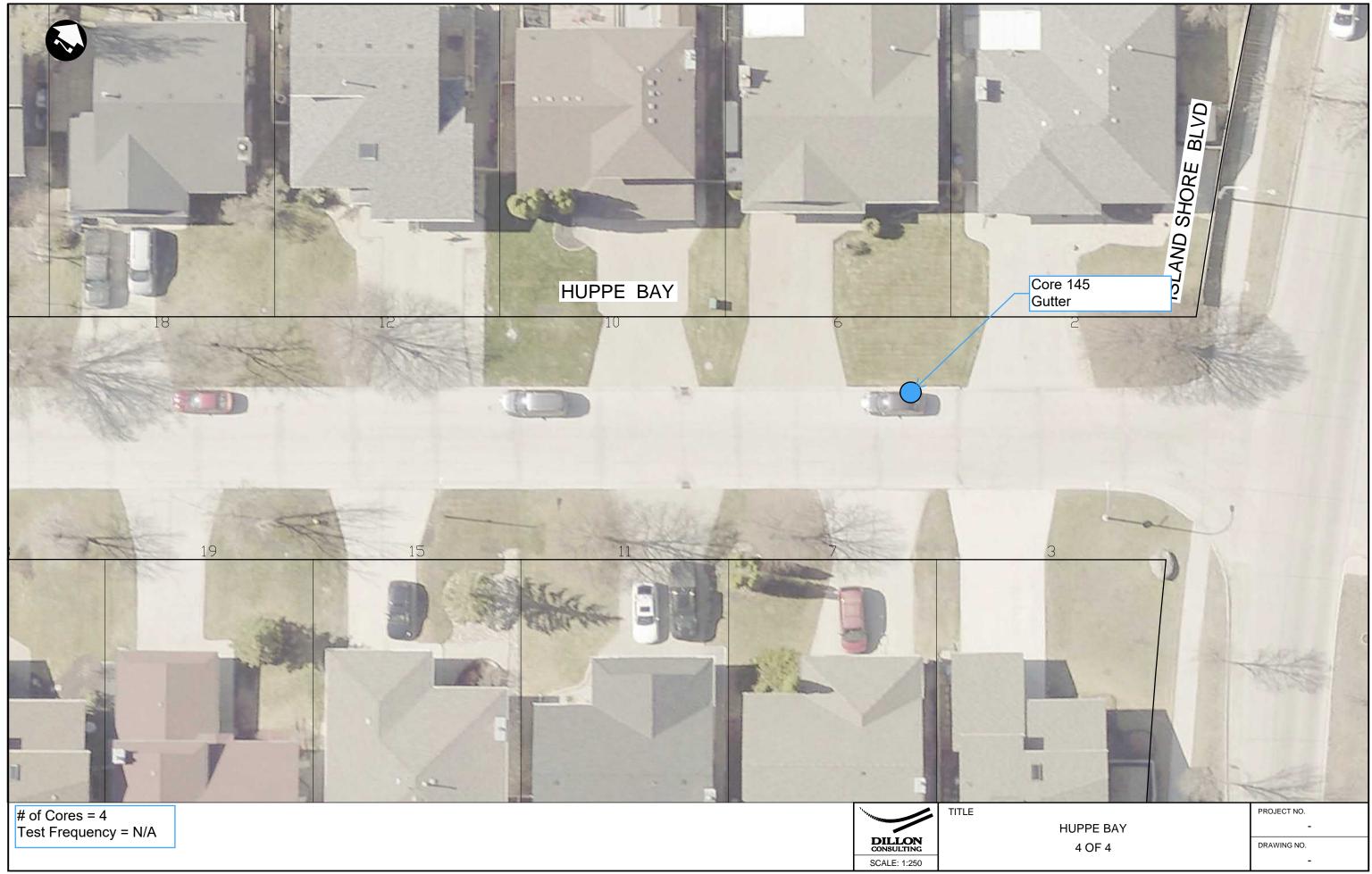


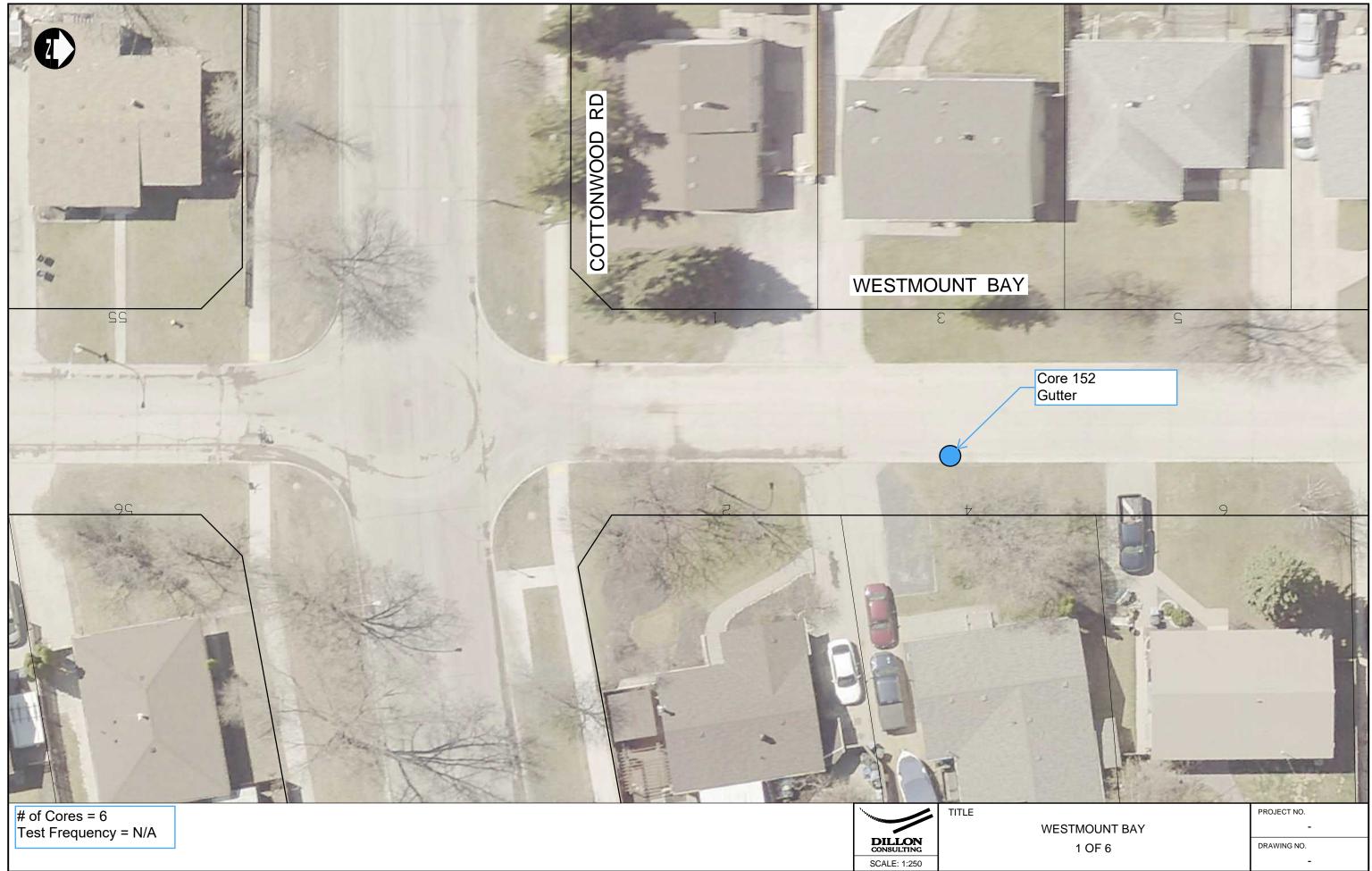
C:\pw working directory\projects 2024\dillon_40tjh\dms87745\249227-CT-REF-001.dwg



