APPENDIX 'B'

Geotechnical Report

City of Winnipeg North Transit Garage

Geotechnical Report

City of Winnipeg

Project number: 60721079

February 4, 2025

Delivering a better world

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time..

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13 © 2009-2015 AECOM Canada Ltd. All Rights Reserved.

LA

Geotechnical Engineering EIT, B.Eng.

Colton Wooster

German Leal

Discipline Lead, M.Eng., P.Eng.

Russ Golightly Senior Project Manager, P.Eng.

Revision History

Revision date	Details	Authorized	Name	Position
March 26, 2024	Original Document	German Leal	Colton Wooster	Geotechnical EIT
July 16, 2024	Draft Revisions	German Leal	Colton Wooster	Geotechnical EIT
January 23, 2025	Final Revisions	Ross Fleith	Colton Wooster	Geotechnical EIT
	March 26, 2024 July 16, 2024	March 26, 2024 Original Document July 16, 2024 Draft Revisions	March 26, 2024Original DocumentGerman LealJuly 16, 2024Draft RevisionsGerman Leal	March 26, 2024 Original Document German Leal Colton Wooster July 16, 2024 Draft Revisions German Leal Colton Wooster

Distribution List

# Hard Copies	PDF Required	Association / Company Name
	✓	City of Winnipeg
	\checkmark	Dillon Consulting Ltd.
	~	AECOM Canada Ltd.

Prepared for:

City of Winnipeg 520-2023

Prepared by:

Colton Wooster Geotechnical EIT T: 204-477-5381 M: 204-583-8797 E: colton.wooster@aecom.com

German Leal Discipline Lead, Geotechnical T: 204-477-5381 M: 204-928-8479 E: german.leal@aecom.com

AECOM Canada Ltd. 99 Commerce Drive Winnipeg, MB R3P 0Y7 Canada

T: 204-477-5381 F: 431-800-1210 aecom.com

© 2024 AECOM Canada Ltd.. All Rights Reserved.

This document has been prepared by AECOM Canada Ltd. ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table of Contents

1.	Introduction	. 1
2.	Project Site and Proposed Construction	. 2
3.	Investigation Program	. 3
3.1	Past Drilling and Soil Sampling	3
3.2	Testhole Drilling and Soil Sampling	3
3.3	Laboratory Testing	3
4.	Investigation Results	. 5
4.1	Stratigraphy	5
4.1.1	Asphalt	5
4.1.2	Topsoil	5
4.1.3	Fill – Silty Sand (SM)	5
4.1.4	Fill – Sandy Fat CLAY (CH)	5
4.1.5	SILT (ML)	5
4.1.6	Fat CLAY (CH)	5
4.1.7	Poorly Graded SAND (SP) TILL	6
4.1.8	Bedrock	6
4.1.9	Groundwater and Sloughing Conditions	6
4.2	Laboratory Test Results	
4.3	Bedrock Classification	10
4.3.1	Total Core Recover (TCR)	
4.3.2	Solid Core Recover (SCR)	
4.3.3	Rock Quality Designation (RQD)	
4.3.4	Bedrock Classification Results	
5.	Geotechnical Concerns	
6.	Recommendations	
6.1	Perimeter Clay Cutoff Wall	14
6.2	Weeping Tile	
6.3	Foundation Design	15
6.3.1	Limit States Design	
6.3.2	Frost	
6.3.2.1	Frost Penetration	
6.3.2.2	Frost Susceptibility	
6.3.3	Adfreezing	
6.3.4	Cast-in-Place Friction Piles	
6.3.5	Driven Precast Concrete	
6.3.6	Driven Steel H-Piles	
6.3.6.1	Pile Capacity	
6.3.6.2	Pile Type	
6.3.6.3	Pile Driving Criteria	
6.3.6.4	Pile Driving Analyzer Tests	
6.3.6.5	Pile Installation Monitoring	
6.3.7	Drag Load	
6.4	Seismic Considerations	
6.5	Soil-Supported Floor Slab	
6.6	Structural Floor Slab	23

6.7	Concrete Sidewalks	23
6.8	Entrance Slabs	24
6.9	Soil Chemistry	24
6.10	Foundation Concrete	24
6.11	Pavement	25
6.11.1	Traffic	25
6.11.2	Pavement Design	27
6.11.3	Construction of Pavement on Various Subgrades	29
6.11.3.1	Constructing on Clay and Clay Fills Subgrades	29
6.11.3.2	Constructing on Clay Fills in Waste Disposal Area	29
6.11.3.3	Constructing on Silt Subgrades	30
6.11.3.4	Constructing on Granular Subgrades	30
6.12	Drainage	
6.13	Quality Assurance and Quality Control	31
6.14	Design Review, Construction Monitoring and Testing	
7.	References	. 32
Appen	dix A	
Appen	dix B	
Appen	dix C	
Appen	dix D	
Appen	dix E	
Appen	dix F	

Appendix G

Figures

Figure 1 - Graph of Groundwater Elevations Versus Time	7
Figure 2 - Snow Clearing Conducted on Project Site	34
Figure 3 - Dense Till with Cobbles and Boulders Observed On Site	35
Figure 4 - Coring Conducted Onsite and Mobile B48 Drill Rig (TH24-09)	36
Figure 5 - Solid Stem Auger for TH24-12	37
Figure 6 - Coring Method for TH24-15	38

Tables

Table 1 - Observed Groundwater Seepage and Sloughing Conditions	. 6
Table 2 - Groundwater Readings	. 7
Table 3 - Particle Size Analysis	
Table 4 - Atterberg Limits Test Data	
Table 5 - One-Dimensional Consolidation Test Data	
Table 6 - One-Dimensional Swell (Method C)	. 9
Table 7 - Unconfined Compressive Strength Test (Soil)	. 9
Table 8 - Unconfined Compressive Strength of Intact Rock Core Specimens Results	. 9
Table 9 – Standard Proctor Results	. 9
Table 10 – California Bearing Ration Results ⁽¹⁾	. 9

Table 11 – Electrochemical Testing	9
Table 12 – Rock Strength Categorization	. 10
Table 13 – Rock Classification Ranges	11
Table 14 – TCR, SCR, and RQD Results	11
Table 15 – Drainage Material Grading Requirements	. 14
Table 16 – Frost Penetration Depth	. 16
Table 17 – Frost Susceptibility	. 16
Table 18 – Geotechnical Shaft Resistance for Cast-in-Place Concrete Friction Piles	. 17
Table 19 – Geotechnical Axial Resistance for Precast Concrete Piles	. 18
Table 20 – Driven Steel H-Pile Capacity Based on Structural Strength	. 19
Table 21 – Bearing Material	. 21
Table 22 – Material Swell Properties	. 22
Table 23 - Soil-Supported Floor Slab Recommendation for FFE of 235.3 m ASL	. 22
Table 25 - Fill Material Grading Limits for Floor Slabs	. 23
Table 26 - Concrete Sidewalk Recommendations	. 23
Table 27 - Summar of Electrochemical Testing	. 24
Table 28 - Foundation Concrete Requirements	. 24
Table 29 - Traffic Data - Light Duty – Flexible Pavement	. 25
Table 30 - Traffic Data - Heavy Duty - Flexible Pavement	. 26
Table 31 - Traffic Data - Heavy Duty - Rigid Pavement	. 26
Table 32 - Pavement Design Parameters – Flexible Pavement – Light Duty	. 27
Table 33 - Pavement Design Parameters - Flexible Pavement - Heavy Duty	. 27
Table 34 - Pavement Design Parameters – Rigid Pavement	. 28
Table 35 - Pavement Design Options - Winnipeg North Transit Garage	. 28

1. Introduction

AECOM Canada Ltd. was retained to undertake a geotechnical investigation to evaluate the existing soil conditions and provide foundation recommendations for the proposed new transit garage and accompanying infrastructure such as sidewalks or pavement recommendations. The project site is in Winnipeg, MB on:

- Lots 49 58 of Plan 24342;
- Block 3 of Plan 17744;
- Selkirk Avenue, City owned, right of way west of Oak Point Highway; and
- Hyde Avenue, City owned, right of way west of Oak Point Highway.

It is AECOM's understanding that a new transit garage will be constructed on the project site. In 2023, TREK Geotechnical drilled 9 testholes to obtain a preliminary understanding of the soil stratigraphy at the project site. TREK's Geotechnical Factual Report can be found in **Appendix F**. AECOM's project team determined a more thorough understanding of the soil stratigraphy was required at the project site to support the design, so an additional 22 testholes were drilled from January 29 to February 9, 2024. The scope of work for this project was outlined in our proposal dated January 5, 2024. Authorization to proceed with the geotechnical investigation was provided on January 24, 2024.

The work that was performed as part of this geotechnical study included:

- A geotechnical drilling and soil sampling program at the proposed site to identify the existing soil and groundwater conditions. Rock coring was performed in five testholes;
- A laboratory testing program to determine the engineering properties relevant to the foundation design. The testing program included moisture contents on all collected grab samples, pocket torvane testing on grab samples, Atterberg limits, particle size analysis, unconfined compressive strength test on soil and bedrock, one-dimensional consolidation, one-dimensional swell (Method C), standard proctors, and California Bearing Ratio tests on selected soil samples;
- Evaluate the geotechnical capacity of cast-in-place friction piles, precast driven concrete piles and driven steel Hpiles for the proposed new garage;
- Slab recommendations for potential heave of soil supported slabs.
- Three pavement design options that include light-duty and heavy-duty flexible pavements, and a rigid pavement design.
- Preparation of this geotechnical report outlining the existing site conditions, frost implications, and foundation recommendations.

Use of this report is subject to the Statement of Qualifications and Limitations provided at the beginning of this report.

2. Project Site and Proposed Construction

The project site is located on Lots 49 – 58 of Plan 24342, Block 3 of Plan 17744, Selkirk Avenue, City owned, right of way west of Oak Point Highway; and Hyde Avenue, City owned, right of way west of Oak Point Highway. The proposed area of the project site is approximately 28 acres.

In the past, the project site was operated as a City of Winnipeg landfill known as the Brooklands Landfill. The landfill is located on the western portion of the project site and is currently still buried. The materials that entered the landfill included items such as household supplies, construction waste, etc. The eastern portion of the project site was previous owned and operated by Imperial Oil. Therefore, there is a high probability of the presence of hydrocarbons within the project site.

The project site terrain is comprised of long grass and weeds, with sparsely forested areas. As you travel from the southeast to the northwest direction of the project site, there is a significant grade change. With a change in elevation from 234.20 metres above sea level (m ASL) to 238.45 m ASL, there is a rough elevation change of 4.25 m. At this time, the finish floor elevation (FFE) for the Bus Storage Garage, Bus Maintenance Garage, and Administrative Building will be 235.3 m ASL. It is understood that all constructed areas will result in a cut of the existing material.

The transit garage will be comprised of several structures and will include the necessary associated infrastructure. The main building includes a bus storage area, maintenance/bus repair area, and office space. The bus storage area is the largest section of the building at approximately 20,629.0 m² for the ground floor and 451.5 m² for the second floor. The bus storage area is above ground and can house roughly 114 - 40 ft buses and 56 - 60 ft buses. The next largest section of the main building is the maintenance facility, which will be approximately 3,741.0 m² for the ground floor, and approximately 205.2 m² for the second floor. The office space, located on the west side of the building is one floor with an area of 1,275.1 m². It is understood the proposed finished floor elevation will be 235.3 m ASL for all structures. The floor slab tolerance is required to be in the range of 1/500, and a maximum settlement of 25 mm. All areas of the main building are to be heated.

For infrastructure, an external parking area will be provided for the employees. The parking areas are expected to be roughly 6,802.0 m^2 and will be located outside. An electrical substation will be required to provide power to the facility which is located near the parking area and is roughly 468.0 m^2 . To access the parking and building, paved driveways will be provided around the building. Water and sewer main lines will be required for the facility, with the required depth below the frost line.

Photographs of the project site taken at the time of the field drilling program are provide in Appendix A.

3. Investigation Program

3.1 Past Drilling and Soil Sampling

In October 2023, TREK Geotechnical conducted a field investigation at the proposed project site to determine soil stratigraphy and groundwater conditions at the site. In total, TREK drilled 9 testholes; 3 shallow testholes along Oak Point Highway, and 6 deep testholes within the project site. TREK cored to bedrock in one testhole TH23-09. TREK installed 5 standpipe piezometers in TH23-05 (SP23-05), TH23-06 (SP23-06), TH23-07 (SP23-07A and SP23-07B), and TH23-08 (SP23-08).

TREK visually classified the soils based on the Unified Soil Classification System (USCS) and collected disturbed and relatively undisturbed samples at selected depths. The samples collected by TREK were transported back to their lab in Winnipeg, MB. Testing conducted on the samples collected included moisture contents on all disturbed samples, bulk unit weight and unconfined compression tests on Shelby tube and core samples, and Atterberg limits and grain size analysis (hydrometer method) tests on select samples.

Testhole logs created by TREK included information regarding groundwater and sloughing conditions, and a summary of the laboratory test results.

3.2 Testhole Drilling and Soil Sampling

The subsurface drilling and sampling program was conducted between January 29 and February 9, 2024. Drilling services were provided by Paddock Drilling under the supervision of AECOM geotechnical field personnel. The testhole location plan is provided in **Appendix B**. 22 testholes were drilled on the project sites using a track-mounted drill rig Mobile B48 which was equipped with 125 mm solid stem augers. Testholes TH24-02, TH24-04 to TH24-08, TH24-10, TH24-11, TH24-13, TH24-14, TH24-16, and TH24-17 were drilled to auger refusal within the proposed bus garage footprint. Auger refusal was encountered in the testholes at depths ranging from 9.60 m to 13.80 m. Due to sloughing conditions, hollow stem augers were required in testholes TH24-06 to TH24-08, to allow for proper Shelby Tube sampling and Standard Penetration Tests (SPTs). Rock coring was performed in testholes TH24-01, TH24-01, TH24-03, TH24-09, TH24-15 to a final depth ranging from 19.80 m to 25.90 m. TH24-18 and TH24-19 were drilled to 4.5 m, and TH24-20 to TH24-22 were drilled to a depth of 3.1 m within the proposed pavement areas.

Soil samples were obtained directly from the auger flights at depth intervals ranging from 0.3 to 1.5 m. Undisturbed soil samples were also obtained with 75 mm diameter Shelby tubes. SPTs were conducted to assess the relative density of cohesionless soils. The soil samples were visually classified in the field and returned to our soil laboratory for additional examination and testing. Cohesive soil samples were tested using a mini torvane and pocket penetrometer to estimate the undrained shear strength and the compressive soil strength.

Upon completion of drilling, the testholes were examined for evidence of sloughing and groundwater seepage, sealed with bentonite at the bottom and backfilled with auger cuttings. Excess auger cuttings were left at the testhole location on the project site. The detailed testhole records are provided in **Appendix C**, which include a summary sheet outlining the symbols and terms of the testhole record.

3.3 Laboratory Testing

A laboratory testing program was performed on soil samples obtained during the drilling program to determine the relevant engineering properties of the subsurface materials. Diagnostic testing included moisture contents (ASTM D2216), on all collected soil samples, as well as particle size analysis (ASTM D422), Atterberg limits tests (ASTM D4318), one-dimensional consolidation (ASTM D2435), one-dimensional swell (ASTM 4546), unconfined compressive strength for soil (ASTM D2166) and unconfined compressive strength of intact rock core specimen (ASTM D2938), standard proctor (ASTM D698) and California Bearing Ratio (ASTM D1883) on select soil samples. In addition, mini torvane and pocket penetrometer readings were taken on auger grab samples. The results of the

laboratory testing are shown on the testhole records in **Appendix C** and on the laboratory test reports in **Appendix D**.

4. Investigation Results

Subsurface conditions observed during testhole drilling and sampling were visually documented by AECOM geotechnical personnel in accordance with the Unified Soil Classification System (USCS).

The conditions of the site have been based on the investigation results obtained during the field and laboratory investigation programs. The pertinent results from these investigations are outlined below.

4.1 Stratigraphy

The soil stratigraphy on the project site generally consists of topsoil or asphalt, sand or clay fill overlying a clay deposit, which is underlain by a sand till and bedrock. A silt layer was observed between the fill and clay deposit in several testholes. A description of the soil stratigraphy is provided below. The detailed testhole records are provided in **Appendix C**, which include a summary sheet outlining the symbols and terms of the testhole record.

4.1.1 Asphalt

Asphalt was encountered at the ground surface in testholes TH24-01, TH24-04, TH24-05, and TH24-22. The thickness of the asphalt was approximately 0.10 m.

4.1.2 Topsoil

Topsoil was encountered at the ground surface in testholes TH24-02, TH24-03, TH24-06 to TH24-21. The thickness of the topsoil was approximately 0.10 m.

4.1.3 Fill – Silty Sand (SM)

Silty SAND (SM) fill material was encountered below the asphalt/topsoil in TH24-01, TH24-04, TH24-05, TH24-06, TH24-11, TH24-16, TH24-18, and TH24-22 ranging from a thickness of 0.36 m to 2.03 m. The silty SAND (SM) fill layer was generally observed to be loose to compact.

4.1.4 Fill – Sandy Fat CLAY (CH)

Sandy fat CLAY (CH) fill material was encountered below the asphalt/topsoil in TH24-02, TH24-03, TH24-07 to TH24-10, TH24-12 to TH24-15, TH24-17, and TH24-19 to TH24-21. The sandy fat CLAY (CH) was encountered below the silty SAND (SM) fill in TH24-01, TH24-04, TH24-05, TH24-06, TH24-11, TH24-16, TH24-18, and TH24-22. The thickness of the sandy fat CLAY (CH) ranged from a thickness of 0.67 m to 11.67 m. The clay fill layer was generally observed to be firm to stiff.

4.1.5 SILT (ML)

Silt (ML) was encountered below the fill material in TH24-03, TH24-04, TH24-06 to TH24-12, TH24-15 to TH24-17. The silt (ML) ranged in thickness from 0.30 m to 2.50 m. It was encountered at depths ranging from 0.30 m to 3.80 m and extended to depths ranging from 0.75 m to 4.60 m. The silt was classified as brown, and very loose to compact. The moisture content of the silt ranged from 10.9% to 23.5% with an average of 18.6%.

4.1.6 Fat CLAY (CH)

Fat CLAY (CH) was encountered directly below the clay fill in TH24-01, TH24-02, TH24-05, TH24-13 to TH24-16, TH24-18, TH24-19, TH24-20, and TH24-22. In TH24-03, TH24-04, TH24-06 to TH24-12, and TH24-17 the fat CLAY (CH) was encountered directly below the silt (ML) layer. The fat CLAY (CH) ranged in thickness from approximately 4.25 m (TH24-06) to 9.50 m (TH24-09). It was encountered at depths ranging from 0.75 m to 4.60 m and extended to depths ranging from 7.60 m to 12.20 m. The fat clay was high in plasticity and began as brown firm to stiff clay and

transitioned to grey and very soft to soft with depth. The moisture content of the fat clay ranged from 18.1% to 65.3% with an average of 39.2%.

4.1.7 Poorly Graded SAND (SP) TILL

Poorly graded SAND (SP) till was encountered below the fat CLAY (CH) in TH24-01 to TH24-17. The poorly graded SAND (SP) till was encountered at depths ranging from 7.60 m to 12.20 m and extended to depths up to 20.15 m. Auger refusal was met in the poorly graded SAND (SP) till early in this range, and required coring methods to reach the 20.15 m. The poorly graded SAND (SP) till was grey to tan in colour. Standard Penetration Tests (SPTs) completed within the poorly graded SAND (SP) till show uncorrected "N" values ranging from 9 to >50 per 300 mm of penetration, classifying the materials as loose to very dense in relative density. The moisture content ranged from 6.8% to 19.7% with an average of 12.3%. In the poorly graded SAND (SP) till layer, it was common to find cobbles and boulders.

4.1.8 Bedrock

Bedrock (BR) was encountered below the poorly graded SAND (SP) till in cored testholes; TH24-01, TH24-03, TH24-09, TH24-12, and TH24-15. Two different types of rock were observed in the coring, the first being mudstone; a Gunn Member of the Stony Mountain Formation, and Dolomite; a Gunton Member of the Stoney Mountain Formation. The mudstone was observed at elevations ranging from 223.19 m ASL to beyond 216.79 m ASL. The mudstone was dark greyish red to purplish grey, with calcareous shale to argillaceous dolomite, and was interbedded with relatively clean limestone. The dolomite was observed at elevations ranging from 218.09 m ASL and extended to elevations beyond 212.30 m ASL. The dolomite was buff in colour, finely crystalline, sparsely fossiliferous, and nodular bedded. The quality and strength of the bedrock varied significantly which will be discussed further in **Section 4.3. Section 4.3.1** describes the total core recovery (TCR), **Section 4.3.2** describes the solid core recovery (SCR), **Section 4.3.3** describes the rock quality designation (RQD), and **Section 4.3.4** describes the bedrock classification results.

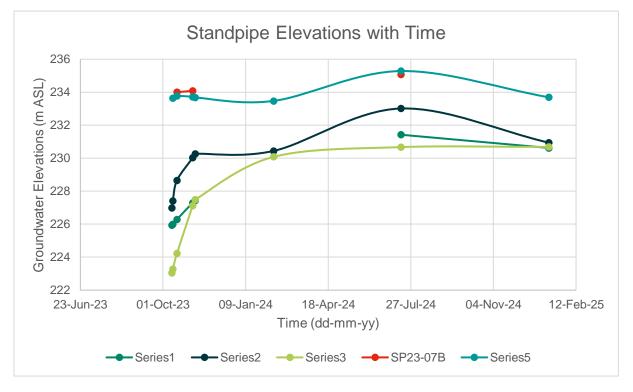
4.1.9 Groundwater and Sloughing Conditions

Groundwater seepage or soil sloughing conditions were observed in most testholes upon completion of drilling. Details of the location and nature of the sloughing, seepage, and groundwater encountered are provided on the testhole logs in **Appendix C** and presented in **Table 1**.

Testhole No.	Groundwater Seepage	Depth of Groundwater Seepage (m)	Groundwater Depth Upon Completion of Drilling (m)	Depth of Soil Sloughing
TH24-01	Heavy	8.53	Unavailable ¹	10.36
TH24-02	Heavy	8.53	7.47	None
TH24-03	Heavy	9.14	Unavailable ¹	10.97
TH24-04	Heavy	10.06	9.14	9.14
TH24-05	Heavy	9.14	None	9.14
TH24-06	Heavy	8.84	None	2.13
TH24-07	Heavy	9.14	4.11	2.44 and 10.67
TH24-08	Heavy	9.75	7.77	3.05 and 10.67
TH24-09	Heavy	9.14	Unavailable ¹	3.35
TH24-10	Heavy	9.14	3.69	3.05 and 10.67
TH24-11	Heavy	6.10	4.42	None
TH24-12	Heavy	9.14	Unavailable ¹	10.36
TH24-13	Heavy	12.19	4.79	12.19
TH24-14	None	None	5.33	None
TH24-15	Heavy	12.19	Unavailable ¹	None
TH24-16	Heavy	10.67	6.10	2.13
TH24-17	None	None	None	1.83
TH24-18	None	None	None	None

Table 1 - Observed Groundwater Seepage and Sloughing Conditions

TH24-19	None	None	None	None
TH24-20	None	None	None	None
TH24-21	None	None	None	None
TH24-22	None	None	None	None


(1) Unavailable due to coring method

Groundwater readings were taken upon completion of the testhole drilling utilizing the standpipes installed by TREK Geotechnical at the project site in 2023. Additional groundwater readings were recorded in the summer of 2024. The readings recorded are summarized in **Table 2**.

			Gr	oundwater E	levation (m	ASL)			
Standpipe	Stratum/Tip El.	Oct. 12, 2023	Oct. 13, 2023	Oct. 18, 2023	Nov. 6, 2023	Nov. 9, 2023	Feb. 12, 2024	Jul. 15, 2024	Jan. 10, 2025
SP23-05	poorly graded sand till/224.84	225.93	225.99	226.29	227.30	227.43	dry	231.42	230.62
SP23-06	poorly graded sand till/225.33	226.99	227.42	228.66	230.02	230.26	230.44	233.01	230.94
SP23-07A	poorly graded sand till/223.80	223.04	223.28	224.23	227.12	227.48	230.08	230.67	230.68
SP23-07B	Silt / 233.81	dry	dry	234.00	234.08	dry	dry	235.08	234.02
SP23-08	Silt / 232.82	dry	233.64	233.77	233.72	233.68	233.47	235.28	233.69

Table 2 - Groundwater Readings

A graphical summary of these results are provided in Figure 1.

Figure 1 - Graph of Groundwater Elevations Versus Time

Only short-term seepage and sloughing conditions were observed in the testholes. Groundwater levels will normally fluctuate during the year and will be dependent on precipitation, surface drainage, and regional groundwater regimes. Groundwater seepage and soil sloughing should be expected from the SILT (ML) layer and the poorly graded SAND (SP) till layer.

4.2 Laboratory Test Results

A variety of laboratory testing was performed on select samples collected from the field drilling program. Moisture content tests were conducted on soil samples recovered from the testholes with the moisture content (ASTM D2216) test results shown on the testhole records provided in **Appendix C**. Select representative soil samples were also tested for particle size analysis (ASTM D422), Atterberg limits (ASTM D4318), one-dimensional consolidation (ASTM D2435), one-dimensional swell (ASTM 4546), unconfined compressive strength soil (ASTM D2166) and unconfined compressive strength of intact rock core specimen (ASTM D2938), standard proctor (ASTM D698), and CBR (ASTM D1883).