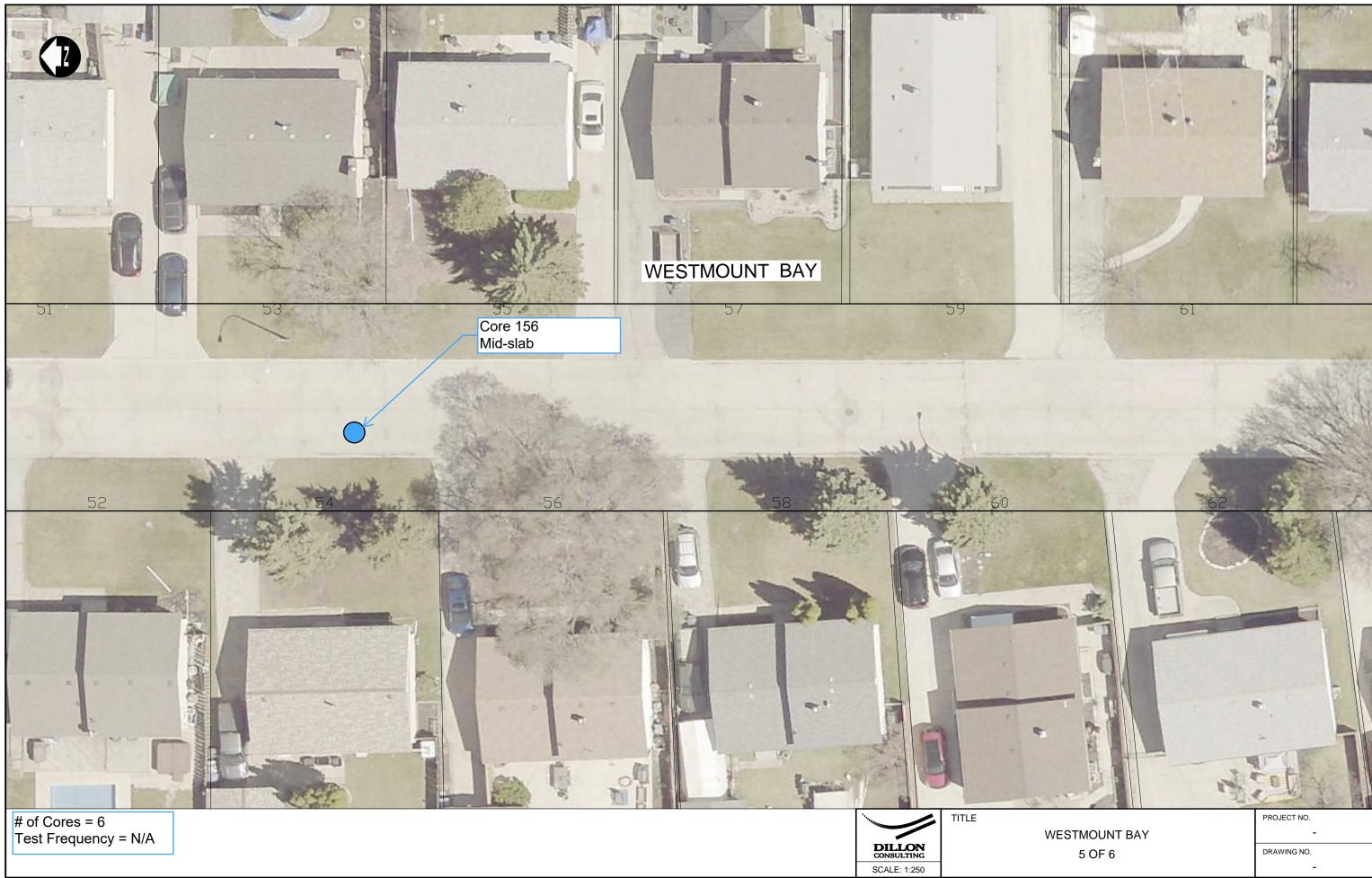


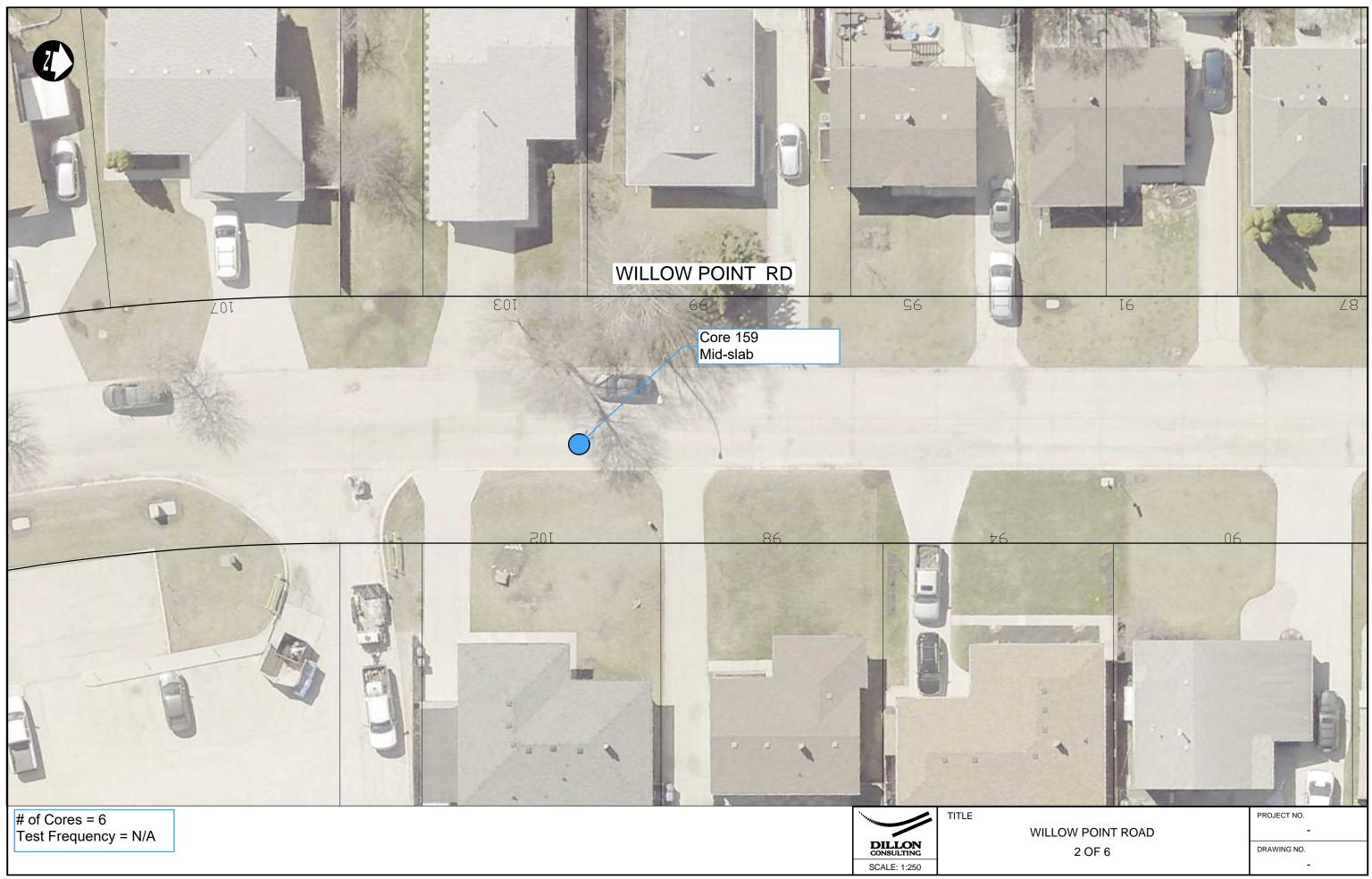


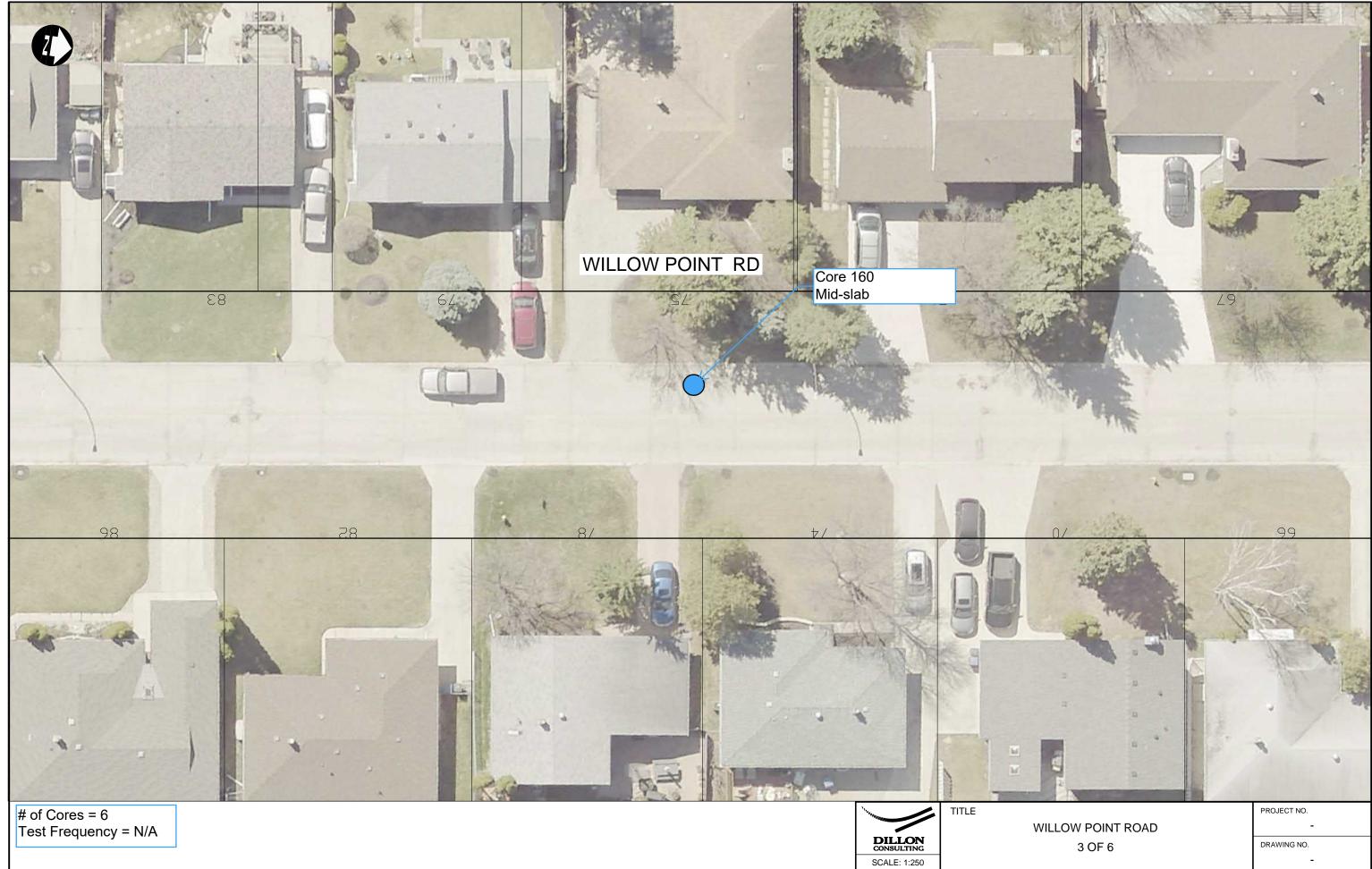


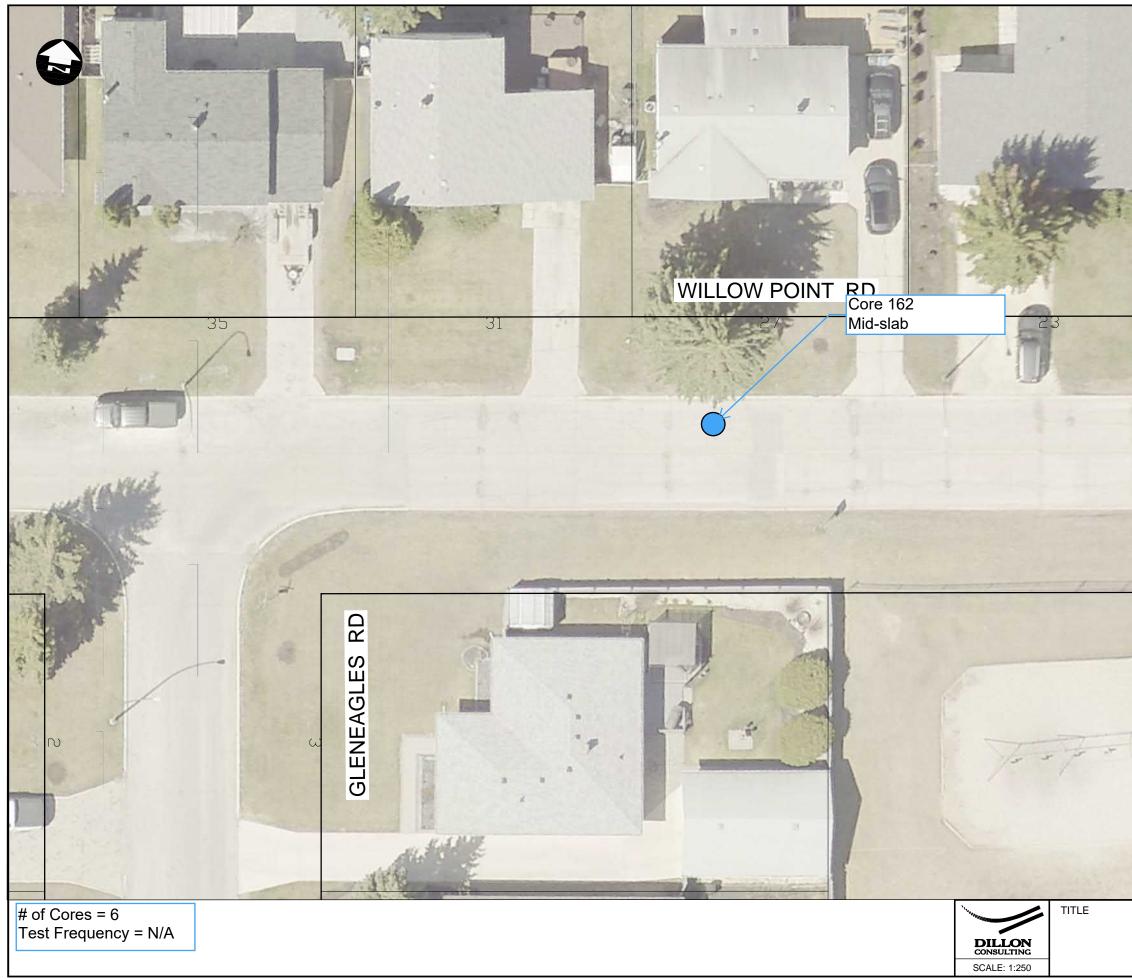


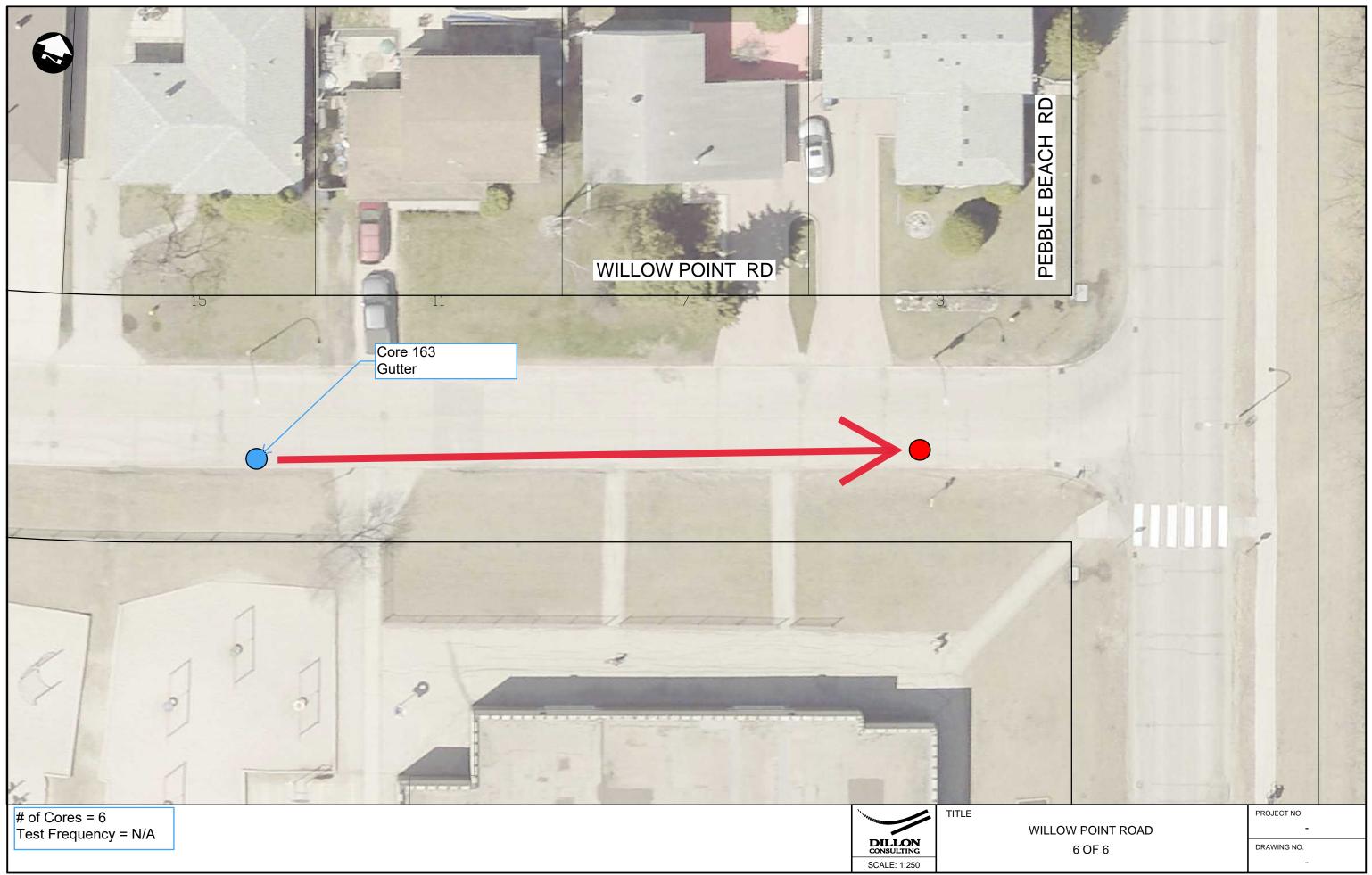












I	
1 1 2 2 2 2 2	
Million and Andrews	
WILLOW POINT ROAD 5 OF 6	PROJECT NO. - DRAWING NO. -

Appendix C

Core Photographs

Figure 1 – Core Sample No. 120 - Cromwell St

Figure 3 – Core Sample No. 122 - Cromwell St

Figure 2 – Core Sample No. 121 - Cromwell St

Figure 4 – Core Sample No. 123 – Desjardins Dr

Figure 5 – Core Sample No. 124 – Desjardins Dr

Figure 7 – Core Sample No. 126 – Lomond Blvd

Figure 6 – Core Sample No. 125 – Lomond Blvd

Figure 8 – Core Sample No. 127 – Lomond Blvd

Figure 9 – Core Sample No. 128 – Lomond Blvd

Figure 11 – Core Sample No. 130 – Lomond Blvd

Figure 10 – Core Sample No. 129 – Lomond Blvd

Figure 12 – Core Sample No. 131 – Lomond Blvd

Figure 43 – Core Sample No. 132 – Lomond Blvd

Figure 15 – Core Sample No. 134 – Surfside Cr

Figure 14 – Core Sample No. 133 – Surfside Cr

Figure 16 – Core Sample No. 135 – Surfside Cr

Figure 17 – Core Sample No. 136 – Surfside Cr

Figure 19 – Core Sample No. 138 – Surfside Cr

Figure 18 – Core Sample No. 137 – Surfside Cr

Figure 20 – Core Sample No. 150 – Surfside Cr

Figure 21 – Core Sample No. 139 – Paterson St

Figure 23 – Core Sample No. 141 – Paterson St

Figure 22 – Core Sample No. 140 – Paterson St

Figure 24 – Core Sample No. 151 – Paterson St

Figure 25 – Core Sample No. 142 – Huppe Bay

Figure 27 – Core Sample No. 144 – Huppe Bay

Figure 26 – Core Sample No. 143 – Huppe Bay

Figure 28 – Core Sample No. 145 – Huppe Bay

Figure 29 – Core Sample No. 146 – Jubinville Bay

Figure 51 – Core Sample No. 148 – Jubinville Bay

Figure 30 – Core Sample No. 147 – Jubinville Bay

Figure 32 – Core Sample No. 149 – Jubinville Bay

Figure 33 – Core Sample No. 152 – Westmount Bay

Figure 35 – Core Sample No. 154 – Westmount Bay

Figure 34 – Core Sample No. 153 – Westmount Bay

Figure 36 – Core Sample No. 155 – Westmount Bay

Figure 37 – Core Sample No. 156 – Westmount Bay

Figure 39 – Core Sample No. 158 – Willow Point Rd

Figure 38 – Core Sample No. 157 – Westmount Bay

Figure 40 – Core Sample No. 159 – Willow Point Rd

Figure 41 – Core Sample No. 160 – Willow Point Rd

Figure 43 – Core Sample No. 162 – Willow Point Rd

Figure 42 – Core Sample No. 161 – Willow Point Rd

Figure 44 – Core Sample No. 163 – Willow Point Rd

Appendix D

Borehole Records

SYMBOLS AND TERMS USED ON BOREHOLE AND TEST PIT RECORDS

SOIL DESCRIPTION

Terminology describing common soil genesis

Rootmat	vegetation, roots and moss with organic matter and topsoil typically forming a mattress at the ground surface
Topsoil	mixture of soil and humus capable of supporting vegetative growth
Peat	mixture of visible and invisible fragments of decayed organic matter
Till	unstratified glacial deposit which may range from clay to boulders
Fill	material below the surface identified as placed by humans (excluding buried services)

Terminology describing soil structure

having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.		
having cracks, and hence a blocky structure		
composed of regular alternating layers of silt and clay		
composed of alternating successions of different soil types, e.g. silt and sand		
> 75 mm in thickness		
2 mm to 75 mm in thickness		
< 2 mm in thickness		

Terminology describing soil types