Table 3 - Particle Size Analysis

			Particle Size				
Testhole No.	Sample Depth	Soil Type	Gravel 75 to 4.75 mm	Sand <4.75 to 0.075 mm	Silt <0.075 to 0.002 mm	Clay <0.002 mm	
TH24-02	8.99 – 9.14 m	CL	0.8%	8.0%	69.4%	21.8%	
TH24-03	4.42 – 4.57 m	СН	0.0%	1.1%	25.9%	73.0%	
TH24-04 ¹	3.05 – 3.66 m	СН	0.0%	0.7%	18.3%	81.0%	
TH24-05 ¹	1.52 – 2.13	СН	0.0%	1.6%	19.5%	78.9%	
TH24-05 ¹	2.29 - 2.90	СН	0.0%	0.6%	25.9%	73.5%	
TH24-07	2.90 – 3.05 m	ML	0.0%	11.0%	81.1%	7.9%	
TH24-08 ¹	9.14 – 9.75 m	СН	0.0%	6.7%	29.8%	63.5%	
TH24-11 ¹	6.10 – 6.71 m	СН	0.0%	0.7%	26.6%	72.7%	
TH24-12	1.37 – 1.52 m	СН	5.9%	27.7%	33.9%	32.5%	
TH24-13	10.52 m – 10.67 m	СН	1.6%	11.3%	43.7%	43.3%	
TH24-14 ¹	1.52 – 2.13 m	CL	8.7%	29.7%	31.1%	30.5%	
TH24-16	0.61 – 0.76 m	ML	0.3%	11.6%	75.5%	12.5%	
TH24-18	0.61 – 0.76 m	CL	10.3%	45.9%	28.3%	15.5%	

Note: Testing conducting by Solum Consultants Ltd

Table 4 - Atterberg Limits Test Data

Testhole No.	Sample Depth	Soil Type	Liquid Limit	Plastic Limit	Plasticity Index	Activity
TH24-02	8.99 – 9.14 m	CL	24	14	10	0.46
TH24-03	4.42 – 4.57 m	СН	79	21	57	0.78
TH24-04 ¹	3.05 – 3.66 m	СН	92	34	58	0.72
TH24-05 ¹	1.52 – 2.13	СН	73	30	43	0.54
TH24-05 ¹	2.29 – 2.90	СН	81	32	49	0.67
TH24-07	2.90 – 3.05 m	ML	16	14	2	0.25
TH24-08 ¹	9.14 – 9.75 m	СН	65	24	41	0.65
TH24-11 ¹	6.10 – 6.71 m	СН	81	31	50	0.69
TH24-12	1.37 – 1.52 m	СН	50	15	36	1.11
TH24-13	10.52 – 10.67 m	СН	56	14	42	0.97
TH24-14 ¹	1.52 – 2.13 m	CL	41	21	20	0.66
TH24-16	0.61 – 0.76 m	ML	17	14	3	0.24
TH24-18	0.61 – 0.76 m	CL	32	15	18	1.16

Note: Testing conducting by Solum Consultants Ltd

Testhole No.	Sample Depth	Saturation (%)	Moisture Content (%)	Initial Void Ratio	Compression Index (kPa)	Preconsolidation Pressure (kPa)
TH24-04	3.05 – 3.66 m	97.3	48.3	1.341	0.56	177
TH24-05	1.52 – 2.13 m	97.4	42.9	1.190	0.28	153
TH24-05	2.29 – 2.90 m	97.3	48.7	1.350	0.36	154
TH24-08	9.14 – 9.75 m	98.2	43.2	1.188	0.49	117
TH24-11	6.10 – 6.71 m	97.4	50.4	1.395	0.63	217
TH24-14	1.52 – 2.13 m	96.1	19.7	0.554	0.08	109

Table 5 - One-Dimensional Consolidation Test Data

Table 6 - One-Dimensional Swell (Method C)

Testhole No.	Sample Depth	Swelling Pressure (kPa)	Unit Weight of Soil (kN/m ³)	Initial Void Ratio	Swelling Index
TH24-05	1.52 – 2.13 m	100	17.27	1.193	0.028
TH24-05	2.29 – 2.90 m	50	16.74	1.378	0.066
TH24-14	1.52 – 2.13 m	40	20.39	0.544	0.045

Table 7 - Unconfined Compressive Strength Test (Soil)

Testhole No.	Sample Depth	Soil Type	Moisture Content (%)	Undrained Shear Strength (kPa)	Unconfined Compressive Strength (kPa)
TH24-06	4.57 – 5.18 m	СН	57.8	36.46	72.92
TH24-06	6.10 – 6.71 m	СН	46.6	41.58	83.17
TH24-06	7.62 – 8.23 m	СН	39.8	25.76	51.53
TH24-07	4.57 – 5.18 m	СН	44.0	35.20	70.39
TH24-07	6.10 – 6.71 m	СН	60.5	35.06	70.12
TH24-07	7.62 – 8.23 m	СН	37.9	26.97	53.95
TH24-08	9.14 – 9.75 m	СН	43.6	21.04	42.09

Table 8 - Unconfined Compressive Strength of Intact Rock Core Specimens Results

_	Testhole No.	Sample Depth	Maximum Load (kN)	Compressive Strength (MPa)
	TH24-03	10.21 – 10.82 m	293.4	94
	TH24-01	18.29 – 18.59 m	106.6	34

Table 9 – Standard Proctor Results

Testhole No.	Sample Depth	Soil Type	Maximum Dry Density (kg/m³)	Optimum Moisture Content (%)
TH24-18.21.22 (B1)	0.3 – 1.5 m	Clay Fill	1707	19.1
TH24-19.20 (B2)	0.3 – 1.5 m	Clay Fill	1759	15.9

Table 10 – California Bearing Ration Results ⁽¹⁾

Testhole No.	Sample Depth	Soil Type	Dry Density (kg/m ³)	CBR at 2.54 mm	CBR at 5.08 mm
TH24-18.21.22 (B1)	0.3 – 1.5 m	Clay Fill	1622	3.3	2.5
TH24-19.20 (B2)	0.3 – 1.5 m	Clay Fill	1671	2.6	2.4

Note: CBRs tested at 95% of maximum dry density

Table 11 – Electrochemical Testing

Testhole	Sample	Sample Depth	Soil	Water Soluble	pН	Conductivity	Resistivity
ID	ID	(m)	Туре	Sulphate (%)	(pH Units)	(mS/cm)	(ohm · cm)

TH24-08	G3	1.37 – 1.52 m	Clay Fill	0.118	7.97	1.08	920
TH24-10	G8	4.42 – 4.57 m	СН	3.16	8.10	8.57	120
TH24-11	G11	7.47 – 7.62 m	СН	0.119	8.25	1.24	810

4.3 Bedrock Classification

The rock strength can be categorized with the unconfined compressive strength of the rock based on International Society of Rock Mechanics (ISRM) Standard (1979) as shown in **Table 12**. AECOM attempted to prepare six (6) rock specimens for the unconfined compressive strength of intact rock tests, however, the first three (3) samples (TH24-01 C16, TH24-03 C17 and TH24-15 C19) sent to the lab were unable to be processed due to the presences of horizontal and vertical microfractures. AECOM attempted to provide a second set of three (3) samples (TH24-03 C11, TH24-03 C16 and TH24-01 C18), TH24-03 C16 was unable to be processed due to microfractures, but TH24-01 C18 and TH24-03 C11 were processed for testing.

Table 12 – Rock Strength Categorization

Grade	Term	Unconfined Compressive Strength (MPa)
R6	Extremely Strong	>250
R5	Very Strong	100 – 250
R4	Strong	50 – 100
R3	Medium Strong	25 – 50
R2	Weak	5 – 25
R1	Very Weak	1 – 5
R0	Extremely Weak	0.25 – 1

The results of the testing of TH24-01 C18 sample was an unconfined compressive strength of 34 MPa, and the result for TH24-03 C11 was an unconfined compressive strength of 94 MPa. Due to the inability to process four (4) samples, and the results of the two (2) samples that were tested, AECOM can conclude the rock strength categorization was from extremely weak (R0) to strong (R4).

4.3.1 Total Core Recover (TCR)

Total core recovery (TCR) is the testhole core recovery percentage. TCR is expressed as follows:

$$TCR(\%) = \frac{sum of recovered core length}{total core length} x 100$$

The TCR was calculated for each bedrock core run advanced within the testholes. A summary of the TCR values is provided in **Table 14**. The TCR ranged from 0% to 100%.

4.3.2 Solid Core Recover (SCR)

Solid core recovery (SCR) is the testhole core recovery percentage of solid cylindrical rock. SCR is expressed as follows:

 $SCR(\%) = \frac{sum of recovered solid cylindrical core lengths}{total core length} x 100$

The SCR was calculated for each bedrock core run advanced within the testhole. A summary of the SCR values is provided in **Table 14**. The SCR ranged from 0% to 98%.

4.3.3 Rock Quality Designation (RQD)

RQD is based on the ISRM classification System. The RQD is an indirect measure of the number of fractures and the amount of jointing in the rock mass. The RQD is expressed as a percentage of the ratio of summed core lengths

(greater than 10 cm) to the total length cored. The RQD index is used to provide a classification of the rock quality shown in **Table 13**.

RQD (%)	Rock Quality Designation
0 – 25	Very Poor
25 - 50	Poor
50 – 75	Fair
75 – 90	Good
90 – 100	Excellent

Table 13 – Rock Classification Ranges

Rock quality designation (RQD) is expressed as follows:

 $RQD (\%) = \frac{sum of recovered core lengths greather than 10 cm}{total core length} x 100$

The RQD was calculated for each core run advanced within TH24-01, TH24-03, TH24-09, TH24-12, and TH24-15. A summary of the RQD values is provided below in **Table 14**. The RQD ranged from 0% to 94%.

4.3.4 Bedrock Classification Results

Based on the rock classification and laboratory test results, the encountered bedrock classification ranges from very poor to excellent quality, with a range of rock strength from extremely weak (R0) to strong (R4).

Testhole ID	Sample Number	Core Run No.	Core Run Depth (m bgs)	Elevation (m asl)	TCR (%)	SCR (%)	RQD (%)
	C16	4	15.24 – 16.76	219.60 – 218.08	98	93	51
TH24-01	C17	5	16.76 – 18.29	218.08 – 216.55	93	83	50
	C18	6	18.29 – 19.81	216.55 – 215.03	100	96	94
	C11	1	10.21 – 10.82	225.32 – 224.71	71	67	38
	C12	2	10.82 – 12.34	224.71 – 223.19	20	0	0
	C13	3	12.34 – 13.87	223.19 – 221.66	37	18	11
TH24-03	C14	4	13.87 – 15.39	221.66 – 220.14	57	37	23
	C15	5	15.39 – 16.92	220.14 – 218.61	98	95	72
	C16	6	16.92 – 18.44	218.61 – 217.09	93	82	52
	C17	7	18.44 – 19.96	217.09 – 215.57	100	98	93
	C11	1	10.97 – 12.50	225.94 – 224.41	21	21	21
TH23-09	C15	5	17.07 – 18.59	219.84 – 218.32	50	50	31
	C16	6	18.59 – 20.12	218.32 – 216.79	25	21	21
	C16	3	15.54 – 17.07	222.39 - 220.86	65	56	15
	C17	4	17.07 – 18.59	220.86 - 219.34	40	32	25
	C18	5	18.59 – 20.12	219.34 – 217.81	28	8	8
TH24-12	C19	6	20.12 - 21.64	217.81 – 216.29	71	46	23
	C20	7	21.64 – 23.16	216.29 – 214.77	92	43	31
	C21	8	23.16 – 24.69	214.77 – 213.24	66	37	13
	C22	9	24.69 – 25.76	213.24 – 212.17	88	30	30
	C13	2	14.02 – 15.54	224.19 – 222.67	62	22	12
	C14	3	15.54 – 17.07	222.67 – 221.14	27	7	7
	C15	4	17.07 – 18.59	221.14 – 219.62	4	0	0
TH24-15	C16	5	18.59 – 20.12	219.62 – 218.09	36	3	0
	C17	6	20.12 - 21.64	218.09 – 216.57	70	23	0
	C18	7	21.64 – 23.16	216.57 – 215.05	95	63	45
	C19	8	23.16 - 24.69	215.05 – 213.52	92	52	33

Table 14 – TCR, SCR, and RQD Results

24.69 - 26.21

C20

9

<u>TH24-01:</u> required coring to advance through three (3) core runs of till, where it eventually reached the mudstone layer. The mudstone layer was classified as poor to fair quality. After one and half (1.5) core runs the dolomite was met, and a classification of excellent rock was deemed after passing through the first half (0.5) core run. During coring water was observed to be returning.

213.52 - 212.00

26

88

13

<u>TH24-03:</u> immediately began with fractured dolomite rock for the first three (3) core runs. The recovery was weak, and the rock classification was very poor to poor. The next two and half (2.5) core runs were through the mudstone and had an improved recovery. The mudstone classification ranged from very poor to fair quality. The last one and a half (1.5) core runs were through the dolomite layer. There was excellent recovery of this material and the rock quality ranged from fair to excellent. During coring water was observed to be returning.

<u>TH24-09</u>: the first core run was likely through a boulder, as the following three (3) core runs resulted in zero recovery. The zero recovery was likely due to a sand seam layer. The sand seam was approximately 4.57 m thick, at an approximate depth of 225.5 m ASL to 220.2 m ASL. The final two (2) core runs resulted in mudstone intermixed with sand. The recovery of the material was poor, and the rock classification resulted in very poor to poor quality. The coring was stopped at a depth of 217.2 m ASL due to multiple jams in the sand and mudstone layers and the risk of losing the coring equipment within this layer. During coring water was observed to be returning, although at lower volumes than other testholes.

<u>TH24-12</u>: the first two (2) core runs were required to pass the very dense till. Following the till four (4) core runs were required to pass through the mudstone layer. The mudstone layer had very poor to fair recovery resulting in a rock classification of very poor to poor. The final three (3) core runs were in very poor to poor dolomite, with the final core meeting another sand seam layer of a thickness of approximately 1.75 m. The testhole was stopped due to the inability to reach good to excellent bedrock quality at an approximate elevation of 212.2 m ASL (approximate depth of 25.75 m BGS). During coring water was observed to be returning, although at lower volumes than other testholes.

<u>TH24-15:</u> had just over one (1) core run of till before immediately meeting fractured bedrock. There was four (4) runs of this fractured bedrock material that resulted in very poor rock quality. At the sixth (6) core run dolomite was met, a total of five (5) cores were run in the dolomite with a rock quality of very poor to poor. During coring water was observed to be returning.

5. Geotechnical Concerns

Based on our current understanding of the proposed development and the results of our geotechnical investigation, the primary geotechnical concerns at the project site are:

- Potential soil sloughing and groundwater seepage from the SILT (ML) layer during installation of cast-in-place friction piles. The distance between the till and the bottom of the cast-in-place friction pile is highly variable. A pile inspector will be required onsite, and a means to control any developing groundwater, is needed;
- Based on the water levels collected, the water table was observed as high as 235.28 m ASL. This is a perched water table (water trapped within the silt layer) and will affect the design and construction methods. The FFE of 235.3 m ASL approaches the perched water table expected in the silt layer observed during the geotechnical investigation.
- Variable depths to refusal for driven precast concrete piles and driven steel H-piles due to the presence of cobbles and boulders within the poorly graded SAND (SP) till and variations in bedrock depth;
- Floor slab movement related to volume change of the high plasticity clay fill and clay.
- The proposed above ground employee parking lot location has changed since the proposed drilling plan was submitted and the field investigation took place. This new location is directly above the existing landfill. Limited geotechnical testhole data was documented in this location.

These issues will be discussed in the following sections.

6. Recommendations

6.1 Perimeter Clay Cutoff Wall

A perimeter clay cutoff wall shall be excavated around the perimeter of the building to a depth below the bottom of the silt layer. Silt was observed in testholes during the geotechnical investigation as low as 231.07 m ASL. The trench should be excavated 0.30 m below the silt layer. This would bring the bottom elevation of the trench to approximately 230.77 m ASL. This elevation was based off the lowest silt elevation observed in the testhole data, this bottom elevation will change based on field conditions observed during construction. The perimeter clay cutoff wall should have a 1 m width.

The cutoff wall should be backfilled with a low permeability clay fill, to prevent the water from the perched water table within the silt layer from migrating to beneath the structure. The clay fill shall be placed in lifts no greater than 150 mm and compacted to 98% SPMDD. 1.0 m from the surface, the excavation shall be tapered at a 1H:1V slope, to reduce the impact of the excavation on the above asphalt/concrete roadways.

6.2 Weeping Tile

Due to the groundwater elevation, weeping tile is required. The main concern is the groundwater table was recorded as high as 235.28 m ASL. This is right at the FFE of 235.3 m ASL. As such, the geotechnical group recommends weeping tile within the entire building footprint. The weeping tile shall drain in the direction from southwest to northeast towards Oak Point Highway where it should meet a sump. The recommended weeping tile spacing is at 15.00 m, however, the spacing of the weeping tile may be increased depending on observations during construction. The weeping tile is recommended to be placed at an elevation of 233.2 m ASL (2.10 m below FFE). The weeping tile will need to discharge into a sump and the water needs to be pumped away.

The City of Winnipeg has standard construction specifications (CW3120) for installation of subdrains. The drainage pipe states a diameter of 150 mm gasketed bell and spigot HDPE Type SP pipe with class 2 perforations in accordance with AASHTO M252-07. All perforations shall be slotted with a minimum water inlet area of 30 square centimeters per meter of pipe. The drainage pipe shall have a minimum stiffness of 320 kPa at 5% deflection. The weeping tile shall include a filter sock to prevent fine materials from entering the pipe. A City of Winnipeg subdrain installation detail is available per SD-245.

The weeping tile shall be surrounded by a free-draining gravel material that meets the gradation in Table 15.

Canadian Metric Sieve Size (um)	Percent of Total Dry Weight Passing Each Sieve
40,000	100%
25,000	50-80%
20,000	5-20%
12,500	0-5%
80	0-3%

Table 15 – Drainage Material Grading Requirements

The free draining gravel placed around the weeping tile should be wrapped in a geotextile that meets or exceed the requirements of separation geotextile fabric in CW3130.

Once the weeping tile is installed there must be a means to temporarily remove the water. It is recommended that the weeping tile beneath the office and service area be connected to either a sump or to the floor drain system.

6.3 Foundation Design

Based on the soil and groundwater conditions encountered at the testhole locations, several foundation options were evaluated. Design parameters for cast-in-place concrete friction piles, driven precast concrete piles, and driven steel H-piles are provided in the following sections. It is generally recommended that different foundation systems not be used to support the same structure unless they are used to support independent structural elements of the structure.

6.3.1 Limit States Design

The use of Limit States Design (LSD) is required for the design of buildings and their structural components including foundations according to the 2020 National Building Code of Canada (NBCC). The limit states are classified into two groups: the Ultimate Limit State (ULS) and the Serviceability Limit State (SLS).

The Ultimate Limit State case is primarily concerned with structural collapse and hence, safety. For foundation design, ultimate limit state consists of:

- Exceeding the load-carrying capacity of the foundation;
- Sliding;
- Uplift;
- Large deformation of foundation, leading to an ultimate limit state being induced in the superstructure or building;
- Overturning; and,
- Loss of overall stability.

The factored resistance at the ULS is the ultimate geotechnical resistance multiplied by the appropriate resistance factor.

The Serviceability Limit State (SLS) case considers mechanisms that restrict or constrain the intended use or occupancy of the structure. They are typically associated with movements that interrupt or hinder the purpose of the structure. For foundation design, serviceability limit state consists of:

- Excessive movements; and,
- Unacceptable vibrations.

The SLS case is addressed by determining the maximum available resistance to keep the foundation under service loads within tolerable limits as provided by the structural engineer. Unfactored permanent and transitory loads are used for calculating total deformation in non-cohesive soils. Unfactored permanent loads and appropriate portions of transitory loads are used for the initial and time-dependent final deformations of cohesive soils. Therefore, the foundation loads and serviceability tolerances must be known to properly determine the SLS resistance values. In cases where tolerable movements are not provided by the structural engineer, the tolerable limit of the total settlement for foundations subject to compression is typically assumed to be 25 mm.

6.3.2 Frost

6.3.2.1 Frost Penetration

The depths of frost penetration have been estimated for a range of annual air freezing identified in **Table 16**. The annual average freezing index was inferred from Figure K-4 of the National Building Code of Canada (2020) Commentary document. The ten-year return annual freezing index was calculated using the mean annual freezing index value and recommendations outlined in the Canadian Foundation Engineering Manual (CFEM 4e). The fifty-year return annual freezing index was taken from Figure K-5 of the National Building Code of Canada (2020) Commentary document.

Factors such as snow cover, vegetation at surface, soil type and groundwater conditions can all significantly impact the depth of frost penetration. The predominant soil type on the project site is fat clay.

Demonster	Period		
Parameter	Mean	10-Year Return	50-Year Return
Annual Air Freezing Index (°C-days)	1825	1875	2375
Estimated Frost Penetration (Fat Clay Subgrade) – gravel surface, no snow cover (m)	1.9	2.0	2.5
Estimated Frost Penetration (Fat Clay Subgrade) – grass with snow cover (m)	1.7	1.9	2.2

Table 16 – Frost Penetration Depth

For foundation design considerations, the CFEM recommends using the ten-year return annual freezing index to predict frost penetration. It is the responsibility of the design team to select an adequate frost penetration depth to be incorporated into the design.

6.3.2.2 Frost Susceptibility

The qualitative frost susceptibility of a soil is typically assessed using guidelines developed by Casagrande (1932) based on the percentage by weight of the soil finer than 0.02 mm, and the Plasticity Index. The classification system has been adapted by the U.S. Army Corps of Engineers and the Canadian Foundation Engineering Manual (2006). Soils are classed as F1 through F4 in order of increasing frost susceptibility.

The soils (fat clay and silt) encountered during the geotechnical investigation fall mostly within the frost groups F3 and F4. The F3 group has high to very high susceptibility to frost and F4 has very high susceptibility. Frost susceptibility has been assigned to the encountered soil type and is summarized in **Table 17**.

Table 17 – Frost Susceptibility

Soil Unit	USCS Soil Type	Frost Group	Frost Susceptibility
Sand fill	SM	F2	Medium to high susceptibility
Fat clay/Fat clay fill	СН	F3	High to very high susceptibility
Silt	ML	F4	Very high susceptibility

(1) Source: Canadian Foundation Engineering Manual (CFEM, 4e), Chapter 13 Frost Action

6.3.3 Adfreezing

Frozen soil in contact with foundation elements can develop an adfreeze bond which can result in uplift forces on the foundations. The CFEM (Canadian Foundation Engineering Manual, 4e) lists adfreeze bond stresses of 100 kPa for fine grained soils to steel and 65 kPa for fine grained soils to concrete.

This adfreeze stress should be applied to the perimeter of the piles for unheated structures to a depth of 2.0 m measured from final grade. The uplift forces from adfreeze stresses are resisted by the permanent dead load of the structure plus the uplift resistance of the foundation element. More details are provided in **Sections 6.3.4**, **6.3.5** and **6.3.6**.

6.3.4 Cast-in-Place Friction Piles

Cast-in-place concrete friction piles may be a suitable foundation option to support buildings at the project site. Castin-place concrete friction piles can support light loads and may be designed based on the shaft resistance shown in **Table 18**.

Elevation FFE = 235.3 (m ASL)	Depth Interval Below Existing Grade (m)	Factored Geotechnical Shaft Resistance in Axial Compression at ULS ⁽¹⁾ RF = 0.4	Factored Geotechnical Shaft Resistance in Axial Tension at ULS ⁽²⁾ RF = 0.3
235.3 to 233.3	0 to 2.0 ⁽³⁾	0 kPa	0 kPa
233.3 to 229.3	2.0 to 6.0 ⁽⁴⁾	16 kPa	12 kPa

Table 18 – Geotechnical Shaft Resistance for Cast-in-Place Concrete Friction Piles

Notes:

- (1) As per 2020 NBCC, a resistance factor of 0.4 is used for calculating the factored geotechnical shaft resistance in compression at ULS.
- (2) As per 2020 NBCC, a resistance factor of 0.3 is used for calculating the factored geotechnical shaft resistance in Axial Tension at ULS.
- (3) The skin friction in the upper 2.0 m should be ignored.
- (4) The fat CLAY (CH) layer extended to an elevation range of approximately 228.30 m ASL to 224.93 m ASL based on testholes TH24-01 to TH24-15.

For friction piles, less than 15 mm of settlement is required to mobilize shaft resistance, and therefore, the SLS case does not govern the pile design.

The shaft resistance value applied to the pile circumference within the clay stratum over the depth intervals indicated in **Table 18**. Due to presence of fill (clay fill) at a shallow depth, the potential for soil drying and shrinkage near the ground surface may occur. The frictional support in the upper 2.0 m should be excluded in the calculation of the pile capacity. The contribution from end bearing should be ignored in pile capacity calculations.

The minimum pile spacing should be three pile diameters measured centre to centre to avoid pile group effects. If cast-in-place floating piles will be considered, a detailed settlement analysis for a pile group based on foundation load will be required. If pile spacing is less than three pile diameters, additional analyses will be required to evaluate the settlement and capacity of the pile group. Settlement calculations for a pile group is based on the foundation load and the consolidation properties of the soil below the base of the piles. The capacity of a pile group is reduced as the pile spacing is decreased.

Sloughing was observed in the silt (ML) layer in TH24-07 to TH24-10, TH24-16, and TH24-17, at depths ranging from 233.467 m ASL to 233.863 m ASL. Groundwater was observed in poorly graded SAND (SP) till in TH24-02, TH24-04, TH24-05, TH24-07, TH24-08, TH24-10, TH24-11, TH24-13, TH24-16, ranging from depths from 224.933 m ASL to 227.082 m ASL. Temporary sleeves should be available during pile installation to control soil sloughing and groundwater seepage. It should be noted based on water level readings in SP23-07B and SP23-8, a perched groundwater table was observed in the silt (ML) layer. If groundwater is encountered in the piles, it should be removed prior to concrete placement with the use of a pumping system. If the removal of groundwater is not possible by a pumping system, the contractor may need to remove the water by way of a tremie method. The pile holes should be inspected during installation and the concrete for the piles should be poured immediately after drilling to minimize potential problems related to soil sloughing and water seepage. Pile reinforcement, diameter and length should be confirmed by an inspector. It is recommended that pile lengths do not exceed 6.0 m below the FFE to reduce the risk of encountering poorly graded SAND (SP) till during pile installation.

A minimum void space of 150 mm should be provided beneath all pile caps and grade beams to accommodate potential heave of the high plasticity clay and clay fill. Inspection by qualified geotechnical personnel should be approved during foundation construction to confirm that the cast-in-place concrete friction piles are constructed in accordance with the project specifications.

Boring for the construction of cast-in-place concrete friction piles will produce auger cuttings that will need to be disposed of. Piles for the new structures should be spaced a minimum of three pile diameters from the foundations of the existing structures. It is generally recommended that different foundation systems not be used to support the same structure unless they are used to support independent structural elements of the structure.

6.3.5 Driven Precast Concrete

A foundation system suitable for moderate to heavy foundation loads is a system of driven, pre-stressed, precast concrete piles. These piles, when driven to practical refusal with a hammer capable of delivering a minimum rated energy of 40 kJ per blow, may be designed based on the factored geotechnical axial compression resistances and axial tension resistances shown in **Table 19**.

Table 19 – Geotechnical Axial Resistance for Precast Concrete Piles

Nominal Pile Size	Factored Geotechnical Resistance in Axial Compression at ULS $^{(1)}$ Φ = 0.4	Factored Geotechnical Resistance in Axial Tension at ULS $^{(2)(3)}$ Φ = 0.3	Refusal Criteria
305 mm	550 kN	46 kN	5 blow/25 mm
356 mm	750 kN	54 kN	8 blow/25 mm
406 mm	1000 kN	61 kN	12 blow/25 mm

Notes:

(1) As per 2020 NBCC, a resistance factor of 0.4 is used for calculating the factored geotechnical shaft resistance in compression at ULS.

(2) As per 2020 NBCC, a resistance factor of 0.3 is used for calculating the factored geotechnical shaft resistance in Axial Tension at ULS.

(3) Due to variability in the thickness of clay, an assumption was made for the worst case scenario (TH24-06) of 4 m of clay.

For piles end-bearing on dense till or bedrock, SLS conditions generally do not govern the design since the loads required to induce 25 mm of movement (i.e., the typical SLS criteria) exceed those at ULS.

Assuming a unit adfreeze bond of 65 kPa in the upper 2.0 m of precast concrete piles in unheated areas, uplift forces from frost adfreeze of 125 kN, 146 kN, and 166 kN are possible for pile sizes of 305 mm, 356 mm, and 406 mm, respectively. It should be noted by the structural engineer that these provided uplift forces have not been factored, and the structural engineer must apply the proper load factors. If piles are left for a period of time during winter conditions, risk of the piles heaving due to frost heave is possible. It is the responsibility of the structural engineer to consider this heave potential and design for it.

The refusal criteria indicated in **Table 19** should be achieved at least three times for the final resistance. Pre-boring to a depth of approximately 2.0 m should be considered for all driven piles to enhance pile alignment, and limit vibrations. The pre-bored hole diameter should be slightly larger than the nominal pile diameter. Pre-boring the pile locations will reduce the lateral support along the pre-bored depth of the pile. To maintain lateral support along the pile, the annulus (i.e., space between the pile and the pre-bored soil) should be filled with grout.

All piles should be driven continuously to their required depth once driving is initiated. Pile heave for piles within five pile diameters of each other should be monitored and re-driving should be done where pile heave occurs. Pile spacing should not be less than 2.5 pile diameters, measured center to center. In the Winnipeg area, precast concrete piles driven to practical refusal will develop most of their capacity from toe resistance, and therefore, a reduction in pile capacity is generally not required for group action. Settlement beyond the elastic compression of the pile is expected to be less than 10 mm with an end-bearing pile system for the anticipated geotechnical axial resistance.

Auger refusal was encountered at depths ranging from 223 m ASL to 226 m ASL. From observations made during drilling, auger refusal was encountered in dense till with cobbles and boulders in all testholes. In our experience in the Winnipeg area, driven precast concrete piles will typically reach the required refusal criteria at the depth of auger refusal on suspected dense till with cobbles and boulders (i.e., depths of 223 m ASL to 226 m ASL).

The depth of pile penetration at the project site will depend on localized till and bedrock conditions. Sand seams were noted within the bedrock layer in several testholes. Pile tip elevations may vary considerably throughout the project site. The poorly graded SAND (SP) till was encountered at depths ranging from 224.93 m ASL to 228.30 m ASL and extended to elevations ranging from 218.09 m ASL to 223.19 m ASL. Cobbles and boulders were both encountered during the site investigation; thus, cobbles and boulders may be encountered within the poorly graded SAND (SP) till layer during pile installation. There is therefore potential for piles to refuse in poorly graded SAND (SP) till due to presence of boulders and develop insufficient lateral capacity. The foundation contractor and structural engineer

should be prepared to adapt the pile layout should piles refuse at a shallower depth than required by the structural engineering design.

A minimum void space of 150 mm should be provided beneath all pile caps and grade beams to accommodate potential heave of the high plasticity clay. To ensure that the piles achieve their design capacities, full time inspection by AECOM geotechnical personnel is recommended during pile installation. It is generally recommended that different foundation systems not be used to support the same structure unless they are used to support independent structural elements of the structure.

6.3.6 Driven Steel H-Piles

6.3.6.1 Pile Capacity

The capacity of steel H-piles driven to practical refusal on the underlying bedrock could potentially approach the structural capacity of the steel member. Based on the field drilling program, the poorly graded SAND (SP) till thickness and depth to bedrock were highly variable, and sand seams were noted within the bedrock layer in several testholes, therefore the piling contractor should perform test piles to gain a thorough understanding of the pile refusal criteria. Based on AECOM's experience, it has been observed that the capacities of steel H-piles driven to practical refusal on dense till or fractured bedrock materials are generally within the range of 40% to 60% of the structural capacity of the steel member. It is assumed that the ultimate axial capacity is assumed to be 50% of the structural capacity of the steel, therefore:

$$Q_u = 0.5A_t F_y'$$

Where:

 $A_t = 0.0141 \text{ m}^2$ for HP310x110 and 0.0222 m² for HP360x174 (cross sectional area of the pile tip). F_y' = 350 Mpa (yield stress of the pile).

For driven HP 310x110 piles and HP 360x174 piles, potential axial compression capacities at ULS based on 50% of the structural capacity of the steel are given in **Table 20**.

		Pile Embedment Length Range	Axial Compr	ession at ULS	Axial Tension at ULS
Pile Size	Below Existing Grade ⁽¹⁾	RF = 0.4 ⁽²⁾	RF = 0.5 ⁽³⁾⁽⁵⁾	RF = 0.3 ^{(4) (6)}	
	HP310 x 110	Highly Variable	987 kN	1234 kN	59
	HP360 x 174 Highly Variable		1554 kN	1943 kN	71

Table 20 – Driven Steel H-Pile Capacity Based on Structural Strength

(1) High variability was the result of inconsistent poorly graded SAND (SP) till thicknesses, soft mudstone layers, poor core recovery, and poor rock quality (RQD) obtained.

(2) As per 2020 NBCC, when semi-empirical analysis using laboratory and in situ test data is available, a resistance factor of 0.4 is used for calculating the geotechnical shaft resistance in compression at ULS.

(3) As per 2020 NBCC, when analysis using dynamic monitoring results is available, a resistance factor of 0.5 is used for calculating the factored geotechnical shaft resistance in compression at ULS.

(4) As per 2020 NBCC, when uplift resistance by semi-empirical analysis is available, a resistance factor of 0.3 is used for calculating the factored geotechnical shaft resistance in tension at ULS.

(5) To use axial compression at ULS value using an RF of 0.5, PDA must be completed on at least 5% of the production piles.

(6) Due to variability in the thickness of clay, an assumption was made for the worst case scenario (TH24-06) of 4 m of clay.

As stated above, SLS conditions generally do not govern the design since the loads required to induce 25 mm of movement exceed those at ULS. Vertical settlements of steel H-piles driven to refusal are expected to be negligible.

Assuming a unit adfreeze bond of 100 kPa in the upper 2.0 m of steel HP310x110 and HP360x174 piles in unheated areas, uplift forces from frost adhesion of 365 kN and 439 kN, respectively are possible. It should be noted by the structural engineer that these provided uplift forces have not been factored, and the structural engineer must apply the proper load factors. This capacity does not include the buoyant weight of the pile or potential permanent loading.

The estimated axial pile capacities for the driven steel HP310x110 and HP360x174 piles given in **Table 20** have been based on the following assumptions:

- 1. For the calculations of resistance in axial tension at ULS (excluding adfreeze) and frost adhesion uplift resistance, the frictional capacity in the upper 2.0 m of the pile has been ignored to account for potential soil drying and shrinking near the ground surface.
- 2. Geotechnical resistance factors (RF) of 0.4 and 0.5 for axial compression and 0.3 for axial tension have been used as per the NBCC (2020).
- 3. To use the axial compression at ULS value using an RF of 0.5, Pile Driving Analyzer (PDA) testing must be completed on at least 5% of the production piles. Refer to **Section 6.3.6.4** for complete details.
- 4. A minimum of void space of 150 mm should be provided beneath all structural elements to accommodate potential heave of the high plasticity clay fill and clay.

The piles should be driven with a minimum pile spacing of 2.5 pile diameters measured center to center within pile groups. Pile heave should be monitored, and piles should be re-driven when pile heave is observed. Pile heave more than 10 mm require redriving of the piles. A surveyor should record the pile elevations upon completion of pile driving, to correct the pile heave, if needed.

To help minimize the damage to the end of the pile during the driving process, a driving shoe should be installed at the end of each pile. The driving shoe should not extend beyond the pile perimeter tip area of the steel H-pile to prevent disturbance of the soils during installation of the pile.

6.3.6.2 Pile Type

Prior to the pile installation, the piles should be inspected to confirm that the material specifications are satisfied. As a minimum, steel piles should meet the requirements of CAN/CSA-G40.20/G40.21, Grade 350W. The piles should be free from protrusions, which could create voids in the soil around the pile during driving.

6.3.6.3 Pile Driving Criteria

During the installation of the driven steel piles, the maximum compression and tension stresses developed within any pile (commonly referred to as the driving stresses) should be limited to $0.9F'_{y}$.

The hammer energy delivered to the pile head for driving the steel piles should be a minimum of 60 kJ for piles based on structural strength. This hammer energy is for a hydraulic hammer. For other hammer types, the required energy may vary depending on the energy transfer ratio.

On a preliminary basis, the definition of practical refusal may be taken as 15 blows per each 25 mm interval for three consecutive sets. The driving criteria can be developed using a wave equation analysis program (GRLWEAP) once the hammer type, hammer energy and pile type are confirmed, and the pile loads have been proven by PDA tests.

6.3.6.4 Pile Driving Analyzer Tests

To use a geotechnical resistance factor of 0.5 for axial compression, Pile Driving Analyzer (PDA) tests must be conducted on approximately 5% of the piles during installation. These tests should be performed both at the end of initial drive (EOID) of the pile and at the beginning of restrike (BOR) of the pile to ensure that the piles reach and maintain the specified capacity. At EOID, the piles should be driven to the design depth. If piles do not reach their expected capacity at EOID, the piles will be tested at BOR after a period of 24 to 72 hours. The energy for BOR pile tests shall be determined prior to BOR pile testing.

The designer should get Case Pile Wave Analysis Program (CAPWAP) analyses performed in conjunction with PDA tests during pile installation monitoring to confirm expected axial pile capacities.

6.3.6.5 Pile Installation Monitoring

The designer should consider monitoring of the pile installation by an AECOM geotechnical inspector to verify that the piles are installed in accordance with design assumptions and the driving criteria are satisfied. For each pile, a complete driving record in terms of the number of blows per 300 mm of penetration should be recorded by the inspector and reviewed during pile installation by the designer.

6.3.7 Drag Load

Consolidation settlement of the native clay layer caused by fill material may potentially induce drag load (i.e., negative skin friction) on deep foundation elements. Fill materials are not expected due to finish floor elevations of 234.5 m ASL and 236.0 m ASL. These finish floor elevations result in the need for cutting of material, therefore there is no drag load.

6.4 Seismic Considerations

As per Table 6.1A of the CFEM, the site classification for seismic site response is dependent on the average properties in the top 30 m of the soil profile. Based on a soil profile having more than 3 m of high plasticity clay, a Seismic Site Class E can be assigned to the site.

The 2020 National Building Code of Canada (NBCC) Seismic Hazard Calculation for the site is provided in **Appendix E**. It includes values of spectral acceleration (for time periods of 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 seconds), peak ground acceleration, and peak ground velocity for 2%, 5%, and 10% probability of exceedance in 50 years.

6.5 Soil-Supported Floor Slab

At the time of this report, the AECOM geotechnical team understands that there will be one finish floor elevation (FFE) of 235.3 m ASL for the entire building at the Winnipeg North Transit Garage. This includes the bus storage area, the bus maintenance area, and the office space. The floor slab tolerance is required to be in the range of 1/500, and a maximum settlement of 25 mm.

It is understood that the transit garage will be constructed using a soil supported floor slab. Based on the subsurface conditions identified at the site, slab-on-grade structures will bear directly on either clay fill, sand fill or fat clay, depending on location within the site. A summary of the suspected bearing material is provided in **Table 21**.

Testhole ID	Soil Type	
TH24-01	Sand Fill	
TH24-02	Clay Fill	
TH24-03	Clay Fill	
TH24-05	Sand Fill	
TH24-06	Clay Fill	
TH24-07	Clay Fill	
TH24-08	Clay Fill	
TH24-09	Fat Clay	
TH24-10	Clay Fill	
TH24-11	Clay Fill	

Table 21 – Bearing Material

Finish Floor Elevation of 235.3 m ASL

Due to the presence of high plasticity clay fills and fat clays at the site, the potential exists for heave of soil-supported floor slabs. Soil moisture contents will typically increase after construction which causes swelling of clay soils. It is important to note that this estimated range of swell relates to soil moisture content changes. Due to the project site requiring significant cuts (0.54 m to 3.13 m) to reach the finish floor elevations of 235.3 m ASL; it was determined that slab heave would be the primary concern. The clay heave properties determined through laboratory testing are provided in **Table 22**.

Material	Swelling Pressure (kPa)	Unit Weight of Soil (kN/m³)	Initial Void Ratio	Swelling Index
Clay Fill	40	20.39	0.544	0.045
Brown Clay	100	17.27	1.193	0.028
Grey Clay	50	16.74	1.378	0.066

Table 22 – Material Swell Properties

Using the swell properties provided in **Table 22** and information on the soil stratigraphy collected during the field investigation, calculations were conducted at the testhole locations within the building footprint to determine the worst heave conditions expected in the subgrade material. Based on the soil conditions encountered on the project site and the swell calculations conducted, the maximum heave of a soil-supported floor slab is estimated in the range of 15 mm to 25 mm. The structural engineer should consider this range of movement in design as it will affect the serviceability of the soil-supported floor slab. Heave is generally higher on sites where trees are removed prior to construction or in areas where leaking water supply/sewer lines or poor drainage lead to increased moisture contents in the clay soil after construction. To minimize potential heave of a soil-supported floor slab, measures must be taken to prevent drying of the subgrade soils during construction. Based on the FFE and the recommended soil-supported floor slab thickness, it is likely the perched water table in the silt (ML) layer will be encountered.

For the FFE of 235.3 m ASL, the bearing material was not observed to be the silt layer based on the testholes drilled. Therefore, the recommended soil-supported slab design was based on the calculated heave range and is provided in **Table 23**.

Table 23 - Soil-Supported Floor Slab Recommendation for FFE of 235.3 m ASL

Design Recommendation	Heave Range
200 mm – concrete slab ¹	
100 mm – granular A base course	
200 mm – 50 mm granular A	10 mm – 20 mm
500 mm – 100 mm granular A	
Total Subcut = 1000 mm	

Note: the concrete slab thickness is an assumed thickness and should be determined by the structural engineer. Any decrease in slab thickness, must be offset by an increase in granular material to obtain the necessary total subcut.

For the FFE of 235.3 m ASL construction of the recommended soil-supported slab should be as follows:

- Remove topsoil within the building footprint;
- Excavate to the design subgrade elevation; Place a nonwoven geotextile (Titan TE-8 or an approved equivalent) above the subgrade (in accordance with City of Winnipeg CW3130);
- Place biaxial geogrid (Titan Earth Grid[™] or an approved equivalent) above the nonwoven geotextile (in accordance with CW3135);
- Place the 100 mm Granular A material in one 500 mm lift. The 100 mm Granular A material shall be compacted by a nonvibratory roller packer. Due to the size of the aggregate, the degree of compaction shall be tested by proof rolling the material and approved by a qualified geotechnical representative. The proof rolling equipment shall be a tandem-axle end dump truck fully loaded with either gravel or clay. Tire pressure shall be no less than 90 percent the manufacturer's recommended maximum inflation. The truck shall make passes at speeds between 4.0 and 8.0 km/hr. Proof rolling must be carried out the same calendar day that compaction is completed. Rutting more than 15 mm shall not be accepted and the granular subbase shall be recompacted.
- Upon acceptance of the 100 mm granular A layer, place the 50 mm granular A in maximum 200 mm lift and compact to 100% SPMDD.
- The granular A base course shall be placed above the 50 mm granular A in maximum 100 mm lift and compacted to 100% of the SPMDD.

The 50 mm down subbase and base course materials should be compacted to at least 100% of Standard Proctor Maximum Dry Density (SPMDD). The grading limits for the subbase and base course materials for a soil-supported slab are shown in **Table 24**.

Canadian Metric Sieve Size (µm)	100 mm Down Subbase	50 mm Down Subbase	Base Course
125,000 100%			
100,000	85%-100%		
75,000	70%-92%	100%	
50,000	50%-78%	97%-100%	
37,500		75%-95%	
28,000			100%
25,000	25%-58%	55%-87%	97%-100%
20,000			85%-95%
10,000 15%-40%		25%-60%	47%-70%
5,000		16%-48%	32%-55%
2,500			18%-45%
1,250	5%-20%	8%-30%	11%-35%
630			8%-26%
315	3%-14%	4%-18%	5%-18%
80	2%-8% 2%-8%		2%-8%

Table 24 - Fill Material Grading Limits for Floor Slabs

To prevent frost-related movements in the floor slab, the subgrade must not be allowed to freeze during construction and there should be no frost present in the subgrade soils prior to concrete placement for the floors slab. Sieve analysis and compaction testing of the crushed limestone base course materials should be conducted during construction to ensure that the materials and the compaction comply with the specification requirements. The base course and subbase materials should comply with the current City of Winnipeg Design and Construction Specifications CW3110.

6.6 Structural Floor Slab

If the potential movements of a soil-supported floor slab are unacceptable, slab movement may be eliminated by providing a structural floor system. A structural floor should be provided with a minimum 150 mm void space between the soil and the underside of the slab to accommodate potential heave of the underlying clay. Structural floor slabs are traditionally supported by deep foundation systems.

6.7 Concrete Sidewalks

It is understood at the time of writing this report that the Winnipeg North Transit Garage will require pedestrian pathways for access to certain locations of the new facility. AECOM's geotechnical team has provided minimum recommendations for the construction of concrete sidewalk in **Table 25**.

Table 25 - Concrete Sidewalk Recommendations

Sidewalk Component	Design Recommendation	
Concrete Sidewalk Thickness	100 mm	
Concrete Sidewalk Width	1500 mm	
Base Course Thickness	300 mm	
Cross Slope Minimum	2%	
Cross Slope Maximum	4%	

Preparation of the subgrade and construction of the concrete sidewalks should comply with the City of Winnipeg SD-228A. This shop drawing references the City of Winnipeg Standard Construction Specification CW3235, CW3310, and CW3325. It is important to adhere to these construction specifications.

6.8 Entrance Slabs

Frost heave of exterior concrete slabs in front of building entrances is a common problem in Winnipeg. It is recommended that a void space is incorporated into the design of entrance slabs dowelled into the grade beam. This will mitigate effects of the entrance slab tipping up due to rotation around the doweled connection, which could lead to cracking of the entrance slab and blocking of entrance doors. Void space should also be incorporated into the design of entrance slabs that are not dowelled into the grade beam to prevent heaving adjacent to the exterior wall that could lead to blocking of entrance doors and crushing of exterior wall facings with insufficient clearance above the exterior slab.

The magnitude of heave is dependent upon several factors including the soil type, soil moisture content, climatic conditions, and heat loss from the structure. Due to the many factors that play a role in frost heave, the magnitude of heave is very difficult to predict. Maximum heave in the range of 60 to 120 mm has been observed for exterior concrete slabs at building entrances with similar soil conditions.

If the potential movements of a soil-supported floor slab are unacceptable, slab movement may be eliminated by providing a structural floor system. A structural floor should be provided with a minimum 150 mm void space between the soil and the underside of the slab to accommodate potential heave of the underlying clay. Structural floor slabs are traditionally supported by deep foundation systems.

6.9 Soil Chemistry

The electrochemical tests conducted (water soluble sulphate, pH, conductivity, and resistivity) were completed on three (3) samples. A summary of the results are provided in **Table 26**.

Testhole ID	Sample ID	Sample Depth (m)	Soil Type	Water Soluble Sulphate (%)	Potential for Sulphate Attack	Resistivity (ohm ⋅ cm)	Corrosivity Rating
TH24-08	G3	1.37 – 1.52 m	Clay Fill	0.118	Moderate	920	Extremely Corrosive
TH24-10	G8	4.42 – 4.57 m	СН	3.16	Very Severe	120	Extremely Corrosive
TH24-11	G11	7.47 – 7.62 m	СН	0.119	Moderate	810	Extremely Corrosive

Table 26 - Summar of Electrochemical Testing

Based on the electrochemical laboratory test results, the corrosivity potential for steel elements buried in the clay fill or fat clay is extremely corrosive; The selection and design should consider the possibility of corrosion in steel piles, and other metal structures.

The potential of sulphate attack on concrete is discussed in Section 6.10.

6.10 Foundation Concrete

Clay soils in the Winnipeg area contain sulphates that will cause deterioration of concrete. The class of exposure for concrete in contact with clay soil in Winnipeg is severe (S-2 in CSA A23.1-09 Table 3). The requirements for concrete exposed to severe sulphate attack are provided in **Table 27**.

Parameter	Design Requirement	
Class Exposure	S-2	
Compressive Strength	32 MPa at 56 days	
Air Content	4 to 7%	
Water-to-Cement Materials Ratio	0.45 max.	
Cement	Type HS or HSb	

Table 27 - Foundation Concrete Requirements

6.11 Pavement

Multiple pavement sections will be constructed throughout the Winnipeg North Transit Garage project site. The current site has elevations from 234.84 m ASL to 238.45 m ASL, the finish floor elevations are 235.3 m ASL, it is understood that all constructed areas will result in a cut of the existing material.. Two different flexible pavement designs will be incorporated; a heavy-duty flexible pavement (staff parking lot entrance and exit routes from Oak Point Highway) and a light duty flexible pavement (staff parking stalls). Additionally, it is understood that a rigid pavement design will be utilized near the exterior of the building structure and includes the bus access point at Oak Point Highway and Selkirk Avenue.

TH24-18 to TH24-22 were used to determine the design parameters required for developing the flexible and rigid pavement designs for the surrounding area of the building TH24-18 and TH24-19 were terminated at a depth of 4.57 meters below grounds surface (m BGS), while TH24-20, TH24-21, and TH24-22 were terminated at a depth of 3.05 m BGS. The surface material was topsoil in all testholes except TH24-22 that had an existing asphalt surface. In all testholes the surface material was followed by fill, and beneath the fill, fat clay. TH24-18 and TH24-19 had a layer of sand fill before transitioning to a fat clay fill, while the other testholes consisted solely of fat clay fill.

Bulk samples were collected from TH24-18 to TH24-22 from a depth ranging from 0.3 m BGS to 1.50 m BGS. Standard proctor and California Bearing Ratio tests were performed on the bulk samples. The CBRs were soaked at 95% maximum dry density. TH24-18, TH24-21, and TH24-22 were included in bulk sample 1, the standard proctor resulted in a maximum dry density of 1707 kg/m³ and optimum moisture content (OMC) of 19.1%, and a CBR value was calculated at 3.6. TH24-19 and TH24-20 were included in bulk sample 2, the standard proctor resulted in a maximum dry density of 1759 kg/m³ and OMC of 15.9%, and the CBR value was calculated at 3.0.

TH24-18 and TH24-19 were drilled in the vicinity of the existing landfill. Various waste was observed in these testholes. In TH24-18 metal remains were observed at an approximate depth of 0.75 m BGS to approximately 4.0 m BGS in the fat clay fill. AECOM's environmental team conducted an extensive field investigation in the landfill vicinity that included testpits, boreholes, and monitoring wells. TP24-03 to TP24-12 focused exclusively on the existing landfill and the waste material observed within it. Metal, wood, glass bottles and other glass, ceramics, concrete, plastic, bricks, car tires and other car parts, rebar, and the presence of hydrocarbons were all observed within these test pits. A map of the environmental investigation and the respective logs can be found in **Appendix G**.

6.11.1 Traffic

The pavement designs were completed following the AASHTO 1993 *Guide for the Design of Pavement Structure,* Part II of the design guide provides details on pavement design procedures for new construction or reconstruction.

The design of a pavement structure is highly dependent upon the number and type of vehicles that will be driving on the roadways. Traffic loadings from different types of vehicles are then equated to the number of Equivalent Single Axle Loads (ESALs), which is defined by the summation of equivalent 18,000-pound single axle loads used to combine mixed traffic to design traffic for the design period. The estimated traffic distribution for light duty flexible pavement design is provided in **Table 28**.

Design Parameters	Value
Truck Percentage (%)	10%
Distribution (%):	
2 & 3 axle 5 axles Bus	5% 5% 90%

Table 28 - Traffic Data - Light Duty – Flexible Pavement

The light duty pavement areas are designed for the facility employees and will primarily be used in areas such as the employee parking lots. Therefore, it is not expected to have large vehicles such as semis or buses. AECOM has

estimated a truck percentage of 10%, as there is still potential for these types of vehicles to enter the light duty pavement areas. Of this 10%, AECOM has estimated 5% are 2 & 3 axle trucks, 5% are 5 axle trucks, and 90% are buses.

The estimated traffic distribution for heavy duty flexible pavement design are provided in Table 29.

Table 29 - Traffic Data - Heavy Duty - Flexible Pavement

Design Parameters	Value
Truck Percentage (%)	25%
Distribution (%):	
2 & 3 axle	25%
5 axles	25%
Bus	50%

The heavy-duty flexible pavement design accounts for a larger increase in truck percentage (25%), this pavement design will allow for the potential use for deliveries, or towing requirements. Of the 25% truck percentage, AECOM has estimated 25% are 2 & 3 axle trucks, 25% are 5 axle trucks, and 50% are buses.

The estimated traffic distribution for heavy-duty rigid pavement design are provided in Table 30.

Table 30 - Traffic Data - Heavy Duty - Rigid Pavement

Design Parameters	Value
Truck Percentage (%)	75%
Distribution (%):	
Bus	100%

The heavy-duty rigid pavement areas are the suitable bus routes and are designed to support larger frequencies of heavier traffic. AECOM has estimated a truck percentage of 75% for these pavement types, 100% of which are estimated to be buses.

6.11.2 Pavement Design

Traffic loads were converted to an Equivalent Single Axle Load (ESAL) used in the AASHTO pavement design procedure. The design ESALs were based on the percentage of trucks in the total cumulative traffic loads over the length of the design life. The pavement design parameters are presented in **Table 31**, **Table 32**, and

Table 33.