The classification of soil types are made on the basis of grain size and plasticity in accordance with the Unified Soil Classification System (USCS) (ASTM D 2487 or D 2488) which excludes particles larger than 75 mm. For particles larger than 75 mm, and for defining percent clay fraction in hydrometer results, definitions proposed by Canadian Foundation Engineering Manual, 4th Edition are used. The USCS provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification.

Terminology describing cobbles, boulders, and non-matrix materials (organic matter or debris)

Terminology describing materials outside the USCS, (e.g. particles larger than 75 mm, visible organic matter, and construction debris) is based upon the proportion of these materials present:

Trace, or occasional	Less than 10%	
Some	10-20%	
Frequent	> 20%	

Terminology describing compactness of cohesionless soils

The standard terminology to describe cohesionless soils includes compactness (formerly "relative density"), as determined by the Standard Penetration Test (SPT) N-Value - also known as N-Index. The SPT N-Value is described further on Page 2. A relationship between compactness condition and N-Value is shown in the following table.

Compactness Condition	SPT N-Value
Very Loose	<4
Loose	4-10
Compact	10-30
Dense	30-50
Very Dense	>50

Terminology describing consistency of cohesive soils

The standard terminology to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by *in situ* vane tests, penetrometer tests, or unconfined compression tests. Consistency may be crudely estimated from SPT N-Value based on the correlation shown in the following table (Terzaghi and Peck, 1967). The correlation to SPT N-Value is used with caution as it is only very approximate.