Table 31 - Pavement Design Parameters – Flexible Pavement – Light Duty

Traffic	AADT: 1000	
	Commercial Vehicles: 10% Number of Lanes: 2	
	Annual Growth Rate: 1%	
	500,000 Design ESALS for 20-year design life	
Design Life	20 years (Flexible)	
Reliability	90%	
Standard Deviation	0.44	
Serviceability	Flexible – Initial: 4.4 Terminal: 2.2	
	Terminal. 2.2	
Asphalt Pavement Material	New Structures	SLC
•	Hot Mix Asphalt, 150 – 200 (A) Grade	0.42
Structural Layer Coefficients	28 mm granular A base	0.14
	100 mm granular A subbase	0.14
Table 32 -	- Pavement Design Parameters – Flexible F	Pavement – Heavy Duty
Troffic	AADT: 1000	
Traffic	Commercial Vehicles: 25%	
	Number of Lanes: 2	
	Annual Growth Rate: 1%	
	1,630,000 Design ESALS for 20-year design life	2
	20 years (Flexible)	
Design Life		
Design Life 	90%	
Reliability Standard Deviation	90%	
Reliability	90% 0.44	
Reliability Standard Deviation Serviceability	90% 0.44 Flexible – Initial: 4.4 Terminal: 2.2	SLC
Reliability Standard Deviation	90% 0.44 Flexible – Initial: 4.4 Terminal: 2.2 New Structures	SLC 0.42
Reliability Standard Deviation Serviceability	90% 0.44 Flexible – Initial: 4.4 Terminal: 2.2 New Structures Hot Mix Asphalt, 150 – 200 (A) Grade	0.42
Reliability Standard Deviation Serviceability Asphalt Pavement Material	90% 0.44 Flexible – Initial: 4.4 Terminal: 2.2 New Structures	

Traffic	AADT: 1200 Commercial Vehicles: 75% Number of Lanes: 2 Annual Growth Rate: 1% 4,050,616 Design ESALS for 20-year design life
Design Life	20 years (Rigid)
Reliability	90%
Standard Deviation	0.44
Serviceability	Rigid – Initial: 4.4 Terminal: 2.2
Concrete Pavement Material Properties and Design Features	Flexural Strength: 4.48 MPa Elastic Modulus: 25.7 GPa

Table 33 - Pavement Design Parameters – Rigid Pavement

The design parameters noted above were used in the pavement design analysis. Pavement design options developed are presented below in **Table 34**.

Pavement Design Option	Pavement Structure Details	Service Life (yrs.)
Flexible Pavement – Light Duty	 75 mm – hot mix asphalt 100 mm – 28 mm granular A base 375 mm – 100 mm granular A subbase Geotextile separation thickness Geogrid Class A 550 mm total thickness 	20
Flexible Pavement – Heavy Duty	 100 mm – hot mix asphalt 75 mm – 28 mm granular A base 375 mm – 100 mm granular A subbase Geogrid Class A Geotextile separation fabric 575 mm total thickness 	20
Rigid Pavement	 230 mm plain doweled concrete 75 mm – 28 mm granular A base 375 mm – 100 mm granular A subbase Geogrid Class A Geotextile separation fabric 705 mm total thickness* 	20

Table 34 - Pavement Design Options - Winnipeg North Transit Garage

Based on these pavement design thicknesses, it is very likely that the perched water table in the silt (ML) layer will be breached.

Preparation of the subgrade and construction of the subbase and base course for the pavement areas should comply with the City of Winnipeg Standard Construction Specification CW 3110. Supply and installation of geogrid and geotextile should be comply with the City of Winnipeg Standard Construction Specifications CW3135 and CW3130, respectively. Additional materials, if required to increase the final grade for the pavements, should consist of crushed sub-base material.

The light duty pavement section should be used where traffic loading will consist of passenger vehicles and light duty trucks. The heavy-duty pavement sections should be used for pavements subjected to traffic loading greater than

passenger vehicles and light duty trucks, but do not exceed the normal maximum allowable axle loads permissible by City of Winnipeg traffic bylaws. Sieve analysis and compaction testing of the granular fill materials are recommended to ensure the materials and compaction comply with the specifications.

The pavement design should consider a drainage system within the granular layer to prevent water accumulation with the granular material between the asphalt and the clay layers. Water trapped within the granular layers will freeze in the winter months and expand, possibly causing damages in the pavement structure.

6.11.3 Construction of Pavement on Various Subgrades

6.11.3.1 Constructing on Clay and Clay Fills Subgrades

If clay or clay fill is encountered at the subgrade level (i.e., the bottom of the subbase layer) proceed as follows:

- Topsoil and organic material must be removed prior to pavement construction.
- Preparation of the subgrade and construction of the subbase and base course for the pavement areas should comply with City of Winnipeg Standard Construction Specification CW 3110.
- Excavate to the required subgrade elevation.
- Proof roll the subgrade to identify soft or unsuitable materials at the subgrade level. Although silt was not
 observed in the testholes conducted for the pavement areas, field conditions may differ from what was observed
 during the geotechnical investigation.
- Method for soft or unsuitable subgrade materials:
 - Unsuitable materials identified during proof rolling must be excavated approximately 0.5 m below the design subgrade elevation. If the unsuitable soil continues deeper than the excavated 0.5 m, placement of a nonwoven geotextile and geogrid class A is required.
 - Place a non-woven geotextile over the excavated subgrade.
 - Replace the excavated unsuitable material with 100 mm granular A subbase in a single 500 mm lift.
 - Compact the 100 mm granular A subbase using a vibratory roller compactor.
- Place a geotextile separator layer on top of the subgrade prior to placement of the 100 mm granular A subbase and 28 mm granular A base course.
- Compact the 100 mm granular A subbase and 28 mm granular A base using a vibratory roller compactor.
- Compaction of the subbase and base course should be to at least 100% of Standard Proctor Maximum Dry Density (SPMDD).

6.11.3.2 Constructing on Clay Fills in Waste Disposal Area

TH24-18 and TH24-19 were drilled near the existing waste disposal area. For pavements constructed in the existing waste disposal area, proceed as follows:

- Topsoil and organic material must be removed prior to pavement construction.
- Preparation of the subgrade and construction of the subbase and base course for the gravel surfaced parking areas should comply with City of Winnipeg Standard Construction Specification CW 3110.
- Excavate to the required subgrade elevation.
- If any waste material (metal, wood, ceramic, etc.) is observed at the subgrade level. Excavate and remove the waste material and dispose of the material properly at a City of Winnipeg Landfill.
- Method for infilling depressions resulting from removal of any waste material:
 - Place a non-woven geotextile over the excavated subgrade.
 - Replace the excavated unsuitable material with 100 mm granular A subbase in a single 500 mm lift or or clay fill compacted to 98% Standard Proctor Maximum Dry Density (SPMDD) in 300 mm lifts.
 - Compact the 100 mm granular A subbase using a vibratory roller compactor.

- Proof roll the subgrade to identify soft or unsuitable materials at the subgrade level.
- Method for soft or unsuitable subgrade materials:
 - Unsuitable materials identified during proof rolling must be excavated approximately 0.5 m below the design subgrade elevation.
 - Place a non-woven geotextile over the excavated subgrade.
 - Replace the excavated unsuitable material with 100 mm granular A subbase in a single 500 mm lift.
 - Compact the 100 mm granular A subbase using a vibratory roller compactor.
- Place a geotextile separator layer on top of the subgrade prior to placement of the 100 mm granular A subbase and 28 mm granular A base course.
- Compact the 100 mm granular A subbase and 28 mm granular A base using a vibratory roller compactor.
- Compaction of the subbase and base course should be to at least 100% of Standard Proctor Maximum Dry Density (SPMDD).

6.11.3.3 Constructing on Silt Subgrades

Although silt was not observed in testholes drilled within pavement areas, a silt layer was observed in TH24-03. TH24-04, TH24-06 to TH24-12, and TH24-15 to TH24-17. If silt is encountered at the subgrade level (i.e., the bottom of the subbase layer), bridging should proceed as follows:

- Topsoil and organic material must be removed prior to pavement construction.
- Preparation of the subgrade and construction of the subbase and base course for the gravel surfaced parking areas should comply with City of Winnipeg Standard Construction Specification CW3110.
- Excavate to a depth of 1.0 m below the top of pavement elevation.
- If excavation below the top of the pavement design elevation reaches the silt (ML) layer, there is increased likelihood of encountering a perched water table.
- Place a non-woven geotextile over the silt.
- Place 100 mm Granular A material in a single 500 mm lifts and compact with a non-vibratory roller compactor.
- Compaction of the subbase and base course should be to at least 100% of Standard Proctor Maximum Dry Density (SPMDD).

6.11.3.4 Constructing on Granular Subgrades

If granular material is encountered at the subgrade level (i.e., the bottom of the subbase layer) proceed as follows:

- Topsoil and organic material must be removed prior to pavement construction.
- Preparation of the subgrade and construction of the subbase and base course for the gravel surfaced parking areas should comply with City of Winnipeg Standard Construction Specification CW3110.
- Inspect the material to determine if it is suitable for construction. If the granular material is too intermixed with silts and clays, excavate to a depth of 1.0 m below the top of pavement elevation.
- If it is determined that the material is suitable for construction, proof roll the material to identify loose material. If loose material is observed, compact the granular subgrade using a vibratory roller compactor.
- Place a geotextile separator layer on top of the subgrade prior to placement of the 100 mm granular A subbase and 2 mm granular A base course.
- Compact the 100 mm granular A subbase and 28 mm granular A base using a vibratory roller compactor.
- Compaction of the subbase and base course should be to at least 100% of Standard Proctor Maximum Dry Density (SPMDD).

6.12 Drainage

All roof downspouts should be directed away from structures and the ground surface around the structures should be graded to promote drainage away from the foundation, therefore minimizing the risk of water accumulation and potential soil swelling. Final site grading should ensure that all surface runoff is directed away from structures using a minimum gradient of 2%. To compensate for potential settlement of backfill materials adjacent to structures, the grade should be increased to 10% for the first 2 m from the structures.

The pavement design should consider a drainage system within the granular layer to prevent water accumulation with the granular material between the asphalt and the clay layers. Water trapped within the granular layers will freeze in the winter months and expand, possibly causing damages in the pavement structure.

6.13 Quality Assurance and Quality Control

During construction, it is recommended that the contractor provides an approved quality assurance and quality control program (QA/QC). This program should include but is not limited to periodic testing of granular gradation, L.A. abrasion loss, material proctors, and field density tests.

6.14 Design Review, Construction Monitoring and Testing

AECOM should be retained to review the foundation plans and specifications for conformance with the intent of this report. During construction, it is recommended that an AECOM representative be involved with the following tasks:

- Inspection of foundation installation;
- Inspection of subgrade conditions for soil-supported floor slabs;
- Testing of concrete and bituminous paving mix;
- Field density tests during placement and compaction of granular fill materials; and,
- Inspection during proof rolling of subgrade and sub-base materials.

The purpose of the foundation and subgrade inspection services would be to provide AECOM the opportunity to observe the soil conditions encountered during construction, evaluate the applicability of the information presented in this report to the soil conditions encountered, and provide appropriate changes in design or construction procedures if conditions differ from those described herein. The purpose of the concrete and bituminous mix testing is to ensure these materials comply with the specification requirements. The purpose of the field density tests is to confirm the fill materials have been compacted to the specified density.

7. References

- Bezys, R. K., Bamburak, J. D., & Conley, G. G. (2002). *Bedrock Mineral Resources of Manitoba's Capital Region.* Winnipeg: Manitoba Geological Survey.
- Canadian Commission on Building and Fire Codes National Research Council of Canada. (2020). *National Building Code of Canada (NBCC) 2020.* Ottawa: National Research Council of Canada 2020.

Canadian Geological Society. (2006). Canadian Foundation Engineering Manual 4th Edition.

Trek Geotechnical . (2023). *City of Winnipeg North Transit Garage Geotechnical Factual Report*. Winnipeg: Trek Geotechnical.

Site Photos

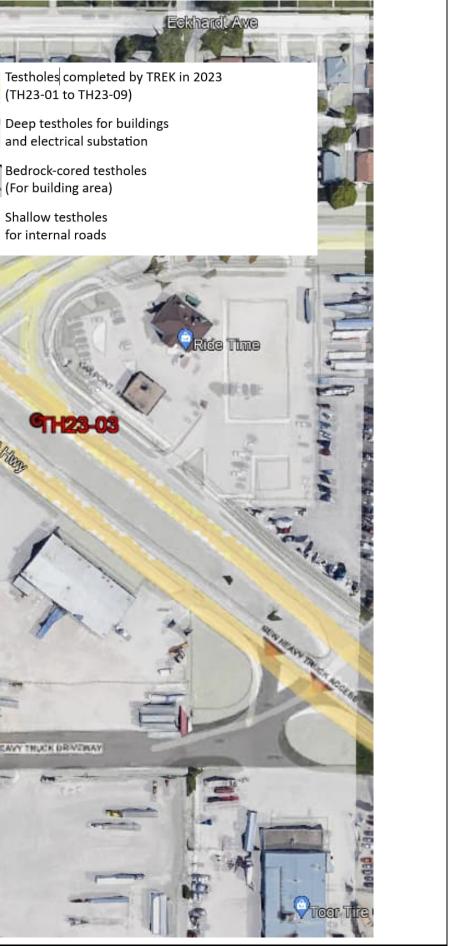
Figure 2 - Snow Clearing Conducted on Project Site



Figure 3 - Dense Till with Cobbles and Boulders Observed On Site

Figure 4 - Coring Conducted Onsite and Mobile B48 Drill Rig (TH24-09)

Figure 5 - Solid Stem Auger for TH24-12


Figure 6 - Coring Method for TH24-15

Appendix B Testhole Location Plan

23-01 Deep testholes for buildings and electrical substation Bedrock-cored testholes (For building area) TH24 Shallow testholes for internal roads GR TH24-19 💻 TH24500 TH24-19 G7H24-08 Stal Balactic Little 91-24-01 **TH23-09** TH24-14 TH24-11 G7H24-0 G7H24-07 -1247 TH2 TH24-13 GH Sen CLEAR WY TRUCK DRIVERAY **C**HP Altoba Freight Systems

City of Winnipeg December 2023

WINNIPEG TRANSIT GARAGE TESTHOLE LOCATIONS PLAN FOR PHASE 1 – OPTION 1

Appendix C Testhole Logs

EXPLANATION OF FIELD & LABORATORY TEST DATA

The field and laboratory test results, as shown for each hole, are described below.

1. **EXPLANATION OF SOIL**

Each soil stratum is classified and described noting any special conditions. The Modified Unified Classification System (MUCS) is used. The soil profile refers to the existing ground level at the time the hole was done. Where available, the ground elevation is shown. The soil symbols used are shown in detail on the soil classification chart.

1.1 Tests on Soil Samples

Laboratory and field tests are identified by the following and are on the logs:

- γ_D <u>Dry Unit Weight</u>. Usually expressed in kN/m³.
- γ_{T} <u>Total (moist, wet, or bulk) Unit Weight</u>. Usually expressed in kN/m³.
- Cu <u>Undrained Shear Strength</u>. Usually expressed in kPa. This value can be determined by a field vane shear test and may also be used in determining the allowable bearing capacity of the soil.
- CPEN <u>Pocket Penetrometer Reading</u>. Usually expressed in kPa. Estimate of the undrained shear strength as determined by a pocket penetrometer.
- N <u>Standard Penetration Test (SPT) Blow Count</u>. The SPT is conducted in the field to assess the in-situ consistency of cohesive soils and the relative density of non-cohesive soils. The N value recorded is the number of blows from a 63.5 kg hammer free falling of 760 mm (30 in.) which is required to drive a 50 mm (2 in.) split spoon sampler 300 mm (12 in.) into the soil.
- Q_U <u>Unconfined Compressive Strength</u>. Usually expressed in kPa and may be used in determining allowable bearing capacity of the soil.

The following tests may also be performed on selected soil samples and the results are given on separate sheets enclosed with the logs:

- Grain Size Analysis
- Standard or Modified Proctor Compaction Test
- California Bearing Ratio Test
- Direct Shear Test
- Permeability Test
- Consolidation Test
- Triaxial Test

1.2 Natural Moisture Content

The relationship between the natural moisture content and depth is significant in determining the subsurface moisture conditions. The Atterberg Limits for a sample should be compared to its natural moisture content and plotted on the Plasticity Chart to determine the soil classification.

Descriptive Term	Criteria
Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, usually in coarse-grained soils below the water table

1.3 Grian Size Distrubtion

Laboratory grain size analyses provided by AECOM follow the following system. Note that, with the exception of those samples where a grain size distribution analysis has been completed, all samples have been classified by visual inspection. Visual inspection classification is not sufficient to provide exact gain sizing.

		SOIL CO	MPONENTS					
FRACT	ION	SIEVE S	SIZE (mm)		DEFINING RANGES OF PERCENTAGE BY WEIGHT OF MINOR COMPONENTS			
		PASSING	RETAINED	PERCENT	IDENTIFIER			
GRAVEL	COARSE	75	19	F0 3F				
	FINE	19	4.75	50 – 35	AND			
SAND	COARSE	4.75	2.00	25 20				
	MEDIUM	2.00	0.425	35 – 20	ADJECTIVE			
	FINE	0.425	0.075	20 – 10	SOME			
SILT (non-	-plastic)	0.075		20 10	SOME			
or				10 - 1	TRACE			
CLAY (p	astic)			10-1	TRACE			
	OVERSIZE MATERIALS							
ROUNDED OR SUB-ROUNDED COBBLES 75 mm TO 200 mm BOULDERS >200 mm				ANGULAR ROCK FRAGMENTS ROCKS > 0.75 m3 IN VOLUM	E			

ISSMFE / USCS SOIL CLASSIFICATION

CLAY	SILT		SAND		GR	AVEL	COBBLES	BOULDERS
		FINE	FINE MEDIUM COARSE			COARSE		
0.0	02 0.0	175 0.42	25 2	.0 4.	75	19 7	75 20	0
EQUIVALENT GRAIN DIAMETER IN MILLIMETRES								

1.4 Soil Compactness and Consistency

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by in-situ vane tests, penetrometer tests, unconfined compression tests, or similar field and laboratory analysis. Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine-grained, cohesive soils.

The standard terminology to describe cohesionless soils includes the compactness condition as determined by the Standard Penetration Test 'N' value. These approximate relationships are summarized in the following tables:

ΑΞϹΟΜ

Table 1 Cohesive Soils

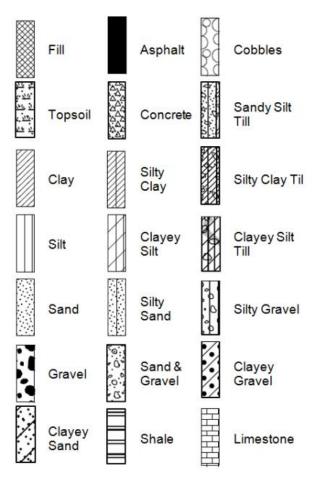
Consistency	SPT N (blows/0.3m)	C _u (kPa) approx.
Very Soft	<2	<12
Soft	2 - 4	12 - 25
Firm	4 - 8	25 - 50
Stiff	8 - 15	50 - 100
Very Stiff	15 - 30	100 - 200
Hard	>30	>200

Table 2 Cohesionless Soils

Compactness Condition	SPT N (blows/0.3m)			
Very Loose	0 - 4			
Loose	4 - 10			
Compact	10 - 30			
Dense	30 - 50			
Very Dense	>50			

ΑΞϹΟΜ

	MAJOR DIVISION		UCS			TYPICAL DE	SCRIPTION		LABORATOR	CLASSIFICA	TION CRITERIA
		CLEAN GRAVELS	GW		WELL		AVELS, LITTL	E OR	$C_u = \frac{D_{60}}{D_{10}} > 4 C_c = \frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \text{ to } 3$		
		(LITTLE OR NO FINES)	GP) GRAVELS A TURES, LITTI INES		NOT MEETING ABOVE REQUIREMENTS		QUIREMENTS
	GRAVELS (MORE THAN HALF COARSE GRAINS LARGER THAN 4.75 mm) GRAVELS		GM		SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES			-SILT	CONTENT OF		ATTERBERG LIMITS BELOW 'A' LINE W _p LESS THAN 4
COARSE GRAINED SOILS		WITH FINES	GC		CLAY	EY GRAVELS CLAY MI	, GRAVEL-SA XTURES	ND-	FINES EX0 12%	ATTERBERG LIMITS ABOVE 'A' LINE W _p MORE THAN 7	
ARSE GI		CLEAN SANDS (LITTLE R NO	SW		SA	NDS, LITTLE	ANDS, GRAVE OR NO FINE	S	$C_u = \frac{D_{60}}{D_{10}} >$	$6 C_{c} = \frac{(D_{3})}{D_{10}}$	$\frac{(0)^2}{(D_{60})^2} = 1 \text{ to } 3$
Ő		FINES)	SP		POORI	y graded s. No fi	Sands, littl Ines	E OR	NOT MEETI	NG ABOVE RE	
	SANDS (MORE THAN HALF COARSE GRAINS SMALLER THAN 4.75 mm)	SANDS	SM		SILTY	SANDS, SAN	D-SILT MIXT	URES	CONTEN		ATTERBERG LIMITS BELOW 'A' LINE W _p LESS THAN 4
		WITH FINES	SC		CLAYEY SANDS, SAND-CLAY MIXTURES				FINES EXCEEDS 12%		ATTERBERG LIMITS ABOVE 'A' LINE Wp MORE THAN 7
	SILTS (BELOW 'A' LINE	W _L < 50	ML			INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY SANDS OF SLIGHT PLASTICITY			CLASSIFICATION IS BASED LIDON DIASTICITY CHAR		
	NEGLIGIBLE ORGANIC CONTENT)	W _L > 50	W _L > 50 MH		INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS				, WHENEVER THE NATURE OF THE FINE CONTENT HAS		
FINE GRAINED SOILS	CLAYS	W _L < 30	CL			INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY, OR SILTY CLAYS,					
NE GRA	(ABOVE 'A' LINE NEGLIGIBLE ORGANIC CONTENT)	$30 < W_L < 50$	CI	LEAN CLAYS INORGANIC CLAYS OF MEDIUM PLASTICITY, SILTY CLAYS			;	NOT BEEN DETERMINED, IT IS DESIGNATED BY THE LETTER `F'. E.G. SF IS A MIXTURE OF SAND WITH			
E		W _L > 50	СН	CH INORGANIC CLAYS OF HIGH PLASTICI FAT CLAYS ORGANIC SILTS AND ORGANIC SILT				r, SILT OR CLAY		Ŷ	
	ORGANIC SILTS & CLAYS (BELOW 'A' LINE)	W _L < 50 W _L > 50	OL OH		C	LAYS OF LOV	N PLASTICIT	Y			
	HIGHLY ORGANIC SC		Pt		ORGANIC CLAYS OF HIGH PLASTICITY PEAT AND OTHER HIGHLY ORGANIC SOILS				STRONG COLOUR OR ODOUR, AND OFTEN FIBROUS TEXTURE		
	BEDROCK FILL		BR FILL						ORT DESCRIPTION	1	
90									L COMPONENTS		
20			СН	\neq		FRAC	CTION		E SIZE (mm)	PERCE WEIGHT	G RANGES OF NTAGE BY F OF MINOR PONENTS
4DEX								PASSING		PERCENT	IDENTIFIER
01TY IN						GRAVEL	COARSE FINE	75 19	19 4.75	50 – 35	AND
PLASTICITY 30		C1	· P ^{TUNE} MH			SAND	COARSE	4.75	2.00	35 – 20	Y
<u>م</u>	-+						MEDIUM	2.00 0.425	0.425	55 - 20	'
9	CL					SILT (no	n-plastic)	0.425	0.075	20 - 10	SOME
a	CL-ML ML	ML			or CLAY (plastic)			0.075 10 - 1 TRACE			
0	10 20 30		60 70 80	90	100				SIZE MATERIALS		
NOTE: 1. BC	DUNDARY CLASSIFICATI	ON POSSESSING	CHARACTERISTI	CS OF TW	10	COBBLE	ed or Sub-r Es 75 mm to Jlders >200	200 mm		ANGULAR OCK FRAGME > 0.75 m3 IN	
GF	ROUPS ARE GIVEN GRO RAVEL MIXTURE WITH CL	OUP SYMBOLS, E.G	. GW-GC IS A W	/ELL GRADE	D				FIED UNIFIED SO		
						February 2022					


1.5 Sample Type, Symbols and Abbreviations

The depth, type, and condition of samples are indicated on the logs by the following symbols or abbreviations:

ΑΞϹΟΜ

Sample abbreviations:	Symbols:	
GS: Grab Sample		
BK: Bulk Sample	Grab	Bulk
NR: No Recovery		
ST: Shelby Tube		
SS: Split Spoon		
Core: Core Samples	No Recovery	Shelby Tube
FV: Field Vane		
PP: Pocket Penetrometer		
DCPT: Dynamic cone penetration test	Split Spoon	Core Sample

1.6 STRATA/Graphic Plot (Shall be Changed For Different Guidelines)

2. EXPLANATION OF ENVIROMENTAL SAMPLE

2.1 Contaminant Abbreviations

Contaminant Abbreviations	
BNAE	Base/neutral/acid extractables
BTEX	Benzene, toluene, ethylbenzene, xylenes
OCP	Organochlorine pesticides
MI	Metals and inorganics
PAH	Polycyclic aromatic hydrocarbons
PCB	Polychlorinated biphenyls
PHC	CCME petroleum hydrocarbons (fractions 1-4)
VOC	Volatile organic compounds (includes BTEX)
SO ₄	Water Soluble Sulphate Content

2.2 Water Soluble Sulphate Concentration

The following table, from CSA Standard A23.1-14, indicates the requirements for concrete subjected to sulphate attack based upon the percentage of water-soluble sulphate as presented on the logs. CSA Standard A23.1-14 should be read in conjunction with the table.

						Performance requirements Maximum expansion when tested using CSA A3004-C8 Procedure A at 23 °C, %		§,§§
		Water-soluble	Sulphate (SO4)	Water soluble sulphate (SO ₄) in recycled	Cementing			Maximum expansion when tested using CSA A3004-C8 Procedure B at 5 °C, % †††
Class of exposure	Degree of exposure	sulphate (SO ₄)† in soil sample, %	in groundwater samples, mg/L‡	aggregate sample, %	materials to be used§††	At 6 months	At 12 months††	At 18 months‡‡
S-1	Very severe	> 2.0	> 10 000	> 2.0	HS** ,HSb, HSLb*** or HSe	0.05	0.10	0.10
S-2	Severe	0.20–2.0	1500–10 000	0.60–2.0	HS**, HSb, HSLb*** or HSe	0.05	0.10	0.10
S-3	Moderate (including seawater exposure*)	0.10–0.20	150–1500	0.20–0.60	MS, MSb, MSe, MSLb***, LH, LHb, HS**, HSb, HSLb*** or HSe	0.10		0.10

Table 3 Requirements for Concrete Subjected to Sulphate Attack*

*For sea water exposure, also see Clause 4.1.1.5.

⁺In accordance with CSA A23.2-3B.

‡In accordance with CSA A23.2-2B.

§Where combinations of supplementary cementing materials and portland or blended hydraulic cements are to be used in the concrete mix design instead of the cementing materials listed, and provided they meet the performance requirements demonstrating equivalent performance against sulphate exposure, they shall be designated as MS equivalent (MSe) or HS equivalent (HSe) in the relevant sulphate exposures (see Clauses 4.1.1.6.2, 4.2.1.1, and 4.2.1.3, and 4.2.1.4).

**Type HS cement shall not be used in reinforced concrete exposed to both chlorides and sulphates, including seawater. See Clause 4.1.1.6.3.

⁺⁺The requirement for testing at 5 °C does not apply to MS, HS, MSb, HSb, and MSe and HSe combinations made without portland limestone cement.

^{‡‡} If the increase in expansion between 12 and 18 months exceeds 0.03%, the sulphate expansion at 24 months shall not exceed 0.10% in order for the cement to be deemed to have passed the sulphate resistance requirement.

§§For demonstrating equivalent performance, use the testing frequency in Table 1 of CSA A3004-A1 and see the applicable notes to Table A3 in A3001 with regard to re-establishing compliance if the composition of the cementing materials used to establish compliance changes.

***Where MSLb or HSLb cements are proposed for use, or where MSe or HSe combinations include Portland-limestone cement, they must also contain a minimum of 25% Type F fly ash or 40% slag or 15% metakaolin (meeting Type N pozzolan requirements) or a combination of 5% Type SF silica fume with 25% slag or a combination of 5% Type SF silica fume with 20% Type F fly ash. For some proposed MSLb, HSLb, and MSe or HSe combinations that include Portland-limestone cement, higher SCM replacement levels may be required to meet the A3004-C8 Procedure B expansion limits. Due to the 18-month test period, SCM replacements higher than the identified minimum levels should also be tested. In addition, sulphate resistance testing shall be run on MSLb and HSLb cement and MSe or HSe combinations that include Portland-limestone cement at both 23 °C and 5 °C as specified in the table.

⁺⁺⁺If the expansion is greater than 0.05% at 6 months but less than 0.10% at 1 year, the cementing materials combination under test shall be considered to have passed.

2.3 Soil Corrosivity

The following table, from the Handbook of Corrosion Engineering (Roberge, 1999) indicates the

corrosivity rating can be obtained from the soil resistivity, presented on the logs.

Soil Resistivity (ohm-cm)	Corrosivity Rating	
>20,000	Essentially non-corrosive	
10,000 - 20,000	Mildly corrosive	
5,000 - 10,000	Moderately corrosive	
3,000 – 5,000	Corrosive	
1,000 - 3,000	Highly corrosive	
<1,000	Extremely corrosive	

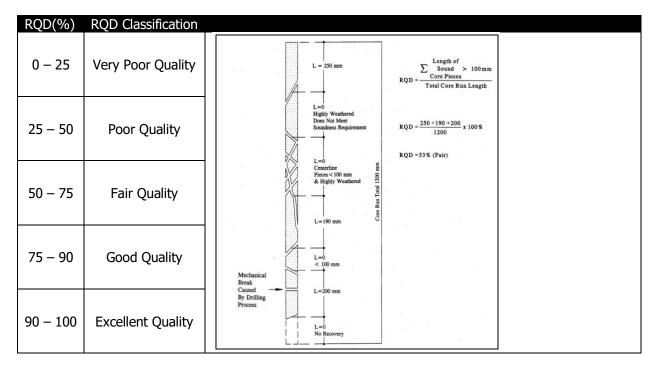
 Table 4 Corrosivity Ratings Based on Soil Resistivity

3. HYDROGEOLOGICAL

The groundwater table is indicated by the equilibrium level of water in a standpipe installed in a test hole or test pit. This level is generally taken at least 24 hours after installation of the standpipe. The groundwater level is subject to seasonal variations and is usually highest in the spring. The symbol on the logs indicating the groundwater level is an inverted solid triangle (\mathbf{v}).

4. **EXPLANATION OF ROCK**

4.1 General Description and Terms


General Description of Geotechnical Unit including: Quantitative description including rock type (s), percentage of rock types, frequency and sizes of interbeds, colour, texture, weathering, strength and general joint spacing

Total Core Recovery (TCR): Total length of core recovered expressed as percentage of core run length. **Solid Core Recovery (SCR):** Total length of solid full diameter core expressed as percentage of core run length.

Rock Quality Designation (RQD): Sum of lengths of solid core pieces longer than 100 mm expressed as percentage of core run length.

Fracture Index (FI): Number of fractures per meter of core.

4.2 Rock Quality Designation (RQD)

4.3 Classification of Strength

Grade	Description	Field identification	Approximate range of Uniaxial compression strength (MPa)
R0	Extremely weak rock	Indented by thumbnail	0.25-1.0
R1	Very weak rock	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife	1.0-5.0

R2	Weak rock	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer	5.0-25
R3	Medium strong rock	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer	25-50
R4	Strong rock	Specimen requires more than one blow of geological hammer to fracture it	50-100
R5	Very strong rock	Specimen requires many blows of geological hammer to fracture it	100-250
R6	Extremely strong rock	Specimen can only be chipped with geological hammer	>250

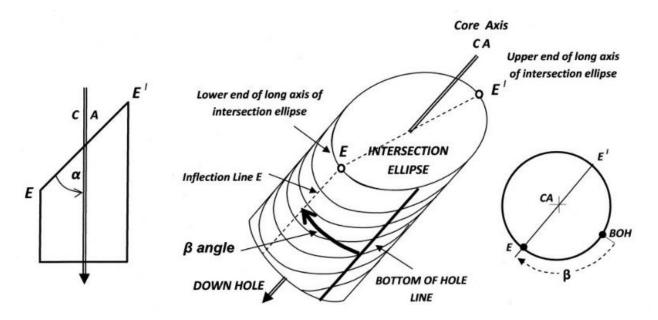
4.4 Classification of Weathering

Grade	Description	Field identification
W1	Fresh	No visible sign of rock material weathering; perhaps slight discolouration on major discontinuity surface
W2	Slightly Weathered	Discolouration indicates weathering of rock material and discontinuity surface. All the rock material may be discoloured by weathering and may be somewhat weaker externally than in its fresh condition
W3	Moderately Weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as corestones.
W4	Highly Weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as corestones.
W5	Completely Weathered	All rock material is decomposed and/or disintegrated to a soil. The original mass structure is still largely intact. All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but soil has not been significantly transported.
W6	Residual Soil	Residual Soil

4.5 Type of discontinuity

Symbol	Description
F	Fault
J	Joint
Sh	Shear
Fo	Foliation
V	Vein
В	Bedding

4.6 Spacing of discontinuity


Spacing Classification	Spacing width
Extremely close	<0.02m

Very close	0.02-0.06m
Close	0.06-0.2m
Moderately Close	0.2-0.6m
Wide	0.6-2.0m
Very Wide	2.0-6.0m
Extremely Wide	>6.0m

4.7 Joint Orientation

The orientation of a planar surface intersected by drill core can be defined by two angles called alpha (a) and beta (β). The definition of these angles is shown in the diagram below:

4.8 Inclination

Term	Inclination (degrees from the horizontal)
Sub-horizontal	0-5
Gently Inclined	6-15
Moderately Inclined	16-30
Steeply Inclined	31-60
Very Steeply Inclined	61-80
Sub-vertical	81-90

4.9 Stratification/foliation

Term	Spacing
Very Thickly Bedded	>2m
Thickly Bedded	600mm-2m
Medium Bedded	200mm-600mm
Thinly Bedded	60mm-200mm

AECOM

Term	Spacing
Very Thinly Bedded	20mm-60mm
Laminated	6mm-20mm
Thinly Laminated	2mm-6mm
Fissile	<2mm

4.10 Grain Size

Term	Size
Very Coarse Grained	>60 mm
Coarse Grained	2mm-60mm
Medium Grained	60 microns – 2mm
Fine Grained	2 microns – 60 microns
Very Fine Grained	<2 microns

4.11 Aperture of open discontinuity

Symbol	Aperture Opening	Description	
VT	<0.1 mm	Very tight	Closed Features
Т	0.1-0.25mm	Tight	
PO	0.25-0.5mm	Partly open	
0	0.5-2.5mm	Open	Gapped Features
MW	2.5-10mm	Moderately open	
W	>10mm	Wide	
VW	1-10cm	Very wide	Open Features
EW	10-100cm	Extremely wide	
С	>1m	Cavernous	

4.12 Width of filled discontinuity

Symbol	Width	Description
W	12.5-50mm	Wide
MW	2.5-12.5mm	Moderately Wide
Ν	1.25-2.5mm	Narrow
VN	<1.25mm	Very Narrow
Т	0mm	Tight

4.13 Roughness of discontinuity

Symbol	Description
Slk	Slickenside (surface has smooth, glassy finish with visual evidence of striations)
S	Smooth (surface appears smooth and feels so to the touch)
SR	Slightly rough (asperities on the discontinuity surfaces are distinguishable and can be felt)
R	Rough (some ridges and side-angle steps are evident; asperities are clearly visible, and discontinuity surface feels very abrasive)

Symbol	Description
VR	Very rough (near-vertical steps and ridges occur on the discontinuity
VR	surface)

4.14 Shape of discontinuity

Symbol	Description
PI	Planar
St	Stepped
Un	Undulating
Ir	Irregular

4.15 Filling amount

Symbol	Description	
Su	Surface Stain	
Sp	Spotty	
Ра	Partially Filled	
Fi	Filled	
No	None	

4.16 Filling Type

Symbol	Term	Hard/Soft
Ab	Albite	Hard
Ah	Anhydrite	Hard
Bt	Biotite	Soft
Bn	Bornite	Hard
Са	Calcite	Hard
Cb	Carbonate	Hard
Ch	Chlorite	Soft
Сру	Chalcopyrite	Hard
Су	Clay	Soft
Do	Dolomite	Hard
Ep	Epidote	Hard
Fd	Feldspar	Hard
FeOx	Iron Oxide	Hard
Go	Gouge	Soft
Gr	Graphite	Soft
Gy	Gypsum	Soft
He	Hematite	Hard
Ка	Kaolinite	Soft
Kf	K-feldspar	Hard

AECOM

Symbol	Term	Hard/Soft
Lm	Limonite/FeOx	Soft
Ms	Muscovite	Soft
Mt	Magnetite	Hard
Ру	Pyrite	Hard
Qz	Quartz	Hard
Rb	Rubble	Hard
Sa	Sand	Hard
Se	Sericite/Illite	Soft
Si	Silt	Hard
Sm	Smectite	Soft
Su	Sulphide	Hard
Та	Talc	Soft
UH	Unknown Hard	Hard
US	Unknown Soft	Soft
OTH - see comments		

			nipeg North Transit Garage	(CLIEN	IT: C	ity of	Winnipeg			ESTHOLE NO: TH24-0	
			M: 14U, 5532433.279 m N, 0628334.527 m E Paddock Drilling		45-71		0.1				ROJECT NO.: 6072107	
SAMP						i <u>od:</u> It spo		I Stem Auger/Core BULK		RECOVE	EVATION (m): 234.84	r
O DEPTH (m)	DSU ASPH	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SI 0 : 16 1	PENETRATION TESTS	UNDRAINED SHEAR : + Torvane & QU/2 × □ Lab Vane & Pocket Per & Field Vane (kPa)	STRENGTH + 	COMMENTS	
1 2 3 4 5	FILL		FILL: biege silty SAND (SM) - moist, loose to compact FILL: black sandy fat CLAY (CH) - moist, firm to stiff firm to stiff brown fat CLAY (CH) - moist - silt inclusions		G1 G2 G3 G4 G5			•	ДН Д-+ ДН			2 2 2 2 2 2
6 7 3 9		0000	- grey - soft to firm very loose to loose grey poorly graded SAND (SP) TILL -moist - dense to very dense		G6 G7 G8		•	•	∆+ \$.+			2 2 2 2
10 11 12 13	SP		- cobbles and boulders		G10 S11 C12 S13 C14	50 50 50	•	•				
14 15 16 17 18 19	BR BR		MUDSTONE (Stony Mountain Formation, Gunn Member) - dark greyish red to purplish grey - calcareous shale to argillaceous dolomite - interbeds of relatively clean limestone DOLOMITE (Stony Mountain Formation, Gunton Member) - buff - finely crystalline - sparsely fossiliferous - padvide bedded		C15 C16 C17 C18						TCR = 98%, SCR = 93%, RQD = 51% TCR = 93%, SCR = 83%, RQD = 50% TCR = 100%, SCR =	
20 21 22 23 24			 - nodular-bedded - R3 - unconfined compressive strength of 34 MPa at 18.29 m END OF TEST HOLE - auger refusal at a depth of 10.67 m in poorly graded SAND (SP) TILL - sloughing observed at a depth of 10.36 m in poorly graded SAND (SP) TILL - heavy seepage observed at a depth of 8.53 m in poorly graded SAND (SP) TILL - water level unavailable due to use of coring method 		_						96%, RQD = 94%	
25 26 27 28												
29 30	<u> </u>		AECOM		<u> </u>	<u> </u>	RE	GGED BY: CW /IEWED BY: GL DJECT ENGINEER:	Russ Goliabtly		: ETION DEPTH: 19.81 m ETION DATE: 24-1-30 Page	

			nipeg North Transit Gara M: 14U, 5532473.116 m	5	C	LIEN	IT: C	ity o	Winnipeg				HOLE NO: TH24-(
			Paddock Drilling	N, 0020200.100111L	N		יחטו	Soli	Stem Auge	or			JECT NO.: 607210 /ATION (m): 235.07	
SAMP			GRAB	SHELBY TUBE			iod: It spc					ECOVERY		1
DEPTH (m)	USC	SOIL SYMBOL		CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ S 0	PENETRATION TI ★ Becker # < Dynamic Con PT (Standard Per (Blows/300mr 20 40 60 ■ Total Unit W. (kN/m) 7 18 19	ESTS : n Test) ♦ m) 80 100	UNDRAINED SHEAR S + Torvane + X QU/2 X Lab Vane [A Pocket Pen. Field Vane ((kPa)	rrength Д	COMMENTS	
0	OR		TOPSOIL: black, moist, with FILL: brown sandy fat CLAY	organic content	/	G1			÷•••					
1	FILL		 - moist, soft to firm, high plast - black 	ic		G2 G3					+ 🛆	······································		2
2			soft to firm brown fat CLAY ((- moist	CH)										2
3						G4					÷.А			
5	СН		- silt inclusions - grey			G5					∠+:			
þ						G6								
7						G7								
8	CL		very soft to soft grey lean - increasing SILT content						_					
9 10	SP	000	- moist dense to very dense grey por - moist END OF TEST HOLE	orly graded SAND (SP) TILL		G8 S9	50		•	· · · · · · · · · · · · · · · · · · ·				
11														
12 13 14			- groundwater was observed	at a depth 7.47 m										
13														
														2
15 16										· · · · · · · · · · · · · · · · · · ·				
								-	GGED BY: C				ION DEPTH: 9.60 m	
			AECOA	/					VIEWED BY:		Russ Golightly		ION DATE: 24-2-7 Page	1

			nipeg North Transit Garage	С	LIEN	IT: C	ty of Winnipeg		ESTHOLE NO: TH24-0	
			M: 14U, 5532502.090 m N, 0628225.720 m E						ROJECT NO.: 6072107	
			Paddock Drilling				Solid Stem Auger/Core		_EVATION (m): 235.53	}
SAMP	LEI	YPE	GRAB SHELBY TUBE		JSPL	IT SPC		NO RECOVE		
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHE ★ Becker # + Torva ◆ Dynamic Cone ◇ + Torva ◆ SPT (Standard Pen Test) ◆ (Blows/300mm) 0 20 40 60 80 100 ■ Total Unit Wit ■ (kN/m) △ Pocket ◆ Field \ 16 17 18 19 20 21 Plastic MC Liquid 50 100	ane + /2 X 'ane □ Pen. △ /ane @ a)	COMMENTS	
0	OR FILL		TOPSOIL: black, moist, with organic content FILL: brown sandy fat CLAY (CH) - moist, soft to firm, high plastic - wood remains		G1 G2 G3		•			2
·2 ·3	ML		- black loose to compact brown SILT (ML)	/	G4		● △+			2
4			- moist firm to stiff brown fat CLAY (CH)							2
5			- moist - grey		G5		● : <u>+</u> A:			2
6	СН				G6					
7					G7		.			
8										
)		0000	loose to compact grey poorly graded SAND (SP) TILL - moist		G8 S9	19				
10 11	SP	0000	- compact to dense - cobbles and boulders		C11 S10 C12	31	• •		TCR = 71%, SCR = 67%, RQD = 38% TCR = 20%, SCR = 0%,	
12 13			MUDSTONE (Stony Mountain Formation, Gunn Member) - dark greyish red to purplish grey - calcareous shale to argillaceous dolomite		C13				RQD = 0% TCR = 37%, SCR = 18%, RQD = 11%	2
14	BR		- interbeds of relatively clean limestone		C14				TCR = 57%, SCR = 37%,	2
15 16	אט				C15				RQD = 23% TCR = 98%, SCR = 95%,	2
17					-				RQD =72%	
17 18 19	BR		DOLOMITE (Stony Mountain Formation, Gunton Member) - buff - finely crystalline		C16				TCR = 93%, SCR = 82%, RQD = 52%	
20			- sparsely fossiliferous - nodular-bedded END OF TESTHOLE		C17				TCR = 100%, SCR = 98%, RQD = 93%	2
21			 auger refusal at a depth of 11.43 m in poorly graded SAND (SP) TILL 							
22 23			 heavy seepage observed at a depth of 9.14 m in poorly graded SAND (SP) TILL sloughing observed at a depth of 10.97 m in poorly 							
			graded SAND (SP) TILL - water level unavailable due to use of coring method							
24 25										2
26										
26 27 28										
28										
29 30										
		. <u> </u>					LOGGED BY: CW		LETION DEPTH: 19.96 m	-
			AECOM				REVIEWED BY: GL PROJECT ENGINEER: Russ Golightly		LETION DATE: 24-1-31 Page	1

			nipeg North Transit Garag M: 14U, 5532383.943 m	5	C	LIEN	IT: C	ity of	Winnipe	g				HOLE NO: TH24-0 JECT NO.: 607210	
			Paddock Drilling	N, 0020344.700 III L	N		ים∪ו	Solie	Stem A	ugor				/ATION (m): 235.39	
SAMP			GRAB	SHELBY TUBE			iod: It spc			uger BULK			RECOVERY		/
DEPTH (m)	USC	SOIL SYMBOL		CRIPTION	SAMPLE TYPE	E #	SPT (N)	◆ SI 0 :: 16 1	PENETRATIC * Becker Opnamic PT (Standard (Blows/30) 00 00 10 10 10 10 10 10 10 10	N TEST er ¥ Cone ≎ I Pen Te 0mm) 60 8 it Wt ∎ i) 19 21 Liqui	est) ♦ 80 100 0 21	UNDRAINED SHEAR + Torvane X QU/2 X □ Lab Vane Δ Pocket Per & Field Vane (kPa)	STRENGTH +	COMMENTS	
0	ASPH FILL	KXX1	ASPHALT - 100 mm thick FILL: tan silty SAND (SM) - moist, loose to compact FILL: tan sandy fat CLAY (CF	Ŋ	/ 	G1 G2			•	÷			· · · · · · · · · · · · · · · · · · ·		2
2	FILL		- moist, loose to compact brown SILT - moist		<u>г</u> -Ш	G3 T4				÷	· · · · · · · · · · · · · · · · · · ·	Δ Ι	······································		2
3			stiff to very stiff brown fat CLA - high plastic - moist	AY (CH)		G6				÷	· · · · · · · · · · · · · · · · · · ·				2
4						T7				÷···· ÷····					2
5			- grey - very soft to soft			G8 T9						+			
b	СН					G10			•	÷		+23			:
7						T11				÷			· · · · · · · · · · · · · · · · · · ·		
8						G12			•	***** ***** *****		51			2
9		000	very loose to loose grey poor - moist	ly graded SAND (SP) TILL		G13				÷					
10	SP	000	END OF TESTHOLE			S14 S15	9 50		•	÷ ÷ ÷					2
11			- testhole was terminated at a graded SAND (SP) TILL - heavy seepage observed at SAND (SP) TILL	10.06 m in poorly graded						÷					
12 13 14 15			 sloughing was observed at graded SAND (SP) TILL groundwater was observed 							÷···· ÷···· ÷····			······································		
13										÷					
14										÷					
15								 		÷			· · · · · · · · · · · · · · · · · · ·		
16											 				
			ΑΞΟΟΛ	A				-	GGED BY: /IEWED B		1			ION DEPTH: 10.52 m ION DATE: 24-2-5	1
												Russ Golightly		Page	1

			nipeg North Transit Gara M: 14U, 5532417.307 m	-	C	LIEN	IT: C	ity of	Winnipeo	<u>j</u>				THOLE NO: TH24-(JECT NO.: 607210	
			Paddock Drilling	N, 0020302.755 III L				Colic	I Stem Au	aor				/ATION (m): 234.95	
SAMP			GRAB	SHELBY TUBE			IT SPC						ECOVERY		5
DEPTH (m)	NSC	SOIL SYMBOL		SCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SI 0 : 16 1	PENETRATION ★ Becke ♦ Dynamic C PT (Standard (Blows/300 20 40 6 ■ Total Unit (kN/m ³ 7 18 1) Plastic MC 20 40 6	r ₩ Cone ◇ Pen Test) (mm) (0 80 Wt ■) Wt ■) 20 Liquid	▲ 100 21		△ ₽ 150 200	COMMENTS	
0	ASPH FILL		ASPHALT - 100 mm thick FILL: tan silty SAND (CH)		/	G1		•		: : : : : : : : : : : : : : : : : : :		·····;····;····;			
1	FILL	\bigotimes	- moist, loose to compact FILL: tan sandy fat CLAY (C - moist, loose to compact stiff to very stiff brown fat CL			G2 G3			•			+			2
2			- high plastic - moist			T4 T5									2
3			- grey - firm to stiff			G6 T7			•			4			2
4						G8						Δ 1			
5	СН					G9						/ \			
7			- very soft to soft			07									
8						G10			•			HZA.			2
9	SP		very loose to loose grey poo - moist	rly graded SAND (SP) TILL		G11			•						2
9 10	Jr	000	END OF TESTHOLE - testhole was terminated at graded SAND (SP) TILL	a depth of 10.06 m in poorly		G12 S13	50		•						2
11			 heavy seepage observed a (SP) TILL sloughing was observed at graded SAND (SP) TILL 	t 9.14 m poorly graded SAND a depth of 9.14 m in poorly											2
12 13 14			- no groundwater observed							· · · · · · · · · · · · · · · · · · ·					
13										· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
14 15															
15 16												· · · · · · · · · · · · · · · · · · ·			
	-	. I						-	GGED BY:					TION DEPTH: 10.52 m	1
			AECOM								<u>, , , , , , , , , , , , , , , , , , , </u>	uss Golightly	COMPLET	TON DATE: 24-2-5 Page	1

PROJECT: Winnipeg North Transit Garage LOCATION: UTM: 14U, 5532462.977 m N, 0628231.994 m E					CLIENT: City of Winnipeg TESTHOLE NO: TH2							
			M: 140, 5532462.977 m N, 0628231.994 m E Paddock Drilling		ארדי		C ~ !'	Ctom Augen/11-11-	Nu Ctom Aure		ECT NO.: 607210	
SAMP			GRAB SHELBY TUBE			<u>IOD:</u> IT SPC		<u>d Stem Auger/Hollo</u> BULK	W Stem Auger		ATION (m): 235.64	4
SAIVIP			GRAB SHELBY TUBE		J SPL	П БРС Т					LUCORE	
DEPTH (m)	USC	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)		Plastic MC Liquid			COMMENTS	
0	OR	***	\TOPSOIL: black, moist, with organic content				<u> </u>	20 40 60 80 10	0 50 100 15	0 200		
	FILL	\bigotimes	FILL: tan silty SAND (SM)		G1			•				2
1		\bigotimes	- moist, loose to compact		G2							
I		\bigotimes	FILL: tan sandy fat CLAY (CH) - moist, loose to compact									
	FILL	\bigotimes			G3					4		
2		\bigotimes			T5			<u></u>				
-		ĬĬĬĬ	very loose to loose brown SILT (ML)					÷····				
			- moist					·····				
3					G6							
	ML							******				
								÷				
4								·····				
								······································				
_			firm to stiff grey fat CLAY (CH)		T8			<u></u>	A			
5			- high plastic - moist	μı				÷	·····			
<u>,</u>								÷				1
6				hπ	- -			*****				
	СН				T9			······································				
7												
								•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·			
				htt								
8					T10			÷•••••••••••••••••••••••••••••••••••••				
					1							
_								·····				:
)	SP	000	dense to very dense grey poorly graded SAND (SP) TI		S11	50/		>>				
			END OF TESTHOLE			152mm	n 					
10			 auger refusal at a depth of 9.30 m in poorly graded SA (SP) TILL 	AND				*****				'
			- heavy seepage was observed at a depth of 8.84 m in					÷•••••				
			poorly graded SAND (SP) TILL - sloughing observed at 2.13 m in SILT (ML)					÷····				
11			- no groundwater observed					•••••••••••••••••••••••••••••••••••••••				
			0					÷				
								······				
12								÷	·····			
9 10 11 12 13												
12								·····				'
13							::::					
								· · · · · · · · · · · · · · · · · · ·				
4												
								·····	· · · · · · · · · · · · · · · · · · ·			
15								·····				
16							1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
0	I	<u> </u>		[1	LO	GGED BY: CW		OMPLETIC	ON DEPTH: 9.60 m	-
	AECOM							VIEWED BY: GL			ON DATE: 24-2-2	
								OJECT ENGINEER:			Page	1

			nipeg North Transit Garage	0	LIEN	NT: C	ity of	Winnipeg		TESTHOLE NO: T	
			M: 14U, 5532375.238 m N, 0628273.388 m E							PROJECT NO.: 60	
			Paddock Drilling					Stem Auger/Hollo		ELEVATION (m): 2	36.17
SAMP	LF [YPE	GRAB SHELBY TUBE		JSPL	IT SPC		BULK			
DEPTH (m)	USC	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1; F	Plastic MC Liquid		COMMENT	S
0	OR	***	\TOPSOIL: black, moist, with organic content				2	0 40 60 80 100	50 100 15	50 200 	2
·1	FILL		FILL: black sandy fat CLAY (CH) - moist, firm to stiff - high plastic - grey		G1 G2 G3			•	-42		2
2			- black		T4					· · · · · · · · · · · · · · · · · · ·	
3	ML		very loose to loose brown SILT (ML) - moist		G5						:
4			firm to stiff grey fat CLAY (CH)							· · · · · · · · · · · · · · · · · · ·	:
5			- high plastic - moist		T7				-		:
6 7	СН				Т8				+ &		
8			- soft to firm		Т9				-Æ		
9		0000	loose to compact grey poorly graded SAND (SP) TILL - moist		T10						
9 10 11	SP	000000000000000000000000000000000000000	- tan		S11	17					
			- compact to dense		×	E0/					:
13		00	- dense to very dense END OF TESTHOLE - auger refusal at a depth of 12.26 m in poorly graded SAND (SP) TILL because and a second at a depth of 0.14 m in		S12	76mm	•	κε 	P		
12 13 14			 heavy seepage was observed at a depth of 9.14 m in poorly graded SAND (SP) TILL sloughing observed at 2.44 m in SILT (ML) and at 10. m in poorly graded SAND (SP) TILL groundwater was observed at a depth of 4.11 m 								
16							<u> </u>	GED BY: CW		······ OMPLETION DEPTH: 12	50 m
			AECOM					IEWED BY: CW		OMPLETION DEPTH: 12 OMPLETION DATE: 24-2	
								JECT ENGINEER:			Page 1