Consistency	Undrained Shear Strength		Approximate	
Consistency	kips/sq.ft	kPa	SPT N-Value	
Very Soft	<0.25	<12.5	<2	
Soft	0.25 - 0.5	12.5 - 25	2-4	
Firm	0.5 - 1.0	25 - 50 4-8		
Stiff	1.0 - 2.0	50 – 100	8-15	
Very Stiff	2.0 - 4.0	100 - 200	15-30	
Hard	>4.0	>200	>30	

Stantec SYMBOLS AND TERMS USED ON BOREHOLE AND TEST PIT RECORDS – AUGUST 2024

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols. The dimensions within the strata symbols are not indicative of the particle size, layer thickness, etc. Not all bedrock strata plots are shown.

Asphalt

Clay

6

Boulders

ΠË

WATER LEVEL

Bedrock

SAMPLE TYPE

AS, BS, GS	\sim	Auger sample; bulk sample; grab sample	
DP		Direct-Push sample (small diameter tube sampler hydraulically advanced)	
PS		Piston sample	
SO	h.h.	Sonic tube	
SS		Split spoon sample (obtained by performing the Standard Penetration Test)	
ST	\sim	Shelby Tube or thin wall tube	
SV	W	Shear vane	
RC HQ, NQ, BQ, etc.		Rock Core; samples obtained with the use of standard size diamond coring bits.	

Inferred:

Measured:

seepage noted or water level measured during or at completion of drilling

in standpipe, piezometer, or well

RECOVERY FOR SOIL SAMPLES

The recovery is recorded as the length of the soil sample recovered in the direct push, split spoon sampler, Shelby Tube, or sonic tube.

N-VALUE

Numbers in this column are the field results of the Standard Penetration Test (SPT): the number of blows of a 140-pound (63.5 kg) hammer falling 30 inches (760 mm), required to drive a 2 inch (50.8 mm) O.D. split spoon sampler one foot (300 mm) into the soil. In accordance with ASTM D1586, the N-Value equals the sum of the number of blows (N) required to drive the sampler over the interval of 6 to 18 in. (150 to 450 mm). However, when a 24 in. (610 mm) sampler is used, the number of blows (N) required to drive the sampler over the interval of 12 to 24 in. (300 to 610 mm) may be reported if this value is lower. For split spoon samples where insufficient penetration was achieved and N-Values cannot be presented, the number of blows are reported over sampler penetration in millimetres (e.g. 50 for 75 mm or 50/75 mm). Some design methods make use of Nvalues corrected for various factors such as overburden pressure, energy ratio, borehole diameter, etc. No corrections have been applied to the N-values presented on the log.

DYNAMIC CONE PENETRATION TEST (DCPT)

Dynamic cone penetration tests are performed using a standard 60-degree apex cone connected to 'A' size drill rods with the same standard fall height and weight as the Standard Penetration Test. The DCPT value is the number of blows of the hammer required to drive the cone one foot (300 mm) into the soil. The DCPT is used as a probe to assess soil variability.

OTHER TESTS

S	Sieve analysis] Γ
Н	Hydrometer analysis	
k	Laboratory permeability	
V	Unit weight	1
Gs	Specific gravity of soil particles	
CD	Consolidated drained triaxial	
Consolidated undrained triaxial with pore pressure		
CU	measurements	-
UU	Unconsolidated undrained triaxial	
DS	Direct Shear	
С	Consolidation	
Qu	Unconfined compression	1 [
	Point Load Index (Ip on Borehole Record equals Ip(50) in	1
Iρ	which the index is corrected to a reference diameter of	
-	50 mm)	L

Ţ	Single packer permeability test; test interval from depth shown to bottom of borehole
	Double packer permeability test; test interval as indicated
O ▼	Falling head permeability test using casing
Ĭ	Falling head permeability test using well point or piezometer

ROCK DESCRIPTION

Except where specified below, terminology for describing rock is as defined by the International Society for Rock Mechanics (ISRM) 2007 publication "The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006"

Total Core Recovery (TCR) denotes the sum of all measurable rock core recovered in one drill run. The value is noted as a percentage of recovered rock core based on the total length of the drill run.

Solid Core Recovery (SCR) is defined as total length of solid core divided by the total drilled length, presented as a percentage. Solid core is defined as core with one full diameter.

Rock Quality Designation (RQD) is a modified core recovery that incorporates only pieces of solid core that are equal to or greater than 10 cm (4") along the core axis. It is calculated as the total cumulative length of solid core (> 10 cm) as measured along the centerline of the core divided by the total length of borehole drilled for each drill run or geotechnical interval, presented as a percentage. RQD is determined in accordance with ASTM D6032.

Fracture Index (FI) is defined as the number of naturally occurring fractures within a given length of core. The Fracture Index is reported as a simple count of natural occurring fractures.

Terminology describing rock quality

Rock Mass Quality	Rock Quality Designation Number (RQD)	Alternate (Colloquial) Rock Mass Quality	
Very Poor Quality	0-25	Very Severely Fractured	Crushed
Poor Quality	25-50	Severely Fractured	Shattered or Very Blocky
Fair Quality	50-75	Fractured	Blocky
Good Quality	75-90	Moderately Jointed	Sound
Excellent Quality	90-100	Intact	Very Sound

Terminology describing rock strength

	-		
Strength Classification	Grade	Field Estimates of Uniaxial Compressive Strength	Unconfined Compressive Strength (MPa)
Extremely Weak	R0	Indented by thumbnail	<1
Very Weak	R1	Crumbles under firm blows of geological hammer, can be peeled with a pocketknife	1 – 5
Weak	R2	Peeled by pocketknife with difficulty, shallow indentations made by firm blow with point of geological hammer	5 – 25
Medium Strong	R3	Cannot be scraped or peeled with a pocketknife, can be fractured with single firm blow of geological hammer	25 – 50
Strong	R4	More than one blow with geological hammer to fracture	50 – 100
Very Strong	R5	Many blows with geological hammer to fracture	100 – 250
Extremely Strong	R6	Can only be chipped with geological hammer	>250

Terminology describing rock weathering

Term	Symbol	Description
Fresh	W1	No visible signs of rock weathering. Slight discoloration along major discontinuities
Slightly	W2	Discoloration indicates weathering of rock on discontinuity surfaces. All the rock material may be discolored.
Moderately	W3	Less than half the rock is decomposed and/or disintegrated into soil.
Highly	W4	More than half the rock is decomposed and/or disintegrated into soil.
Completely	W5	All the rock material is decomposed and/or disintegrated into soil. The original mass structure is still largely intact.
Residual Soil	W6	All the rock converted to soil. Structure and fabric destroyed.

Terminology describing rock with respect to discontinuity and bedding spacing

Spacing (mm)	Discontinuities Spacing	Bedding
>6000	Extremely Wide	-
2000-6000	Very Wide	Very Thick
600-2000	Wide	Thick
200-600	Moderate	Medium
60-200	Close	Thin
20-60	Very Close	Very Thin
<20	Extremely Close	Laminated
<6	-	Thinly Laminated