PROJECT: Winnipeg North Transit Garage LOCATION: UTM: 14U, 5532449.508 m N, 0628193.277 m E					CLIENT: City of Winnipeg								TESTHOLE NO: TH24-08		
			Paddock Drilling	0020193.277 III E				Calla	Ctom					<u>)JECT NO.: 607210</u> VATION (m): 236.84	
SAMP			GRAB	SHELBY TUBE			iod: It spo		Stem A	<u>uger</u> BULK			ECOVER		4
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESC		SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	PENETRATI	ON TES ker ¥ cone < d Pen T 00mm) 60 nit Wt 19 2 Liqu	TS iest) ♦ 80 100 20 21 uid	UNDRAINED SHEAR S + Torvane + X QU/2 X Lab Vane [A Pocket Pen. Field Vane (kPa)	TRENGTH □ △ ₽	COMMENTS	
0	OR	***	TOPSOIL: black, moist, with org		7				40	60	80 100	50 100	150 200		
-1	FILL		FILL: black sandy fat CLAY (CH - moist, firm to stiff - high plastic - brown)		G1 G2 G3									2
2			- black			G4									2
3 4	ML		very loose to loose brown SILT (- saturated firm to stiff grey fat CLAY (CH)	(ML)		T5 G6			•						2
5			- high plastic - moist			G7 T8			•			+ <u>A</u>			2
6	СН		- soft to firm			G9 T10				•		2.+			
8						T11									
9				orly graded SAND (SP) TILL		513 S14	23								
) 10 11		000000000000000000000000000000000000000	compact to dense grey poorly gr - moist												
12		0000000000						•							2
12 13 14			END OF TESTHOLE - auger refusal at a depth of 12.5 SAND (SP) TILL - heavy seepage was observed poorly graded SAND (SP) TILL												2
			 - sloughing observed at 3.05 m i m in poorly graded SAND (SP) - final groundwater depth at 7.77 	TILL											
15 16															
								-						TION DEPTH: 12.65 m	1
			A <u>E</u> COM									Russ Golightly	CONTRE	TION DATE: 24-2-2 Page	1

			ipeg North Transit Garage	C	CLIEN	NT: C	ity of Wir	nnipeg		-	ESTHOLE NO: TH24-0	
			M: 14U, 5532323.360 m N, 0628267.783 m E								ROJECT NO.: 607210	
			Paddock Drilling GRAB GRAB			<u>łOD:</u> IT SPC		em Auger/Core			EVATION (m): 236.91	
SAMP	LE I	YPE	GRAB IIIISHELBY TUBE		1255 T	T SPC	1			RECOVE		-
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	⇒ ⇒ Dy ⇒ SPT (S ⁱ (Bl 0 20 ■ T	TRATION TESTS K Becker ★ mamic Cone <> andard Pen Test) ◆ andard Pen Test) ◆ 001 Unit Wt ■ (kN/m) 18 19 18 19 20 2 MC Liquid 40 60 80 10	+ Torvane - XQU/2 × Lab Vane A Pocket Per Field Vane (kPa)	+ □ 1. Δ	COMMENTS	
0		ĬĬ	TOPSOIL: black, moist, with organic content FILL: brown sandy fat CLAY (CH)	-/]	G1 G2							
1	ML		- moist, soft to firm		G3							2
2	СН		- high plastic very loose to loose brown SILT (ML)	_				· · · · · · · · · · · · · · · · · · ·				2
3			- moist		G4			•	A			2
4	ML		firm to stiff black fat CLAY (CH) - moist		G5							2
4			- black oily remains very loose to loose brown SILT (ML)	_/ ー	G6			•		,		
5			- moist									2
6			firm to stiff brown fat CLAY (CH) - moist		G7							2
7			- black oily remains									2
8	СН		- grey - very soft to soft		G8							2
			-									
9					G9							2
10												2
11		60	compact to dense grey poorly graded SAND (SP) TILL		G10							2
12		000	- boulders		C11						TCR = 21%, SCR = 21%,	2
		000000000000000000000000000000000000000	- 12.5 m to 17.1 m poorly graded SAND (SP) that could	-	-						RQD = 21%	
13			- 12.5 m to 17. 1 m poorly graded SAND (SP) that could not be recovered in core runs		C12							2
14	SP	000			1							2
15					C13							2
16					1							2
		000			C14							2
17 18 19			MUDSTONE (Stony Mountain Formation, Gunn Member)		1							
18	PP		 dark greyish red to purplish grey calcareous shale to argillaceous dolomite 		C15						TCR = 50%, SCR = 50%, RQD = 31%	2
19	BR		- interbeds of relatively clean limestone		C16						TCR = 25%, SCR = 21%,	2
20											RQD = 21%, $SCR = 21%$,	
21			END OF TEST HOLE - auger refusal at a depth of 10.82 m in poorly graded					· · · · · · · · · · · · · · · · · · ·				
- 1			SAND (SP) TILL - sloughing observed at a depth of 3.35 m in SILT (ML)									
22			- heavy seepage observed at a depth of 9.14 m in poorly									
23			graded SAND (SP) TILL - water level unavailable due to use of coring method									
24												
25												
25												
26												
27												
28												:
29 30												:
30								<u></u>				
								D BY: CW			ETION DEPTH: 20.12 m	
			AECOM					/ED BY: GL CT ENGINEER:	Duos Callabet	COMPI	LETION DATE: 24-2-6 Page	1

			nipeg North Transit Garag M: 14U, 5532349.209 m l		C	LIEN	IT: C	ity of	Winnipeg	<u>g</u>				THOLE NO: TH24-1 JECT NO.: 607210	
			Paddock Drilling	, 5020200.001 III L	N	IETH	חח	Sulid	Stem Au	INPL				VATION (m): 236.9	
SAMP			GRAB	SHELBY TUBE			T SPO						ECOVERY		<u> </u>
DEPTH (m)	USC	SOIL SYMBOL		CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SF 0 2 16 1	PENETRATIOI	N TESTS rr ₩ Cone Pen Tes Omm) 50 80 t Wt 9 20 Liquid	st) ♦ 0 100 21	UNDRAINED SHEAR S + Torvane + X QU/2 X □ Lab Vane [△ Pocket Pen. ④ Field Vane o (kPa)	TRENGTH □ ▲	COMMENTS	
0	OR		TOPSOIL: black, moist, with o							50 80		50 100	150 200		+
1			FILL: black sandy fat CLAY ((- moist, firm to stiff - high plastic	CH)		G1 G2 G3						±Λ.			2
2	FILL					T4 T5									2
}	ML		very loose to loose brown SIL - moist	T (ML)		T6					· · · · · · · · · · · · · · · · · · ·				
4 5			firm to stiff brown fat CLAY (C - high plastic - moist	H)		G8			٠						
,)			- grey			G9			C			25			
7	СН		- soft to firm			G10									:
3															
9			- very soft to soft			G11			•	· · · · · · · · · · · · · · · · · · ·					
10			compact to dense grey poorly	graded SAND (SP) TILL		G12			•						
11	SP	0000000	- moist			G13									
12 13 14		<u> </u>	END OF TESTHOLE - auger refusal at a depth of 1 SAND (SP) TILL - heavy seepage was observed poorly graded SAND (SP) TII			S14	50		•						
4			 sloughing observed at 3.05 m in poorly graded SAND (SI final groundwater depth obs 	m in SILT (ML) and at 10.67											
15															:
16									GED BY:					FION DEPTH: 12.65 m	
			AECOA	Λ				-	IEWED B					FION DATE: 24-2-7	<u> </u>

			nipeg North Transit Garage	C	CLIEN	NT: C	ity of	Winnipeg			TESTHOLE NO: TH24-1	
			M: 14U, 5532387.627 m N, 0628183.369 m E								PROJECT NO.: 607210	
			Paddock Drilling					Stem Auger			ELEVATION (m): 237.43	3
SAMP	LET	YPE	GRAB SHELBY TUBE		SPL	IT SPC	ON	BULK			OVERY CORE	
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1; F	■ Total Unit Wt (kN/m³) 7 18 19 2 lastic MC Liqu	> est) ♦ 80 100 I 20 21	♣ Field Vane ♣ (kPa)	COMMENTS	
0	OR FILL	***	TOPSOIL: black, moist, with organic content				2	0 40 60	80 100	50 100 150	200	
			FILL: brown silty SAND (SM) - moist, loose to compact		G1						· · · · · · ·	2
1		\bigotimes	FILL: black sandy fat CLAY (CH)	-/ =	G2						· · · · · · · · · · ·	
		\bigotimes	- moist, firm to stiff - high plastic		G3						• • • • •	2
_		\bigotimes	g pidouo		T4							
2	FILL	\bigotimes		μu	-							
		\bigotimes										2
3		\bigotimes			G5			•		+		
											· · · · · · · · · · · ·	
	ML	XXX	very loose to loose brown sandy SILT (ML)									
			\- moist		G6						• • • • •	
			firm to stiff brown fat CLAY (CH) - high plastic		G7			•		<u> </u>	· · · · · · · · · · ·	
i			- moist		T8						• • • • •	
]						· · · · · · ·	
			- grey - very soft to soft								· · · · · ·	
)			,		G9			•••••				
					T10					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	
,											•••••	
					G11						• • • • •	
.				Π	T12					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
}	СН			H	-						· · · · · ·	
)					G13			•			· · · · · · ·	
) 0										· · · · · · · · · · · · · · · · · · ·		
0											• • • • •	
0											· · · · · · · · · · · · · · · · · · ·	
					G14			•				'
1 2 3 4 5												
2					G15						· · · · · · · · · · · · · · · · · · ·	
			compact to dense grey poorly graded SAND (SP) TILL		615							
	SP		- moist									
3		00			C14	_					· · · · · · · · · · ·	
		<u>~~~</u>	END OF TESTHOLE		G16 S17	50		•••••				
4			 auger refusal at a depth of 13.41 m in poorly graded SAND (SP) TILL 									
			- heavy seepage was observed at a depth of 12.19 m in								· · · · · · · · ·	
-			poorly graded SAND (SP) TILL - no sloughing observed									
5			- final groundwater depth observed at 4.42 m									
											· · · · · · · · · · ·	
6							-					
			AECOM					GED BY: CW			MPLETION DEPTH: 13.87 m MPLETION DATE: 24-2-7	
								JECT ENGINE			Page	1

			nipeg North Transit Garage	_	C	LIEN	T: C	ty of Winnipeg				STHOLE NO: TH24-1	
			V: 14U, 5532443.423 m N, 628118.013 m E	<u> </u>								ROJECT NO.: 6072107	
			Paddock Drilling					Solid Stem Auge	er/Core			EVATION (m): 237.93	3
SAMP	LF [YPE	GRAB SHELBY TU	IRF	<u>ک</u>	JSPLI	T SPO				RECOVE		-
DEPTH (m)	USC	SOIL SYMBOL	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TE	e ◇ n Test) ✦ n) 80 100	Pocket Per Prield Vane (kPa)	+ 	COMMENTS	
0	OR		\TOPSOIL: black, moist, with organic content FILL: brown sandy fat CLAY (CH)			G1 G2		20 40 00	00 10		130 20	5 	
]			- moist, soft to firm - low plastic			G3		ě		$+$ \triangle			
2	FILL	\bigotimes	- low plastic - black oily remains										
3			- boulder			G4 G5		\$		A			:
4	ML		loose to compact brown SILT (ML)			G6		•					
5			- moist firm to stiff grey fat CLAY (CH)										
			- high plastic							Â			
6			- cobbles and boulders			G8				<u>A</u>			
7	СН	\square				G9				.∧∔-			:
3			- soft to firm							<u>A</u>			:
9						G10		۲					
10													
11		00	compact to dense grey poorly graded SAND (SP) TI	11 1		G11		•		4 +			
		000000000000000000000000000000000000000	- moist										
12		000	- dense to very dense		X	G12 S13	47	8 🔸					:
13		00	- cobbles and boulders			C14							:
14	SP	00											:
15		00				C15							
16		0000											
		00				C16						TCR = 65%, SCR = 56%, RQD = 15%	
17 18			MUDSTONE (Stony Mountain Formation, Gunn Mer - dark greyish red to purplish grey	mber)		C17						TCR = 40%, SCR = 32%,	
18			 calcareous shale to argillaceous dolomite 									RQD = 25%	:
19	BR		- interbeds of relatively clean limestone			C18						TCR = 28%, SCR = 8%,	:
18 19 20					╞							RQD = 8%	:
21			DOLOMITE (Stony Mountain Formation, Gunton Me	ember)		C19						TCR = 71%, SCR = 46%,	
22			- buff - finely crystalline		╞╋							RQD = 23%	
23			- sparsely fossiliferous			C20						TCR = 92%, SCR = 43%, RQD = 31%	
	BR		 nodular-bedded bedrock poor quality 										
24			- approximately 1.75 m sand seam			C21						TCR = 66%, SCR = 37%, RQD = 31%	:
25						C22						TCR = 88%, SCR = 30%,	
26		<u> </u>	END OF TESTHOLE									RQD = 30%	:
27			- auger refusal at a depth of 12.19 m in poorly grade SAND (SP) TILL										
28			 heavy seepage was observed at a depth of 10.67 r poorly graded SAND (SP) TILL 	m in									
20			- sloughing was observed at a depth of 10.67 m in p graded SAND (SP) TILL	oorly									
29			- water level unavailable due to use of coring metho	d									:
29 30	1				<u> </u>	I	l	LOGGED BY: C	N		COMPL	ः Letion Depth: 25.76 m	
			AECOM					REVIEWED BY:	GL		COMPL	ETION DATE: 24-2-1	

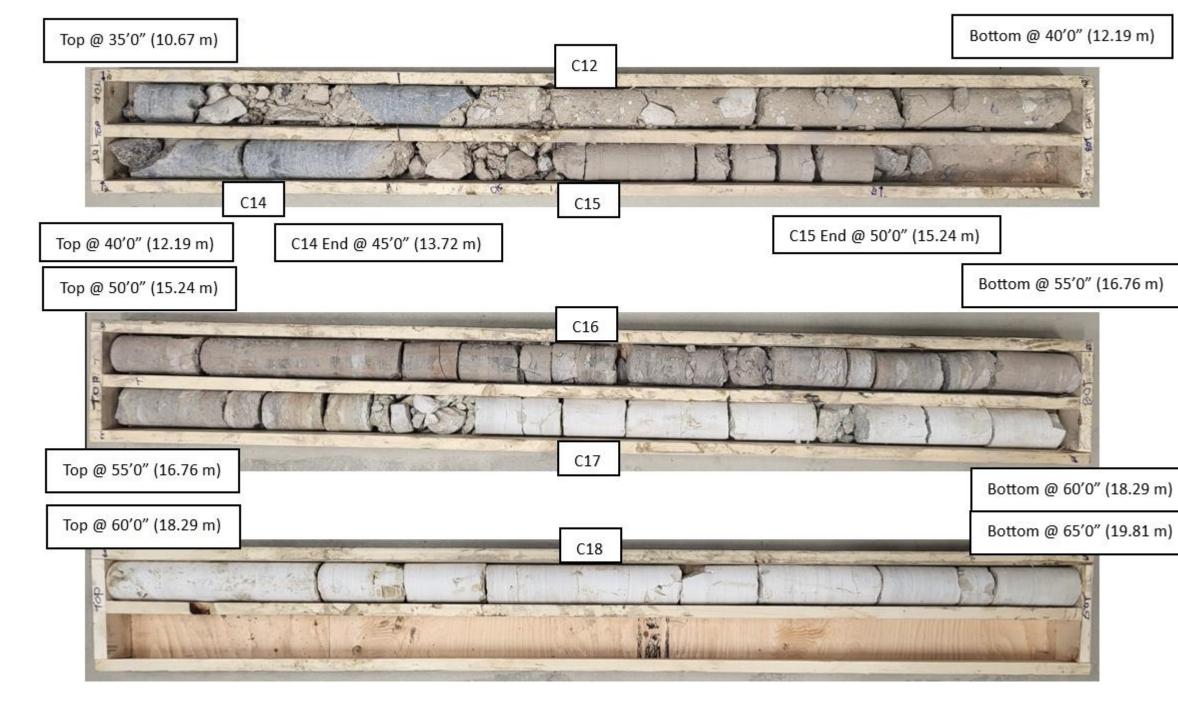
			nipeg North Transit Garage M: 14U, 55323326.097 m N, 0628171.223 m		CLIEN	NT: C	ity of	Winnipeg				THOLE NO: TH24-	
			Paddock Drilling				Coll-	Ctom A	or			<u>)JECT NO.: 607210</u> VATION (m): 237.98	
SAMP						<u>iod:</u> It spc		I Stem Aug BUI			ECOVER		U
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	= # =	SPT (N)	♦ SI 0 : 16 1	PENETRATION T	ESTS € n Test) ♦ m) 80 100	UNDRAINED SHEAR ST + Torvane + X QU/2 X Lab Vane [A Pocket Pen. Field Vane ((kPa)	CRENGTH	COMMENTS	
0	OR	***	TOPSOIL: black, moist, with organic content					40 60	80 100	50 100	150 200		
1			FILL: brown sandy fat CLAY (CH) - moist, soft to firm - high plastic - black		G1 G2 G3			•					2
2	FILL		- black to grey - firm to stiff		T4								
3		\bigotimes	- asphalt remains firm to stiff brown fat CLAY (CH)		T5								
4			 high plastic moist silt inclusions		T6								
6				-	G7			•			······		
7					G8								
8	СН		- and silt	-	G 9			•					
9			- grey - soft to firm										
9 10 11			- very soft to soft		G10								
12 13 14			dense to very dense tan poorly graded SAND (SP) T		G11 G12								
13	SP	000	moist END OF TESTHOLE auger refusal at a depth of 12.80 m in poorly graded SAND (SP) TILL	d	- S13			•					
14			 heavy seepage was observed at a depth of 12.19 n poorly graded SAND (SP) TILL sloughing observed at a depth of 12.19 m in poorly graded SAND (SP) TILL final groundwater depth observed at 4.79 m 										
15 16			man groundwatch depin obsci ved at 4.77 III										
	1	ı I		1		1	LO	GGED BY: C	W	(COMPLE	TION DEPTH: 13.26 m	
			AECOM					/IEWED BY:		(Russ Golightly	COMPLE	TION DATE: 24-2-9 Page	

			hipeg North Transit Garage	C	LIEN	IT: C	ity of Winnipeg		TESTHOLE NO: TH24-	
			M: 14U, 5532381.560 m N, 0628082.716 m E						PROJECT NO.: 607210	
			Paddock Drilling				Solid Stem Auger		ELEVATION (m): 238.4	5
SAMP	LF I	YPE	GRAB SHELBY TUBE		JSPL	IT SPC		NO REC		
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	# Becker # Opnamic Cone ◊ \$PT (Standard Pen Test) ♦ (Blows/300mm) 20 40 60 80 100 Total Unit Wt	NED SHEAR STREI + Torvane + X QU/2 X □ Lab Vane □ Δ Pocket Pen. Δ ● Field Vane ● (kPa) 0 100 150		
0	OR		TOPSOIL: black, moist, with organic content	_/	G1			·····;····;		
·1	FILL		FILL: brown sandy fat CLAY (CH) - moist, soft to firm - high plastic - black		G2 G3					2
2					T4		-			
3		\sum	firm to stiff brown fat CLAY (CH) - high plastic - moist		T5					
4			- black - contaminants - brown		τ/					2
5					T6 G7					
7	СН				67		•			
8					G8		•			2
9			- soft to firm		G9		•			
9 10										
11		00000	dense to very dense tan poorly graded SAND (SP) TILL - moist		G10					
12	SP	000000			G11 S12	33	•			
11 12 13 14			END OF TESTHOLE - auger refusal not met - no seepage observed - no sloughing observed - final groundwater depth observed at 5.33 m							:
15										
16							LOGGED BY: CW		 MPLETION DEPTH: 12.65 m	
			AECOM				REVIEWED BY: GL		MPLETION DATE: 24-2-9	1
							PROJECT ENGINEER: Russ G		Page	1

			nipeg North Transit Garage M: 14U, 5532334.920 m N, 0628084.718 m E		CL	IEN	1: C	ty of Winnipeg			STHOLE NO: TH24-1	
			VI: 140, 5532334.920 m N, 0628084.718 m E Paddock Drilling	C.			0.5				ROJECT NO.: 6072107	
							<u>OD:</u> T SPO	Solid Stem Auger/Core			EVATION (m): 238.21	
SAMP	LE I	YPE	GRAB SHELBY TUB	3E		SPLI	I SPO					
DEPTH (m)	USC	SOIL SYMBOL	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	Field Vane (kPa)) A	COMMENTS	
D	OR		TOPSOIL: black, moist, with organic content FILL: brown sandy fat CLAY (CH)	م/		G1 G2					5 • •	1
1	ML		- moist, soft to firm	<u> </u>		G3			<u> </u>			
2	FILL	\bigotimes	- high plastic very loose to loose brown SILT (ML)	[]								
3		\bigotimes	- moist FILL: black sandy fat CLAY (CH)	/r	-	G4			À			
4			- moist, firm to stiff - high plastic			05						
5			firm to stiff brown fat CLAY (CH) - high plastic			G5						
6	СН		- moist - black oily remains brown			G6		•	Δ.			
7			- brown - silt inclusions			G7						:
8			- grey			-		•				:
9			- some silt		-	G8		•				
10		00	dense to very dense tan poorly graded SAND (SP) T	ILL		~~~		•				
11			- moist			G9		V				
12		000000000000000000000000000000000000000				G10	50					
13			- cobbles and boulders			S11 C12	50	•				
14				-								
15	SP	00			(C13					TCR = 62%, SCR = 22%, RQD = 12%	
16		0000				C14					TCR = 27%, SCR = 7%,	
17 18		0000		-							RQD = 7%	
18					(C15					TCR = 4%, SCR = 0%, RQD = 0%	
18 19 20		000				C16					TCR = 36%, SCR = 3%,	2
20			DOLOMITE (Stony Mountain Formation, Gunton Men	nber)	╉┤						RQD = 0%	2
21			- buff - finely crystalline - sparsely fossiliferous	-		C17					TCR = 70%, SCR = 23%, RQD = 0%	
22			 nodular-bedded bedrock poor quality 			C18					TCR = 95%, SCR = 63%, RQD = 45%	:
23	BR			-		210						2
24 25				F		C19					TCR = 92%, SCR = 52%, RQD = 33%	
25 26					(C20					TCR = 88%, SCR = 26%, RQD = 13%	:
26 27			END OF TESTHOLE - auger refusal at a depth of 12.19 m in poorly graded	d								:
21			SAND (SP) TILL - heavy seepage was observed at a depth of 1poorly									:
28			graded SAND (SP) TILL - no sloughing observed									
29 30			- water level unavailable due to use of coring method									
30	<u> </u>	<u> </u>						LOGGED BY: CW	(COMPL	ः ETION DEPTH: 25.91 m	1
			AECOM					REVIEWED BY: GL PROJECT ENGINEER:		COMPL	ETION DATE: 24-2-8 Page	

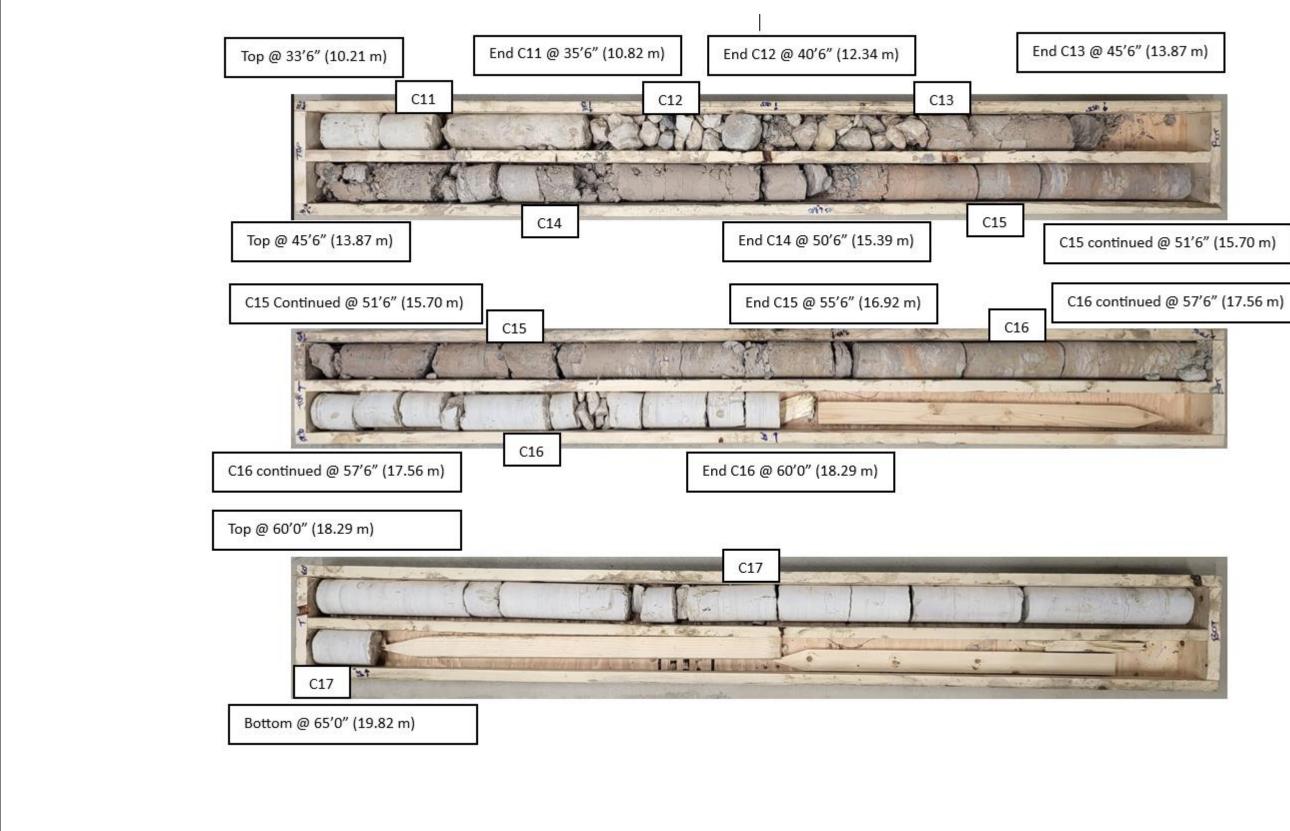
			nipeg North Transit Garage M: 14U, 5532549.964 m N		C	LIEN	II: Ci	ity of	Winnipeg			THOLE NO: TH24- JECT NO.: 607210	
			Paddock Drilling	, 0020101.313111 E		гті		Colio	Stom Augor			/ATION (m): 235.6	
SAMP			GRAB	SHELBY TUBE			iod: It spo		Stem Auger BULK		RECOVERY		0
DAIVIE			GRAD		$\neg \square$	JEL		1					
DEPTH (m)	USC	SOIL SYMBOL	Soil desc	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	PENETRATION TESTS	□ Lab Vane 00 △ Pocket Pe ● Field Vane 21 (kPa)	+ ☆ n. ∆ ⊕ ₽	COMMENTS	
0	OR		TOPSOIL: black, moist, with or	ganic content						00 50 100	150 200		
		\bigotimes	FILL: brown silty SAND (SM) - moist, loose to compact			G1							2
1	FILL	\bigotimes				G2							
						G3			•				2
2	FILL		FILL: black sandy fat CLAY (C	H)		G4			•				
-	ML	ÎÎ) - moist, firm to stiff) - high plastic			G5							
			loose to compact brown SILT (ML)	-/								2
3			- moist firm to stiff brown fat CLAY (CH	4)		G6			••••				
			 high plastic 	''									2
4			- moist - silt inclusions										
						G7							
5			- some silt - soft to firm										1
0			- silt inclusions										
			- firm to stiff										
6			- grey			G8				· · · · · · · · · · · · · · · · · · ·			
	СН		5.7										
7													
						G9			•				
8			- soft to firm			0,							
0													
										· · · · · · · · · · · · · · · · · · ·			
9						G10			•				
10									· · · · · · · · · · · · · · · · · · ·				2
10													
						G11							2
11			dense to very dense tan poorly - moist	rgraded SAND (SP) TILL		011							
	SP	0000000	mulat										
12 13 14		000							· · · · · · · · · · · · · · · · · · ·				2
12		00	END OF TESTHOLE			G12			•	· · · · · · · · · · · · · · · · · · ·			
			- auger refusal at a depth of 12	2.19 m in poorly graded									
13			SAND (SP) TILL - heavy seepage was observed poorly graded SAND (SP) TILL	d at a depth of 10.67 m in					· · · · · · · · · · · · · · · · · · ·				
			poorly graded SAND (SP) TILI - sloughing observed at a dept	- h of 2.13 m in SILT (ML)					;	· · · · · · · · · · · · · · · · · · ·			
14			- final groundwater depth obse	rved at 6.10 m					· · · · · · · · · · · · · · · · · · ·				
										· · · · · · · · · · · · · · · · · · ·			
15													
15													
16								-	GED BY: CW	······································		TION DEPTH: 12.19 m	<u> </u>
			AECON						IEWED BY: GL			TON DEPTH. 12.1911 TON DATE: 24-2-9	1
									DJECT ENGINEER:	Russ Goliahtlv		Page	<u>1</u>

			nipeg North Transit Gara M: 14U, 5532571.153 m	-	C	LIEN	IT: C	ity oʻ	Winnipeg]			THOLE NO: TH24-1	
			Paddock Drilling	IN, 0020175.904 III E				C - I'					JECT NO.: 607210	
SAMP			GRAB	SHELBY TUBE			i <u>od:</u> It spo		I Stem Au ■B			RECOVERY	/ATION (m): 235.33 / CORE	5
DEPTH (m)	nsc	SOIL SYMBOL		SCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ S 0	PENETRATION	N TESTS r ₩ Cone Pen Test) Imm) 0 80 10 Wt ■	UNDRAINED SHEAR + Torvane × QU/2 > □ Lab Vane 0	STRENGTH + C D n. A	COMMENTS	
0	OR	***	TOPSOIL: black, moist, with		/				20 40 6	80 10	0 50 100	150 200		\vdash
1	FILL		FILL: black sandy fat CLAY - moist, firm to stiff - high plastic	CH)		G1 G2 G3								2
2 3	ML		very loose to loose grey SIL - moist firm to stiff brown fat CLAY (G4 G5			•					:
4			- high plastic - moist											
ō			- some silt - soft to firm			G6								
)	СН					G7								
3			- very soft			G8			•					
)	SP		dense to very dense tan poo - moist	rly graded SAND (SP) TILL		G9								
9 10 11		a Qa Q	- auger refusal at a depth of (SP) TILL - no seepage observed	9.91 m in poorly graded SAND		G10								
12			 sloughing observed at a de - no groundwater observed 	μαι στι τ.ου τη ΟΙΕΤ (WIL)										
12 13 14														
4														
15 16														
			AECO	A					GGED BY: VIEWED B				TON DEPTH: 9.91 m TON DATE: 24-2-9	
				78							Russ Golightly		Page	1


			nipeg North Transit Garage		CLI	EN	T: Ci	ty of	Winnipeg			THOLE NO: TH24-1	
			M: 14U, 5532504.346 m N, 0628098.352 m E									JECT NO.: 607210	
			Paddock Drilling						Stem Auger			VATION (m): 236.67	7
SAMP	LET	YPE	GRAB SHELBY TUB	E [<u>X</u> s	PLI	r spo		BULK		RECOVERY	CORE	
DEPTH (m)	USC	SOIL SYMBOL	SOIL DESCRIPTION		SAMPLE IYPE	SAMPLE #	SP	◆ SF 0 2 16 1; F	PENETRATION TESTS	♣ Field Vane (kPa)	- 	COMMENTS	
0	OR		TOPSOIL: black, moist, with organic content		+					: :	:		+
	FILL		FILL: tan silty SAND (SM) - moist, loose FILL: brown sandy fat CLAY (CH)			G1 G2		•					2
I			 metal remains moist, soft to firm grey 			33		•		+			
2	FILL		- black			G4		· · · · · ·					2
3			- silt Inclusions			G5			•	+&			2
			- grey - firm to stiff - metal remains										
1	СН		firm to stiff grey fat CLAY (CH) - moist END OF TEST HOLE		G	66			•	<u>Δ+</u>			
ō			 END OF TEST HOLE testhole terminated at a depth of 4.57 m in fat CLAY no seepage or sloughing observed. 	(CH).									2
ò													2
7													
				i					GGED BY: CW			TION DEPTH: 4.57 m	<u>.</u>
			AECOM						/IEWED BY: GL DJECT ENGINEER: I		COMPLET	TION DATE: 24-1-29 Page	

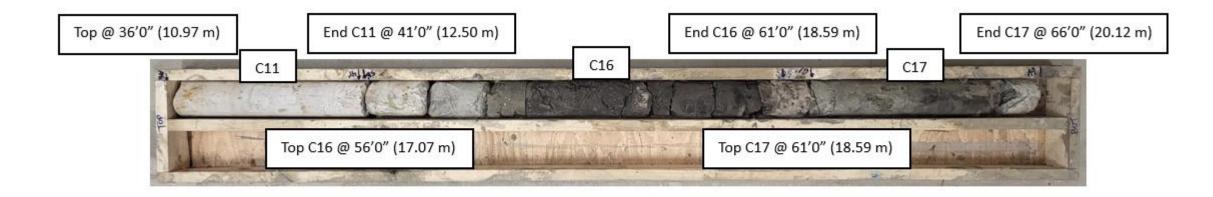
			nipeg North Transit Garage M: 14U, 5532455.565 m N,	0628067 835 m F	C	LIEN	IT: C	ity of	Winnipeg					STHOLE NO: TH24-	
			Paddock Drilling	0020007.033 III E			ים∪ו	20114	Stem Aug	nor				DJECT NO.: 607210 EVATION (m): 238.19	
SAMP			GRAB	SHELBY TUBE			iod: It spo		Stern Aug BL				RECOVER		/
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESC		SAMPLE TYPE	SAMPLE #	SPT (N)	F ◆ SP 0 2 16 17 P	ENETRATION # Becker : Dynamic Co T (Standard P (Blows/300n 0 40 60 Total Unit V (kN/m ³)	TESTS # one ten Test) ● nm) 0 80 10 Wt ■ 20 2 Liquid	10 21	NED SHEAR + Torvane X QU/2 > □ Lab Vane 2 Pocket Pe 2 Field Van (kPa)	STRENGTH + ≺ ∍ □ m. △	COMMENTS	
0	OR		TOPSOIL: black, moist, with org. FILL: black sandy fat CLAY (CH		~										
1	FILL		- brown			G1 G2 G3		•	•						2
2 3			brown fat CLAY (CH)			G4 G5			•			₩ ₩			
4	СН		 wood, glass, ceramic, and blac moist grey firm to stiff 												
5			 moist END OF TEST HOLE testhole terminated at a depth no seepage or sloughing obset 	of 4.57 m in fat CLAY (CH). ved.		G6			•			+			2
6															-
7								LOC	GED BY: (: CW			: COMPLE	TION DEPTH: 4.57 m	
			AECOM						IEWED BY					TION DATE: 24-1-29	

			nipeg North Transit Garage M: 14U, 5532269.874 m N, 0628254.992 m		CLIE	NT	: Ci	y of \	Ninn	ipeg								STHOLE NO: TH24-2 OJECT NO.: 607210	
			Paddock Drilling			ПО	• יח	Colid	Stor		nor							EVATION (m): 236.8	
SAMP					<u>IVIE I</u> SF			Solid : DN	Stell	BL	jei JLK			[7n0) RE			5
DEPTH (m)	nsc	Solt SYMBOL	SOIL DESCRIPTION		SAMPLE I YPE	_	SPT (N)	PE	ENETR * B > Dyna (Stan (Blow 40 Tota (k 18 astic	ATION ecker mic Co dard P s/300r 5/300r 1 Unit N/m ³) 19 MC	TEST me ren Te nm) 0 8 Wt ■ 20 Liqui	est) ♦ 0 100	2	AINED +1 × □L △Po €Fi	SHEA Forvan QU/2 ab Var ocket P ield Va (kPa)	R STR ie + × ne □ Pen. △ ne ⊕	RENGTH	COMMENTS	
0	OR		TOPSOIL: black, moist, with organic content					20	40	60) 8	:	, 	50	100	15	50 200		
1	FILL		FILL: black to brown sandy fat CLAY (CH) - moist, firm to stiff - high plastic		G		-	•										· · ·	2
2			firm to stiff brown fat CLAY (CH) - high plastic - moist - waste and plywood remains		G	3	-	•						+			-2: Z		2
	СН		- soft to firm - black		G		-			•									2
4			END OF TESTHOLE - testhole terminated at a depth of 3.05 m in fat CLAN - no seepage observed - no sloughing observed - no groundwater observed	Y (CH).		5	- - - - - - - - - - - - - - - - - - -												2
5							-											· · · ·	2
5							-						· · · · · · · · · · · · · · · · · · ·					· · ·	2
7								LOG	GED	BY:	CW					С	OMPL	ETION DEPTH: 3.05 m	2
			AECOM					REVI	EWE	D BY	: Gl		Russ	0 1		_		ETION DATE: 24-1-29 Page	_

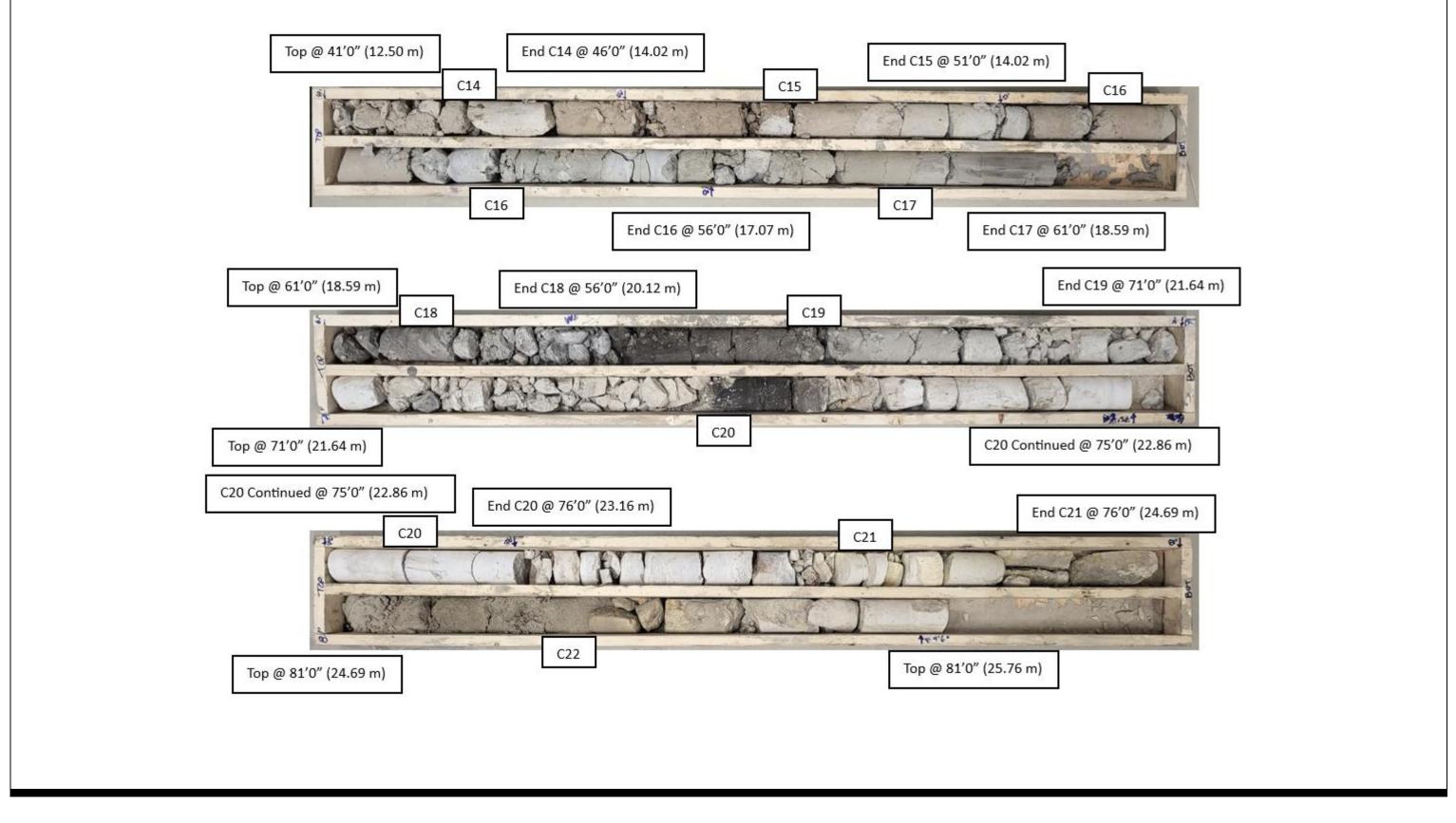

			nipeg North Transit Garage M: 14U, 5532314.445 m N, 0628358.535 m E	C	CLIEN	NT: C		TESTHOLE NO: TH24-21 PROJECT NO.: 60721079		
			Paddock Drilling	N		ים טר				
SAMP			GRAB SHELBY TUBE			<u>10D:</u> .IT SP(0.47		
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE		SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker # + Torvane + ◆ Dynamic Cone ◇ K ● SPT (Standard Pen Test) ◆ (Blows/300mm) 0 20 40 60 100 ● Total Unit WI ● COMMENTS COMMENTS 16 17 18 19 20 21 20 40 60 80 100 50 100 150 200			
0	OR		TOPSOIL: black, moist, with organic content FILL: black sandy fat CLAY (CH) - moist, firm to stiff - high plastic		G1 G2 G3		•	2		
2	FILL		 brown black firm to stiff FILL: grey silty SAND (SM) moist, loose to compact 		G4 G5 G6			2		
3 4	FILL	***	END OF TESTHOLE - testhole terminated at a depth of 3.05 m in silty SAND (SM) FILL. - no seepage observed - no sloughing observed - no groundwater observed							
5								2		
6										
7							LOGGED BY: CW COMPLETION DEPTH: 3.05	2 5 m		
			AECOM				REVIEWED BY: GL COMPLETION DATE: 24-1-2 PROJECT ENGINEER: Russ Golightly P			

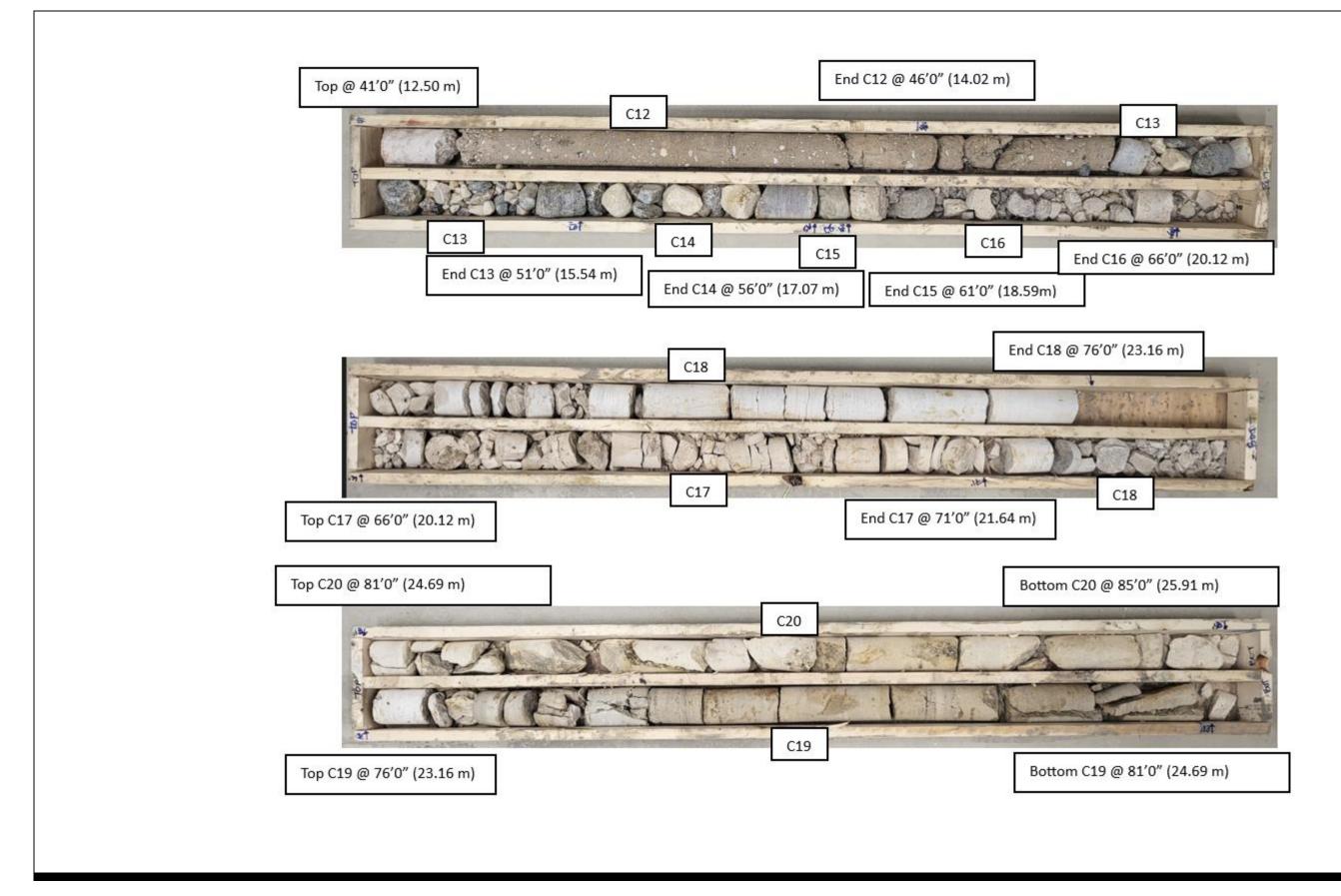
			nipeg North Transit Garage M: 14U, 5532429.165 m N, 0628361.120 m E		CLIEI	NT: C	ity of	Winr	nipeç]							THOLE NO: TH24-2	
			Paddock Drilling		<u>л</u> гт,		Call	C+-	m ^ .	0.017						PROJECT NO.: 60721079 ELEVATION (m): 234.20		
SAMP						<u>HOD:</u> .it spo		Ster	n Au B	iger III k			Г	200	REC	UVER		U
DEPTH (m)	nsc	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE			◆ SF 0 2 16 1	PENETF	RATION Becker amic C ndard I ws/300 0 6 al Unit (kN/m ³ 3 19 MC	NTEST r X Cone Pen Te Imm) 0 { Wt 9 2 Liqu	> est) ♦ 80 100 0 2'	0	AINED +T × □La ΔPo	Orvane QU/2 > ab Vane cket Pe eld Van (kPa)	: STRE ⇒ + × e □ en. △ ne ⊕	NGTH	COMMENTS	
0	ASPH		ASPHALT - 100 mm thick		+		- 2	0 4	0 6	0 8	30 100		50	100	150	200		
	FILL		FILL: biege silty SAND (SM) - moist, loose to compact		G1		•											2
1			FILL: brown sandy fat CLAY (CH) - moist, firm to stiff		G2								·····					2
2	FILL				G3			•					.+		4			
	СН		firm to stiff black fat CLAY (CH) - high plastic - moist		G4					•								
3			END OF TESTHOLE - testhole terminated at a depth of 3.05 m in fat CLAY - no seepage observed - no sloughing observed - no groundwater observed	(CH)	G5								A					:
4																		
ō																		
5																		
-																· · · · · · · · · · · · · · · · · · ·		
/	<u> </u>						LOC	GED	BY:	CW	:		:	:	: CO	MPLE	TION DEPTH: 3.05 m	
			AECOM				RE۱	/IEWE	ED B'	Y: G	L ER:				-		TION DATE: 24-1-29 Page	

Bottom @ 55'0" (16.76 m)



WINNIPEG TRANSIT GARAGE TH24-03 Core Runs




WINNIPEG TRANSIT GARAGE TH24-09 Core Runs

WINNIPEG TRANSIT GARAGE TH24-12 Core Runs

WINNIPEG TRANSIT GARAGE TH24-15 Core Runs

Laboratory Results

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

Memorandum

То	Colton Wooster	Page 1
СС		
Subject	WPG North Transit Garage	
From	Lee Boughton	
Date	March 7, 2024	Project Number 60721079

Please find attached the following material test result(s) on sample(s) submitted to the Winnipeg Geotechnical Laboratory:

- One Hundred Ninety-Five (195) Moisture Content Determination Test.
- Seven (7) Atterberg Limits (3 Points) Test.
- Seven (7) Grain Size Distribution (Hydrometer method) Test.
- Six (6) Unconfined Compressive Strength Test.
- Two (2) Maximum Dry Density (Standard Proctor) Test.
- Two (2) California Bearing Ratio Test.

If you have any questions, please contact the undersigned.

Prepared by:

Lee Boughton Laboratory Manager

Reviewed by:

AMUUA.

German Leal, M.Eng., P.Eng. Discipline Lead, Geotechnical

Att.