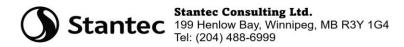
C		Stantec			В	OREH	OLE RECO	RD														BH-1	20
		Dillon Consulting Ltd.						_														233174	
		CT: <u>26-R-06 2025 Local Street</u>	Rene	wal																		N/A	
		ON: <u>Cromwell St</u> ORED: <u>December 19 2024</u>						- v	/AT	ER	LE	VEL		N/A		DA		/1	<u>IN/</u>	<u> </u>			
					SAMF	PLES										H, Cu	ı (kPa	ı)					
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (USCS)	STRATA PLOT	TYPE		RECOVERY (mm) or TCR % N-VALUE or RQD %	OTHER TESTS / REMARKS	* 	▲ LABORATORY TEST ← FIELD VAI ★ POCKET PENETROMETER □ POCKET S 50 kPa 100 kPa 150 kPa ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓						T SH	HEAI 20	R V/ 10 kF	Pa	BACKFILL	ELEVATION (m)			
- 0 -		ASPHALT							10		20	3) .	40	50) (60	/()	80	· · · · ·		-
-		FILL: crushed limestone, 20 mm							· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·									· · · · · · · · · · · · · · · · · · ·		+
-		Stiff black SANDY FAT CLAY (CH) - trace silt, trace fine gravel										· · · · · · · · · · · · · · · · · · ·											-
												· · · · · · · · · · · · · ·			•••				· · · ·		· · · · · · · · · · · · · · · · · · ·		-
-				AS																			-
- - 1 -		- firm and brown below 0.9 m		BS			Sieve/Hydro at 0.9 m G S M C 10% 29% 32% 29%			0											· · · · · · · · · · · · · · · · · · ·		
-				AS			-			0					•••					· · · · · · · · · · · · · · · · · · ·			- L
-																							-
				AS			-		· · · · · · · · · · · · · · · · · · ·						•••					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-
-															•••					· · · · · · · · · · · · · · · · · · ·			-
-				AS					· · · · · · · · · · · · · · · · · · ·			0			•••						· · · · · · · · · · · · · · · · · · ·		-
- 2 -																							-
-		End of Borehole • Borehole terminated at a depth of 2.2 m • No groundwater seepage or soil slough • Borehole backfilled in accordance with	ing was	obse	rved c innipe	during or up g Street Cu	on completion of dri ts Manual.	lling.	<u>: ;</u>						::			::		:[];			- -
																							-
- 3 -							Drilling Con	tract	or:	Ма	aple	Le	af D	rillin	g Lt	td.			1	_og	ged	By: LF	,
			GRC			CONCRE	TE Drilling Met						A						_			ed By:	GB
В	ENTO	NITE ORILL CUTTINGS	SAN	D		SLOUGH	Completion	Dep	th:	2	2.2 r	n							F	⊃ag	e 1	of 1	

Printed Jan 22 2025 00:32:23 SOIL 123317465.GPJ 1/22/25

$\left(\right)$		Stantec			В	OR	EH	OLE RECO	RD												BH-1	21
CL		Dillon Consulting Ltd.														PF	ROJE	СТ	NC	.: _	233174	
		CT: 26-R-06 2025 Local Street	Rene	wal					_												N/A	
		ON: Cromwell St										/				D	ATUN	И: _	N/A	•		
DA	TE B	ORED: <u>December 19 2024</u>							_			LEV				TH, C	ı (kPa	a)				<u> </u>
~	(L				SAM	PLES						TOR			VEINC		ELD V		E TES	т		Ē
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (USCS)	STRATA PLOT		ER	۲ (mm) ۲%	UE %	OTHER TESTS / REMARKS	*	PO		⊺ PEN kPa ∤	ETF		ETER kPa	□ PC 15	0CKE ⁻ 0 kPa			VAN kPa	BACKFILL	ELEVATION (m)
D	ELEY		STRA	x SPT (N-value) BLOWS/0.3m										P W	w _∟	BAC	ELE					
- 0 -			Metric Water Content (%) and Blow Count 10 20 30 40 50 60 70 80												Ļ							
-		ASPHALT FILL: crushed limestone, 20 mm																				
-															· · · · · · · · · · · · · · · · · · ·							
-		Firm to stiff black FAT CLAY (CH) - trace fine gravel													· · · · · · · · · · · · · · · · · · ·							
															· · · · · · · · · · · · · · · · · · ·						· · · · ·	-
-															· · · · · · · · · · · · · · · · · · ·						· · · · ·	
- 1 -		- firm below 0.9 m		/																	•	
-				AS																		-
-				AS									0								•	-
				AS									0									
-																					· · · · · ·	-
- 2 -				AS									0								•	
-				/																	· · · · · · · · · · · · · · · · · · ·	-
_				AS									i e									l
		End of Borehole • Borehole terminated at a depth of 2.4 m. • No groundwater seepage or soil sloughin • Borehole backfilled in accordance with th	ng was ne City	obse of W	erved o	during g Stre	or upo eet Cut	on completion of dri s Manual.	illing.													-
- 3 -								Drilling Co	otros	tor	N 4 -		0.5	f D	llina	1 +4				0000		<u> </u>
BAC	< E II I	SYMBOL ASPHALT	GRO	דיור	5		ICRE		Contractor: Maple Leaf Drilling Ltd. Method: 125 mm SSA								Logged By: LP Reviewed By: GB					
			SAN			SLO	UGH	Completion				2.4 m							-		1 of 1	

Printed Jan 22 2025 00:32:25 SOIL 123317465.GPJ 1/22/25

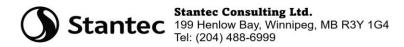
C		Stantec				OREH	OLE RECO	RD										ст	NO		BH- 123317	
		CT: <u>26-R-06 2025 Local Street</u>	Rene	wal				_													<u>123317</u> N/A	
		ON: Cromwell St						_														
DA	TE B	ORED: December 19 2024						_ v	VA	TER	LEV	'EL	.: _	N/A								
	(SAM	PLES		UNDRAINED SHEAR STRENGT												_		
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION	STRATA PLOT		£	(mm)% = %	OTHER TESTS /			CKET			EST ◆ FIELD VAI ROMETER □ POCKET S 100 kPa 150 kPa				SH	EAR			ELEVATION (m)	
DEF	ELEV	(USCS)	STRAT	түре	NUMBER	RECOVERY (mm) or TCR % N-VALUE or ROD %	REMARKS		WATER CONTENT & ATTERBERG LIMITS WP W WL							BACK	ELEV					
- 0 -						12			10	2	20	30	Vater Co	ntent (%) 40	and Bl	ow Count	50	70	8	30		
- 0 -		ASPHALT																				
-		FILL: crushed limestone, 20 mm																				
-		Firm brown FAT CLAY (CH)																				ŀ
																						t
-				/																		ŀ
-		- trace sand below 0.9 m		AS			Sieve/Hydro at 0.9 m G S M C 0% 3% 48% 49%															
- 1 -				BS AS																		ŀ
-																						ŀ
-				AS								0			•••							ŀ
																						ŀ
-				/					· · · · · · · · · · · · · · · · · · ·													ŀ
-				AS								0			· · · · · · · · · · · · · · · · · · ·							ŀ
- 2 -																						t
-				AS					:			•										4
-		End of Borehole • Borehole terminated at a depth of 2.2 m • No groundwater seepage or soil sloughi • Borehole backfilled in accordance with the	ng was	obse of Wi	rved o nnipe	during or up g Street Cu	on completion of dri ts Manual.	lling.														-
																						-
-																						-
-																						-
- 3 -							Drilling Con	trac	tor [.]	Ma	aple	Le	af D	rilling	a Lt	d.			L	Daa	ed By: L	 .Р
BAC	KFILL	SYMBOL ASPHALT	GRO	DUT		CONCRE									<u>, - </u>						wed By:	
			SAN			SLOUGH	Completion				2.2 m								-		1 of 1	


Printed Jan 22 2025 00:32:26 SOIL 123317465.GPJ 1/22/25

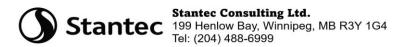
Stantec

Appendix E

Laboratory Testing Reports


- Atterberg Limits Particle-Size Analysis
- o Standard Proctor
- California Bearing RatioConcrete Compressive Strength

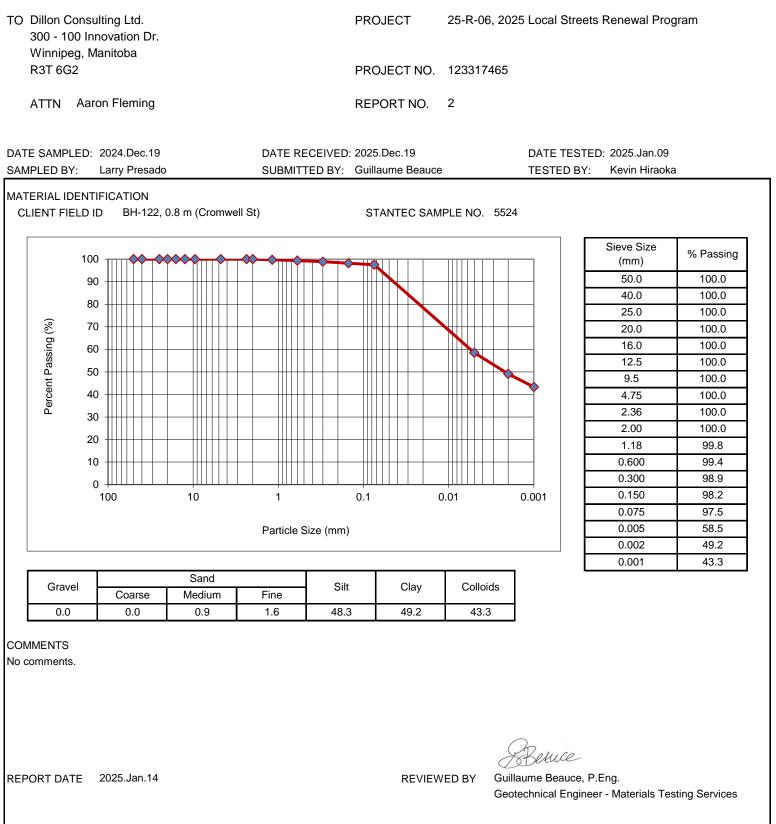
ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)


	inovation Dr.	PROJECT 25-R-06, 2025 Local Streets Renewal Program	
Winnipeg, M R3T 6G2	lanitoba	PROJECT NO. 123317465	
ATTN Aar	ron Fleming	REPORT NO. 1	
DATE SAMPLED: SAMPLED BY:	2024.Dec.19 Larry Presado	ATE RECEIVED: 2024.Dec.19 DATE TESTED: 2024.Jan.13 UBMITTED BY: Guillaume Beauce TESTED BY: Kailash Vaghjiyani	
MATERIAL IDENT		STANTEC SAMPLE NO. 5523	
TRIAL BLOWS MC (%)	LIQUID LIMIT 1 2 26 26 51 51	PLASTIC LIMITLIQUID LIMIT, LL51TRIAL12PLASTIC LIMIT, PL19MC (%)1919PLASTICITY INDEX, PI32AS REC'D MC (%)17.9	
		60 60 60 60 60 60 60 60 60 60	0
COMMENTS No comments.			
		REVIEWED BY Guillaume Beauce, P.Eng. Geotechnical Engineer - Materials Testing Services	
above. Stantec is not res	sponsible, nor can be held liable, for the use o	s report by any other party, with or without the knowledge of Stantec.	

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

TO Dillon Consulting Ltd. 300 - 100 Innovation Dr.	PROJECT 25-R-0	06, 2025 Local Streets Renewal Program
Winnipeg, Manitoba R3T 6G2	PROJECT NO. 123317	7465
ATTN Aaron Fleming	REPORT NO. 2	
DATE SAMPLED: 2024.Dec.19 SAMPLED BY: Larry Presado	DATE RECEIVED: 2024.Dec.19 SUBMITTED BY: Guillaume Beauce	DATE TESTED: 2024.Jan.13 TESTED BY: Kailash Vaghjiyani
MATERIAL IDENTIFICATION CLIENT FIELD ID BH-122, 0.8 m (Cromw	vell St) STANTEC SAMPLE NO.	5524
LIQUID LIMIT TRIAL 1 2 BLOWS 24 23 MC (%) 68 69	PLASTIC LIMITTRIAL12MC (%)2424	LIQUID LIMIT, LL 68 PLASTIC LIMIT, PL 24 PLASTICITY INDEX, PI 44 AS REC'D MC (%) 28.9
		NU Image: CH NU Image: CH NU Image: CH NH Image: CH MH Image: CH 40 50 60 70 80 90 100 Liquid Limit Image: CH Image: CH
COMMENTS No comments.		
REPORT DATE 2025.Jan.14	REVIEWED BY	Guillaume Beauce, P.Eng. Geotechnical Engineer - Materials Testing Services on written request. The data presented is for sole use of client stipulated
	e use of this report by any other party, with or without the knowledge of	

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS


TO Dillon Consulting Ltd. 300 - 100 Innovation Dr. Winnipeg, Manitoba R3T 6G2		DJECT 25-R-06, 20	025 Local Streets Re	newal Program	
ATTN Aaron Fleming	REP	ORT NO. 1			
DATE SAMPLED: 2024.Dec.19 SAMPLED BY: Larry Presado MATERIAL IDENTIFICATION CLIENT FIELD ID BH-120, 0.8 m (Cromwell	DATE RECEIVED: 2025 SUBMITTED BY: Guilla St) ST			2025.Jan.09 Kevin Hiraoka	
$\left(\begin{array}{c} 100 \\ 90 \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	1 0.1 Particle Size (mm)	0.01	0.001	(mm) 10 50.0 10 40.0 10 25.0 10 20.0 10 16.0 10 12.5 10 9.5 9 4.75 9 2.36 8 2.00 8 1.18 7 0.600 7 0.300 6 0.075 6 0.005 3 0.002 2	assing 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00
Gravel Sand Coarse Medium	Fine	Clay Colloids]	0.001 2	25.3
9.7 8.3 12.8	8.1 32.2	28.9 25.3			
COMMENTS No comments.			Benuce		
REPORT DATE 2025.Jan.14			illaume Beauce, P.Eng otechnical Engineer - I		rvices

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

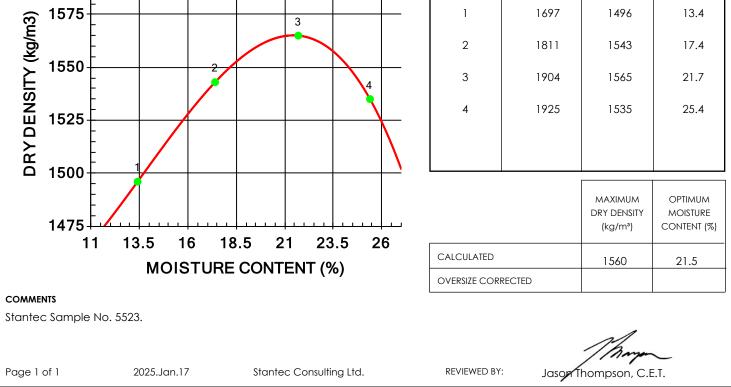
ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay Winnipeg, MB R3Y 1G4 Email: jason.thompson@stantec.com

PROCTOR TEST REPORT

TO	Dillon Consulting Ltd.
	300 - 100 Innovation Dr.
	Winnipeg, MB
	R3T 6A8


CLIENT Dillon Consulting Ltd. C.C.

C.C.

ATTN: Aaron Fleming

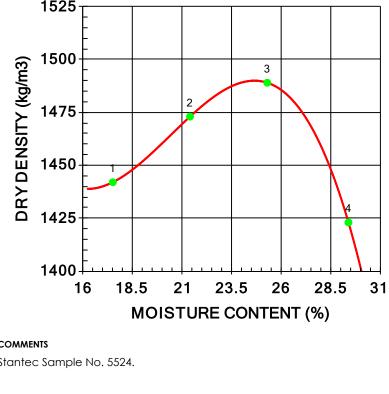
PROJECT 25-R-06; 2025 Local Street Renewal Program

PROJECT NO. PROCTOR NO.	12331) 1	7465 DATE SAMPLED	2024.Dec.19	DATE RECEIVE	D 2024.Dec	c.19	date tested	2025.Jan.15
INSITU MOISTURE TESTED BY		7.9 % onald Eliazar		COMPACTION STAP	IDARD	Stan D698	dard Proctor, A 3	STM
MATERIAL IDENTIFIC MAJOR COMPOI		Subgrade		COMPACTION PRO	CEDURE)1.6mm Mold, ing 4.75mm	
size description		Sandy Fat Clay (C	CH)	RAMMER TYPE PREPARATION		Man Mois		
SUPPLIER SOURCE		Existing Materials BH-120, 0.8 m (Cro	omwell St)	OVERSIZE CORRECT RETAINED 4.75mm S		None N/A		
1600	E				TRIAL NUMBER	WET DENSITY (kg/m³)	DRY DENSITY (kg/m³)	MOISTURE CONTENT (%)
က် 1575 ၂၄	- - -		3		1	1697	1496	13.4

Reporting of these test results constitutes of testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor con be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay Winnipeg, MB R3Y 1G4 Email: jason.thompson@stantec.com

PROCTOR TEST REPORT


ГO	Dillon Consulting Ltd.
	300 - 100 Innovation Dr.
	Winnipeg, MB
	R3T 6A8

CLIENT Dillon Consulting Ltd. C.C.

ATTN: Aaron Fleming

PROJECT 25-R-06; 2025 Local Street Renewal Program

PROJECT NO. PROCTOR NO.	12331740 2	65 DATE SAMPLED	2024.Dec.19	DATE RECEIVED	2024.Dec.19	DATE TESTED	2025.Jan.15
INSITU MOISTURE TESTED BY	28.9 Don	% ald Eliazar		COMPACTION STANDA	RD	Standard Proctor, D698	ASTM
MATERIAL IDENTIFIC	CATION			COMPACTION PROCED	URE	A: 101.6mm Mold,	
MAJOR COMPO	NENT	Subgrade				Passing 4.75mm	
SIZE		Fat Clay (CH)		RAMMER TYPE		Manual	
DESCRIPTION				PREPARATION		Moist	
SUPPLIER		Existing Materials		OVERSIZE CORRECTION	METHOD	None	
SOURCE		BH-122, 0.8 m (Cro	omwell St)	RETAINED 4.75mm SCRE	EN	N/A %	
1505				Г			

TRIAL NUMBER	WET DENSITY (kg/m³)	DRY DENSITY (kg/m³)	MOISTURE CONTENT (%)	
1	1694	1442	17.5	
2	1788	1473	21.4	
3	1866	1489	25.3	
4	1841	1423	29.4	

	MAXIMUM DRY DENSITY (kg/m³)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1490	24.5
OVERSIZE CORRECTED		

COMMENTS

Stantec Sample No. 5524.

2025.Jan.17 Page 1 of 1

Stantec Consulting Ltd.

REVIEWED BY:

Jason Thompson, C.E.T.

Reporting of these test results constitutes of testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor con be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive Winnipeg, Manitoba		PROJECT		5 Local Streets Renewal Program otechnical Investigation R-06			
R3T 6A8		PROJECT NO.	123317465				
ATTN Aaron Fleming		REPORT NO.	1				
DATE SAMPLED: 2024.Dec.19 SAMPLED BY: Larry Presado	DATE RECEIVED: SUBMITTED BY:			TE TESTED: 2025.Jan.20 STED BY: Donald Eliazar			
MATERIAL IDENTIFICATION MATERIAL USE Subgrade MAX. NOMINAL SIZE < 4.75 mm MATERIAL TYPE Sandy Fat Clay (SPECIFICATION ID Not Applicable	CH)	SUPPLIER SOURCE SAMPLE LOCAT STANTEC SAMF					
IMMERSION PERIOD96 ± 2 hrCONDITION OF SAMPLESoakedSURCHARGE MASS4.54 kg		TARGET MAX. [TARGET OPTIM		1560 kg/m ³ 21.5 %			
+19 mm OVERSIZE SWELL OF SAMPLE POST-TEST MOISTURE	0 % 2.46 % 23.6 %	AS-COMPACTE	D DRY DENSITY D MOISTURE D % COMPACTION	1483 kg/m ³ 21.4 % 95 %			
600 600 (x) (x) (x) (x) (x) (x) (x) (x)		• • • • •		CBR VALUE AT 2.54 mm PENETRATION 4.2 CBR VALUE AT 5.08 mm			
(Kbain 400 400 400 300 200 100				PENETRATION 3.4			
0 2.0 4.0	6.0 8.0 Penetration (mm)	10.0 12.0	14.0				
COMMENTS Sample prepared to 95% of the maximum dry	lensity at the optimum mois	ture content as dete	Be	D698. Mule Beauce, P.Eng.			
Reporting of these test results constitutes a testing service only above. Stantec is not responsible, nor can be held liable, for th		uation of the test results is	Geotechni provided on written request.	ical Engineer - Materials Testing Services			

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive Winnipeg, Manitoba	PROJECT	PROJECT 2025 Local Streets Renewal Program Geotechnical Investigation 25-R-06			
R3T 6A8		PROJECT NO.	1233174	465	
ATTN Aaron Fleming		REPORT NO.	2		
DATE SAMPLED: 2024.Dec.19 SAMPLED BY: Larry Presado	DATE RECEIVED: SUBMITTED BY:			DATE TEST TESTED BY	TED: 2025.Jan.20 ⁄: Donald Eliazar
MATERIAL IDENTIFICATIONMATERIAL USESubgradeMAX. NOMINAL SIZE< 4.75 mm		SUPPLIER SOURCE SAMPLE LOCAT STANTEC SAMF		Existing Material In Situ BH-122, 0.8 m 5524	
IMMERSION PERIOD96 ± 2 hrCONDITION OF SAMPLESoakedSURCHARGE MASS4.54 kg		TARGET MAX. I TARGET OPTIM			1490 kg/m ³ 24.5 %
+19 mm OVERSIZE SWELL OF SAMPLE POST-TEST MOISTURE	0 % 2.96 % 29.7 %	AS-COMPACTE AS-COMPACTE AS-COMPACTE	D MOISTL	JRE	1416 kg/m ³ 24.5 % 95 %
600 600 600 600 600 600 600 600					BR VALUE AT 2.54 mm PENETRATION 3.1 BR VALUE AT 5.08 mm PENETRATION 2.6
0 0 2.0 4.0	6.0 8.0 Penetration (mm)	10.0 12.0	14	.0	
COMMENTS Sample prepared to 95% of the maximum dry	density at the optimum moi	sture content as dete	ermined fro	\bigcirc	
REPORT DATE 2025.Jan.27		REVIEW	ED BY	Guillaume Beauce, Geotechnical Engir	
Reporting of these test results constitutes a testing service on above. Stantec is not responsible, nor can be held liable, for the					resented is for sole use of client stipulated

Core No.	Street	Diameter	Length	L/D	Correction	Peak Load (kN)	Compressive Strength	
NO.		(mm)	(mm)	Ratio	Factor		Measured	Corrected
123	Desjardins Dr	88.20	89.14	1.011	0.8726	289.16	47.33	41.30
124	Desjardins Dr	88.20	142.11	1.611	0.9689	373.10	61.07	59.17
127	Lomond Blvd	76.21	84.41	1.108	0.8959	193.22	42.36	37.95
130	Lomond Blvd	76.43	146.80	1.921	0.9937	165.33	36.04	35.81
133	Surfside Cr	88.61	158.14	1.785	0.9828	301.44	48.88	48.04
135	Surfside Cr	88.43	154.17	1.743	0.9794	343.74	55.97	54.82
137	Surfside Cr	88.52	150.20	1.697	0.9758	353.04	57.37	55.98
142	Surfside Cr	88.52	98.51	1.113	0.8971	320.61	52.10	46.74
144	Huppe Bay	76.42	101.91	1.334	0.9401	260.70	56.84	53.43
146	Huppe Bay	76.23	143.02	1.876	0.9901	255.58	56.00	55.45
148	Jubinville Bay	76.21	157.90	2.072	1.0000	220.00	48.23	48.23
150	Jubinville Bay	76.24	160.31	2.103	1.0000	265.77	58.22	58.22
153	Westmount Bay	88.69	132.31	1.492	0.9590	166.09	26.88	25.78
156	Westmount Bay	88.42	154.36	1.746	0.9797	280.18	45.63	44.70
159	Willow Point Rd	76.24	132.92	1.743	0.9794	164.09	35.94	35.20
162	Willow Point Rd	76.01	146.11	1.922	0.9938	148.92	32.82	32.62

CSA A23.2-14C – Obtaining and testing drilled cores for compressive strength testing