Fax: 204 284 2040

Project Name:	Winnipeg North Transit Garage	Supplier:	AECOM
Project Number:	60721079	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	Colton Wooster
Sample Location:	Winnipeg, MB	Sample Date:	January 29-February 9, 2024
Sample Depth:	Varies	Lab Technician:	Colton Wooster
Sample Number:	Varies	Date Tested:	February 12-14, 2024

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture Content (%)		Location	Sample	Depth (m)	Moisture Content (%)
TH24-01	G1	0.30 - 0.46 m	5.2%		TH24-04	G13	8.99 - 9.14 m	18.5%
TH24-01	G2	0.76 - 0.91 m	35.4%	-	TH24-04	S14	9.14 - 9.60 m	18.6%
TH24-01	G3	1.37 - 1.52 m	28.3%		TH24-04	G1	0.30 - 0.46 m	5.0%
TH24-01	G4	2.90 - 3.05 m	49.6%	-	TH24-05	G1 G2	0.76 - 0.91 m	23.3%
TH24-01	G5	4.42 - 4.57 m	54.4%		TH24-05	G3	1.37 - 1.52 m	23.5%
TH24-01	G6	5.94 - 6.10 m	34.5%		TH24-05	G5 G6	2.90 - 3.05 m	47.2%
TH24-01	G0 G7	7.47 - 7.62 m	21.6%		TH24-05	G0 G8	4.42 - 4.57 m	53.1%
TH24-01	G8	8.99 - 9.14 m	9.4%		TH24-05	G9	5.94 - 6.10 m	39.2%
TH24-01	S9	9.14 - 9.60 m	9.1%		TH24-05	G9 G10	7.47 - 7.62 m	47.0%
TH24-01	G10	9.91 - 10.06 m	11.3%	-	TH24-05	G10 G11	8.99 - 9.14 m	28.2%
TH24-01	S10	10.67 - 10.82 m	8.5%		TH24-05	G11 G12	9.91 - 10.06 m	12.3%
TH24-01	G1	0.30 - 0.46 m	35.9%		TH24-05	G12 G1	0.30 - 0.46 m	22.1%
TH24-02 TH24-02	G1 G2	0.30 - 0.48 m 0.76 - 0.91 m	35.9% 17.2%		TH24-06 TH24-06	G1 G2	0.30 - 0.46 m 0.76 - 0.91 m	15.6%
TH24-02 TH24-02	G2 G3	1.37 - 1.52 m	33.1%		TH24-06 TH24-06	G2 G3	1.37 - 1.52 m	28.8%
TH24-02	G3 G4	2.90 - 3.05 m	42.2%	-	TH24-00	G3 G6	2.90 - 3.05 m	25.3%
TH24-02 TH24-02	G4 G5	4.42 - 4.57 m	42.2% 55.6%		TH24-06 TH24-06	57	3.05 - 3.51 m	25.3%
TH24-02 TH24-02	G5 G6	4.42 - 4.57 m 5.94 - 6.10 m	34.7%		TH24-06 TH24-07	G1	0.30 - 0.46 m	21.3%
TH24-02 TH24-02	G6 G7	7.47 - 7.62 m			TH24-07 TH24-07	G1 G2	0.30 - 0.46 m 0.76 - 0.91 m	25.0%
TH24-02 TH24-02	G7 G8		43.1% 32.9%		TH24-07 TH24-07	G2 G3	1.37 - 1.52 m	27.2%
TH24-02 TH24-02	59 S9	8.99 - 9.14 m 9.14 - 9.60 m	32.9% 10.8%	_	TH24-07 TH24-07	G3 G5	2.90 - 3.05 m	27.9%
TH24-02 TH24-03	G1	0.30 - 0.46 m			TH24-07 TH24-07	S6	3.05 - 3.51 m	
			16.6%					35.7%
TH24-03	G2 G3	0.76 - 0.91 m	21.8%		TH24-07	S11 S12	10.67 - 11.13 m	11.0%
TH24-03		1.37 - 1.52 m	20.7%	-	TH24-07		12.04 - 12.50 m	8.8%
TH24-03	G4 G5	2.90 - 3.05 m	33.8%		TH24-08	G1	0.30 - 0.46 m	16.0%
TH24-03		4.42 - 4.57 m	52.4%		TH24-08	G2	0.76 - 0.91 m	25.7%
TH24-03	G6	5.94 - 6.10 m	40.1%		TH24-08	G3	1.37 - 1.52 m	19.1%
TH24-03	G7	7.47 - 7.62 m	20.7%		TH24-08	G4	2.90 - 3.05 m	34.5%
TH24-03	G8	8.99 - 9.14 m	24.5%		TH24-08	G6	3.96 - 4.11 m	25.7%
TH24-03	S9	9.14 - 9.60 m	19.7%	_	TH24-08	G7	4.42 - 4.57 m	32.9%
TH24-03	S10	10.67 - 11.13 m	6.8%		TH24-08	G9	5.94 - 6.10 m	56.0%
TH24-04	G1	0.30 - 0.46 m	25.1%		TH24-08	S13	10.67 - 11.13 m	13.4%
TH24-04	G2	0.76 - 0.91 m	22.0%		TH24-08	S14	12.19 - 12.65 m	10.5%
TH24-04	G3	1.37 - 1.52 m	15.7%		TH24-09	G1	0.15 - 0.30 m	23.2%
TH24-04	G5	1.68 - 1.83 m	20.3%		TH24-09	G2	0.46 - 0.61 m	16.5%
TH24-04	G6	2.90 - 3.05 m	38.4%		TH24-09	G3	1.37 - 1.52 m	30.6%
TH24-04	G8	4.42 - 4.57 m	52.6%		TH24-09	G4	2.90 - 3.05 m	41.0%
TH24-04	G10	5.94 - 6.10 m	45.1%		TH24-09	G5	3.35 - 3.51 m	28.8%
TH24-04	G12	7.47 - 7.62 m	39.8%		TH24-09	G6	4.27 - 4.42 m	39.0%

Fax: 204 284 2040

Project Name:	Winnipeg North Transit Garage	Supplier:	AECOM
Project Number:	60721079	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	Colton Wooster
Sample Location:	Winnipeg, MB	Sample Date:	January 29-February 9, 2024
Sample Depth:	Varies	Lab Technician:	Colton Wooster
Sample Number:	Varies	Date Tested:	February 12-14, 2024

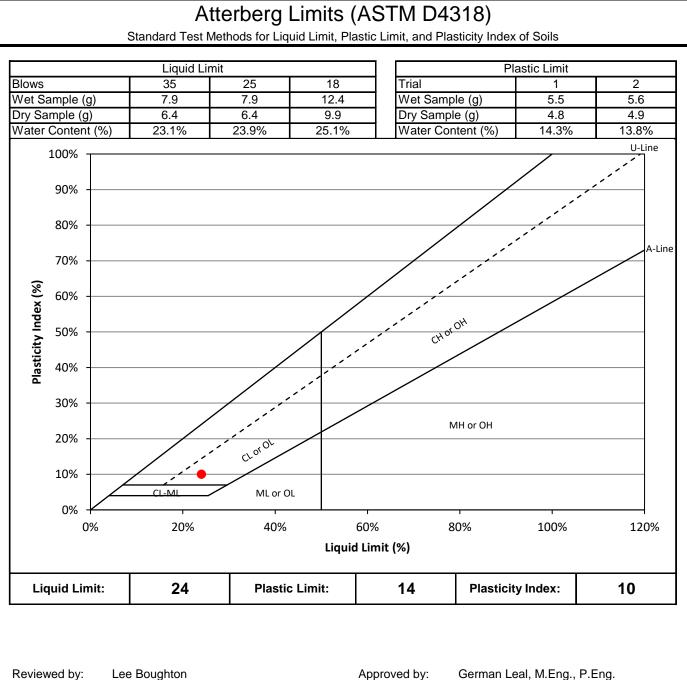
Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture	Location	Sample	Depth (m)	Moisture
	•	,	Content (%)		1	,	Content (%
TH24-09	G7	5.94 - 6.10 m	48.8%	TH24-12	G12	12.04 - 12.19 m	10.5%
TH24-09	G8	7.47 - 7.62 m	45.7%	TH24-12	S13	12.19 - 12.65 m	8.6%
TH24-09	G9	8.99 - 9.14 m	38.2%	TH24-13	G1	0.30 - 0.46 m	20.5%
TH24-09	G10	10.52 - 10.67 m	30.8%	TH24-13	G2	0.76 - 0.91 m	29.4%
TH24-10	G1	0.30 - 0.46 m	31.9%	TH24-13	G3	1.37 - 1.52 m	21.9%
TH24-10	G2	0.76 - 0.91 m	35.8%	TH24-13	G7	5.94 - 6.10 m	44.9%
TH24-10	G3	1.37 - 1.52 m	33.9%	TH24-13	G8	7.47 - 7.62 m	36.1%
TH24-10	S7	3.66 - 4.11 m	34.0%	TH24-13	G9	8.53 - 8.69 m	35.0%
TH24-10	G8	4.42 - 4.57 m	39.3%	TH24-13	G10	10.52 - 10.67 m	36.4%
TH24-10	G9	5.94 - 6.10 m	56.1%	TH24-13	G11	12.04 - 12.19 m	24.5%
TH24-10	G10	7.47 - 7.62 m	53.1%	TH24-13	G12	12.19 - 12.34 m	25.0%
TH24-10	G11	8.99 - 9.14 m	33.8%	TH24-14	G1	0.30 - 0.46 m	5.3%
TH24-10	G12	10.52 - 10.67 m	34.7%	TH24-14	G2	0.76 - 0.91 m	16.6%
TH24-10	G13	12.04 - 12.19 m	10.5%	TH24-14	G3	1.37 - 1.52 m	25.6%
TH24-11	G1	0.30 - 0.46 m	15.4%	TH24-14	G7	5.94 - 6.10 m	47.9%
TH24-11	G2	0.76 - 0.91 m	11.9%	TH24-14	G8	7.47 - 7.62 m	42.2%
TH24-11	G3	1.37 - 1.52 m	14.2%	TH24-14	G9	8.99 - 9.14 m	36.3%
TH24-11	G5	2.90 - 3.05 m	31.1%	TH24-14	G10	10.52 - 10.67 m	27.9%
TH24-11	G6	3.96 - 4.11 m	15.9%	TH24-14	G11	12.04 - 12.19 m	9.2%
TH24-11	G7	4.42 - 4.57 m	29.0%	TH24-14	S12	12.19 - 12.65 m	9.1%
TH24-11	G9	5.94 - 6.10 m	57.8%	TH24-15	G1	0.30 - 0.46 m	18.8%
TH24-11	G11	7.47 - 7.62 m	46.0%	TH24-15	G2	0.76 - 0.91 m	10.9%
TH24-11	G13	8.99 - 9.14 m	35.0%	TH24-15	G3	1.37 - 1.52 m	21.8%
TH24-11	G14	10.52 - 10.67 m	54.3%	TH24-15	G4	2.90 - 3.05 m	35.6%
TH24-11	G15	12.04 - 12.19 m	18.1%	TH24-15	G5	4.42 - 4.57 m	35.6%
TH24-11	G16	13.26 - 13.41 m	16.7%	TH24-15	G6	5.94 - 6.10 m	49.5%
TH24-11	S17	13.41 - 13.87 m	10.5%	TH24-15	G7	7.47 - 7.62 m	40.3%
TH24-12	G1	0.30 - 0.46 m	16.0%	TH24-15	G8	8.99 - 9.14 m	27.6%
TH24-12	G2	0.76 - 0.91 m	12.9%	TH24-15	G9	10.52 - 10.67 m	33.8%
TH24-12	G3	1.37 - 1.52 m	15.1%	TH24-15	G10	12.04 - 12.19 m	18.9%
TH24-12	G4	2.90 - 3.05 m	21.8%	TH24-15	S11	12.19 - 12.65 m	9.8%
TH24-12	G5	3.20 - 3.35 m	23.4%	TH24-16	G1	0.30 - 0.46 m	17.2%
TH24-12	G6	3.81 - 3.96 m	27.3%	TH24-16	G2	0.76 - 0.91 m	18.9%
TH24-12	S7	4.57 - 5.03 m	28.4%	TH24-16	G3	1.37 - 1.52 m	31.8%
TH24-12	G8	5.94 - 6.10 m	47.2%	TH24-16	G4	1.83 - 1.98 m	24.6%
TH24-12	G9	7.47 - 7.62 m	32.4%	TH24-16	G5	2.13 - 2.29 m	19.2%
TH24-12	G10	8.99 - 9.14 m	34.9%	TH24-16	G6	2.90 - 3.05 m	37.1%
TH24-12	G10 G11	10.52 - 10.67 m	25.2%	TH24-16	G7	4.42 - 4.57 m	48.8%

Fax: 204 284 2040

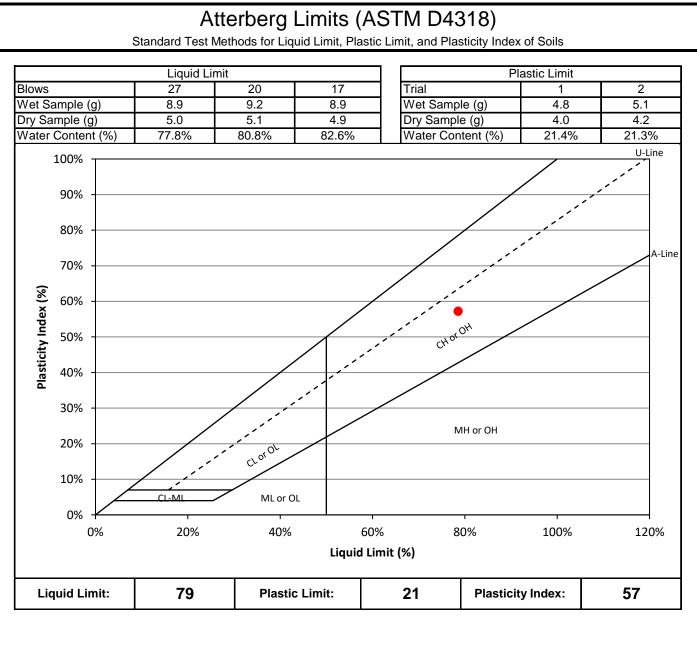
Project Name:	Winnipeg North Transit Garage	Supplier:	AECOM
Project Number:	60721079	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	Colton Wooster
Sample Location:	Winnipeg, MB	Sample Date:	January 29-February 9, 2024
Sample Depth:	Varies	Lab Technician:	Colton Wooster
Sample Number:	Varies	Date Tested:	February 12-14, 2024


Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture	Location	Sample	Depth (m)	Moisture
Location	Sample	Deptil (III)	Content (%)	Location	Sample	Deptil (III)	Content (%)
TH24-16	G8	5.94 - 6.10 m	33.7%	TH24-22	G2	0.76 - 0.91 m	10.6%
TH24-16	G9	7.47 - 7.62 m	34.9%	TH24-22	G3	1.37 - 1.52 m	35.1%
TH24-16	G10	8.99 - 9.14 m	23.0%	TH24-22	G4	2.29 - 2.44 m	62.2%
TH24-16	G11	10.52 - 10.67 m	22.3%	TH24-22	G5	2.90 - 3.05 m	55.9%
TH24-17	G1	0.30 - 0.46 m	16.3%			0.00 - 0.00 m	-
TH24-17	G2	0.76 - 0.91 m	14.9%			0.00 - 0.00 m	-
TH24-17	G3	1.37 - 1.52 m	20.9%			0.00 - 0.00 m	-
TH24-17	G4	2.29 - 2.44 m	23.5%			0.00 - 0.00 m	-
TH24-17	G5	2.90 - 3.05 m	39.9%			0.00 - 0.00 m	-
TH24-17	G6	4.42 - 4.57 m	33.8%			0.00 - 0.00 m	-
TH24-17	G7	5.94 - 6.10 m	42.1%			0.00 - 0.00 m	-
TH24-17	G8	7.47 - 7.62 m	25.2%			0.00 - 0.00 m	-
TH24-17	G9	8.99 - 9.14 m	24.3%			0.00 - 0.00 m	-
TH24-17	G10	9.75 - 9.91 m	18.6%			0.00 - 0.00 m	-
TH24-18	G1	0.30 - 0.46 m	6.0%			0.00 - 0.00 m	-
TH24-18	G2	0.76 - 0.91 m	8.1%			0.00 - 0.00 m	-
TH24-18	G3	1.37 - 1.52 m	13.7%			0.00 - 0.00 m	-
TH24-18	G4	2.29 - 2.44 m	26.2%			0.00 - 0.00 m	-
TH24-18	G5	2.90 - 3.05 m	19.0%			0.00 - 0.00 m	-
TH24-18	G6	4.42 - 4.57 m	38.9%			0.00 - 0.00 m	-
TH24-19	G1	0.30 - 0.46 m	15.2%			0.00 - 0.00 m	-
TH24-19	G2	0.76 - 0.91 m	17.7%			0.00 - 0.00 m	-
TH24-19	G3	1.37 - 1.52 m	10.8%			0.00 - 0.00 m	-
TH24-19	G4	2.29 - 2.44 m	25.5%			0.00 - 0.00 m	-
TH24-19	G5	2.90 - 3.05 m	32.7%			0.00 - 0.00 m	-
TH24-19	G6	4.42 - 4.57 m	33.6%			0.00 - 0.00 m	-
TH24-20	G1	0.30 - 0.46 m	22.4%			0.00 - 0.00 m	-
TH24-20	G2	0.76 - 0.91 m	19.1%			0.00 - 0.00 m	-
TH24-20	G3	1.37 - 1.52 m	21.7%			0.00 - 0.00 m	-
TH24-20	G4	2.29 - 2.44 m	53.6%			0.00 - 0.00 m	-
TH24-20	G5	2.90 - 3.05 m	65.3%			0.00 - 0.00 m	-
TH24-21	G1	0.30 - 0.46 m	21.8%			0.00 - 0.00 m	-
TH24-21	G2	0.76 - 0.91 m	17.1%			0.00 - 0.00 m	-
TH24-21	G3	1.52 - 1.68 m	21.1%			0.00 - 0.00 m	-
TH24-21	G4	2.13 - 2.29 m	31.1%			0.00 - 0.00 m	-
TH24-21	G5	2.29 - 2.44 m	30.9%			0.00 - 0.00 m	-
TH24-21	G6	2.74 - 2.90 m	26.2%			0.00 - 0.00 m	-
TH24-22	G1	0.30 - 0.46 m	7.8%			0.00 - 0.00 m	-

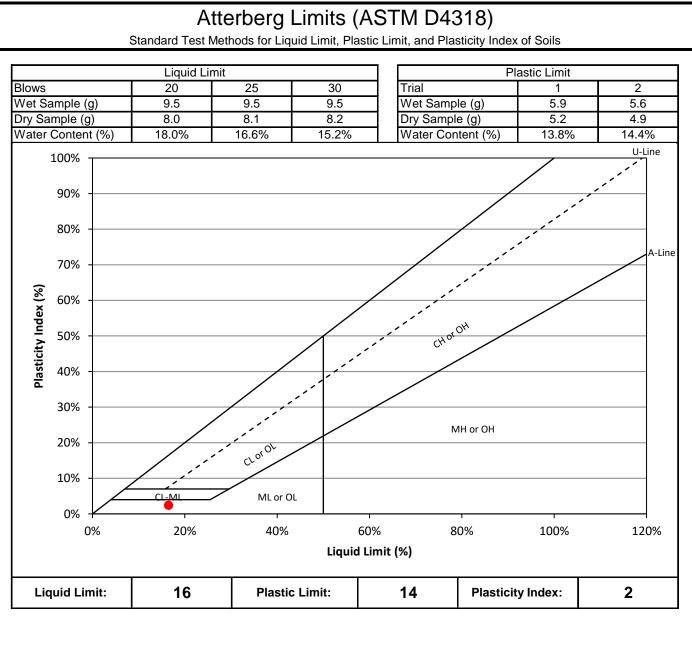
Project Name:	Winnipeg North Transit Garage		
Project Number:	60721079	Supplier/Location:	Winnipeg, MB
Client:	City of Winnipeg	Field Technician:	CWooster
Sample Location:	TH24-02	Sample Date:	February 9, 2024
Sample Depth:	8.99 - 9.14 m	Lab Technician:	LBoughton
Sample Number:	G8	Date Tested:	March 6, 2024



Laboratory Manager

Approved by:

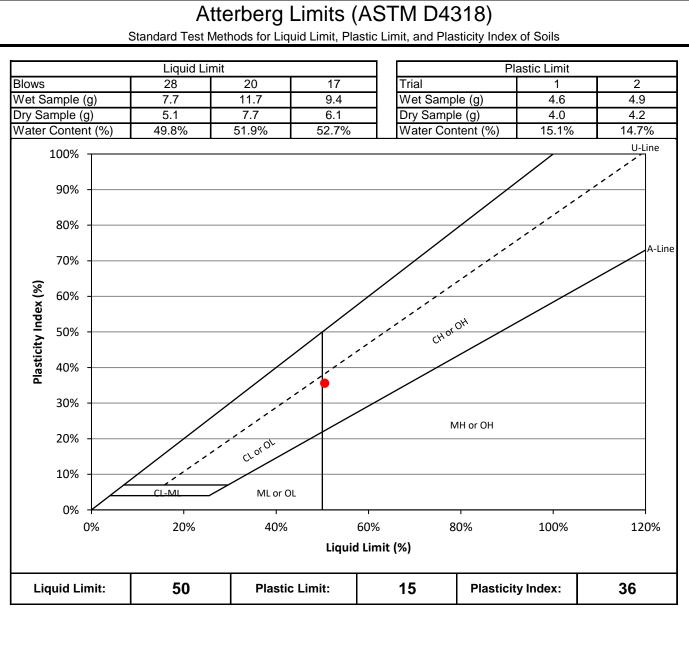
Project Name:	Winnipeg North Transit Garage		
Project Number:	60721079	Supplier/Location:	Winnipeg, MB
Client:	City of Winnipeg	Field Technician:	CWooster
Sample Location:	TH24-03	Sample Date:	February 9, 2024
Sample Depth:	4.42 - 4.57 m	Lab Technician:	LBoughton
Sample Number:	G5	Date Tested:	March 6, 2024



Reviewed by:

Lee Boughton Laboratory Manager Approved by:

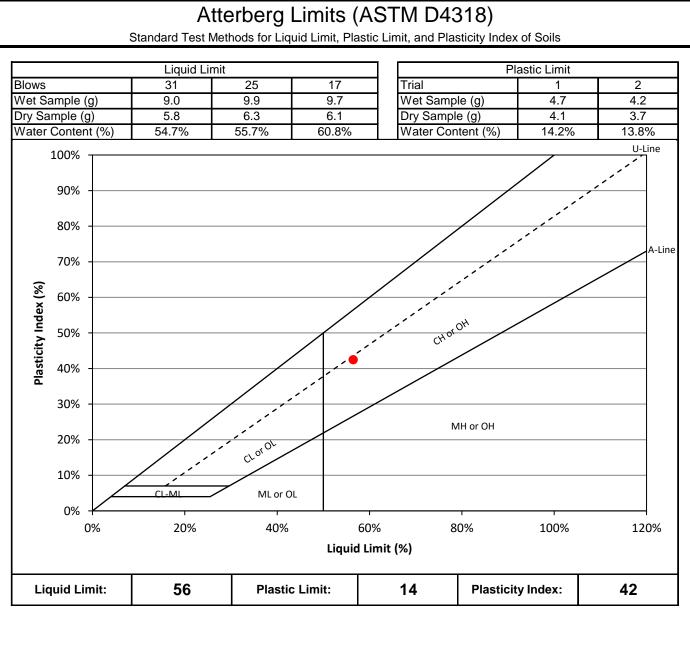
Project Name:	Winnipeg North Transit Garage		
Project Number:	60721079	Supplier/Location:	Winnipeg, MB
Client:	City of Winnipeg	Field Technician:	CWooster
Sample Location:	TH24-07	Sample Date:	February 9, 2024
Sample Depth:	2.90 - 3.05 m	Lab Technician:	LBoughton
Sample Number:	G5	Date Tested:	March 6, 2024



Reviewed by:

Lee Boughton Laboratory Manager Approved by:

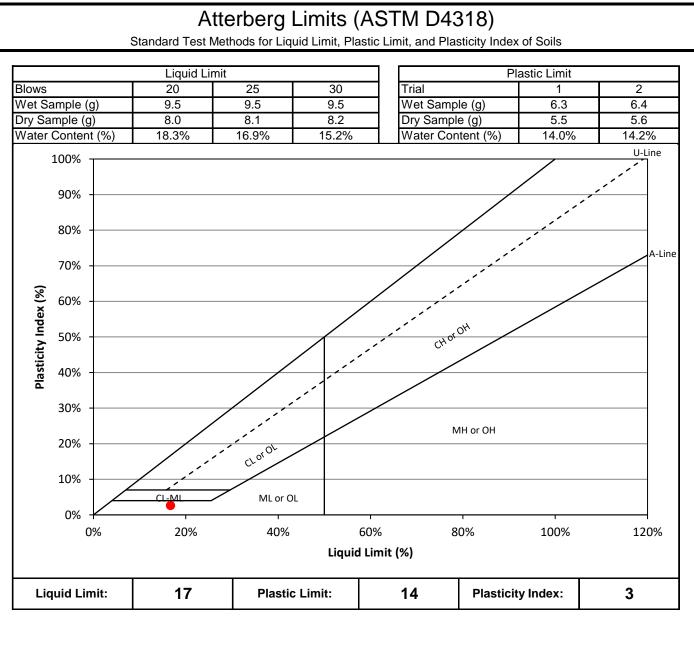
Project Name:	Winnipeg North Transit Garage		
Project Number:	60721079	Supplier/Location:	Winnipeg, MB
Client:	City of Winnipeg	Field Technician:	CWooster
Sample Location:	TH24-12	Sample Date:	February 9, 2024
Sample Depth:	1.37 - 1.52 m	Lab Technician:	LBoughton
Sample Number:	G3	Date Tested:	March 6, 2024



Reviewed by:

Lee Boughton Laboratory Manager Approved by:

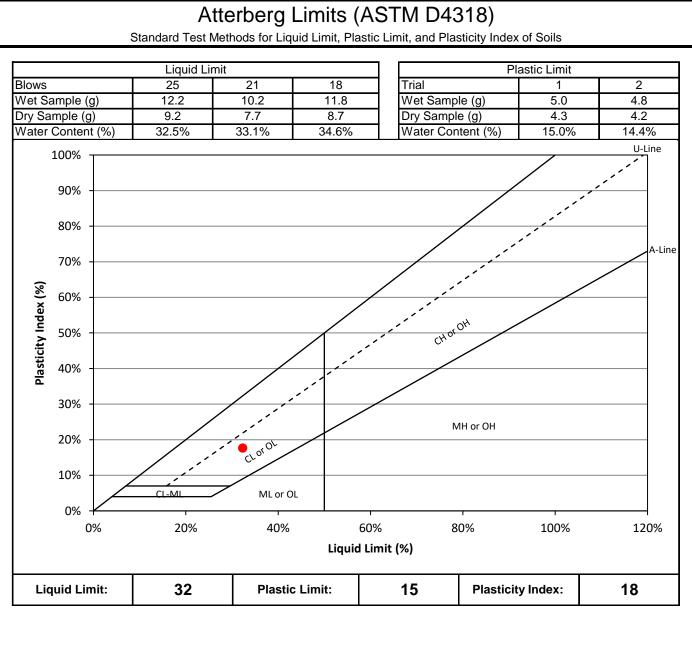
Project Name:	Winnipeg North Transit Garage		
Project Number:	60721079	Supplier/Location:	Winnipeg, MB
Client:	City of Winnipeg	Field Technician:	CWooster
Sample Location:	TH24-13	Sample Date:	February 9, 2024
Sample Depth:	10.52 - 10.67 m	Lab Technician:	LBoughton
Sample Number:	G10	Date Tested:	March 6, 2024



Reviewed by:

Lee Boughton Laboratory Manager Approved by:

Project Name:	Winnipeg North Transit Garage		
Project Number:	60721079	Supplier/Location:	Winnipeg, MB
Client:	City of Winnipeg	Field Technician:	CWooster
Sample Location:	TH24-16	Sample Date:	February 9, 2024
Sample Depth:	0.61 - 0.76 m	Lab Technician:	LBoughton
Sample Number:	G2	Date Tested:	March 6, 2024



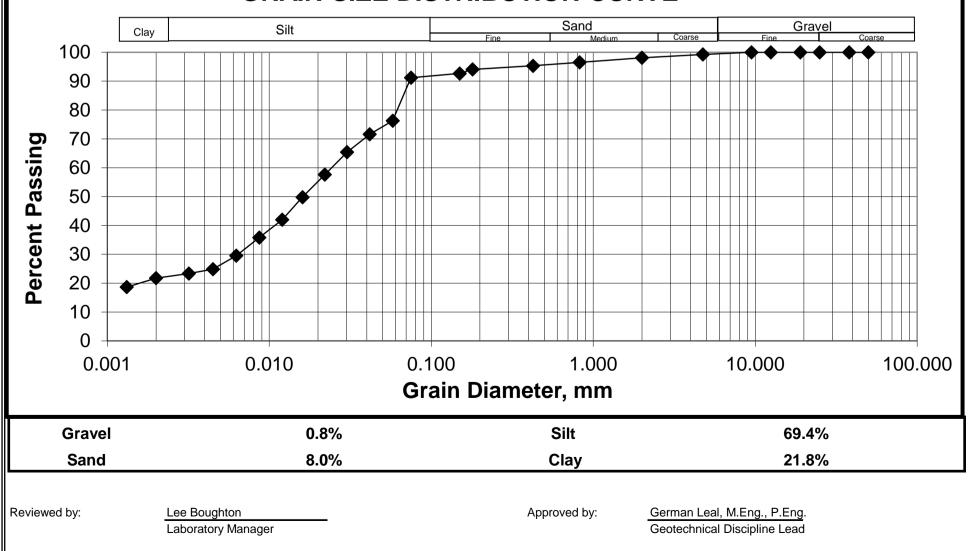
Reviewed by:

Lee Boughton Laboratory Manager Approved by:

Project Name:	Winnipeg North Transit Garage		
Project Number:	60721079	Supplier/Location:	Winnipeg, MB
Client:	City of Winnipeg	Field Technician:	CWooster
Sample Location:	TH24-18	Sample Date:	February 9, 2024
Sample Depth:	0.61 - 0.76 m	Lab Technician:	LBoughton
Sample Number:	G2	Date Tested:	March 6, 2024

Reviewed by:

Lee Boughton Laboratory Manager Approved by:

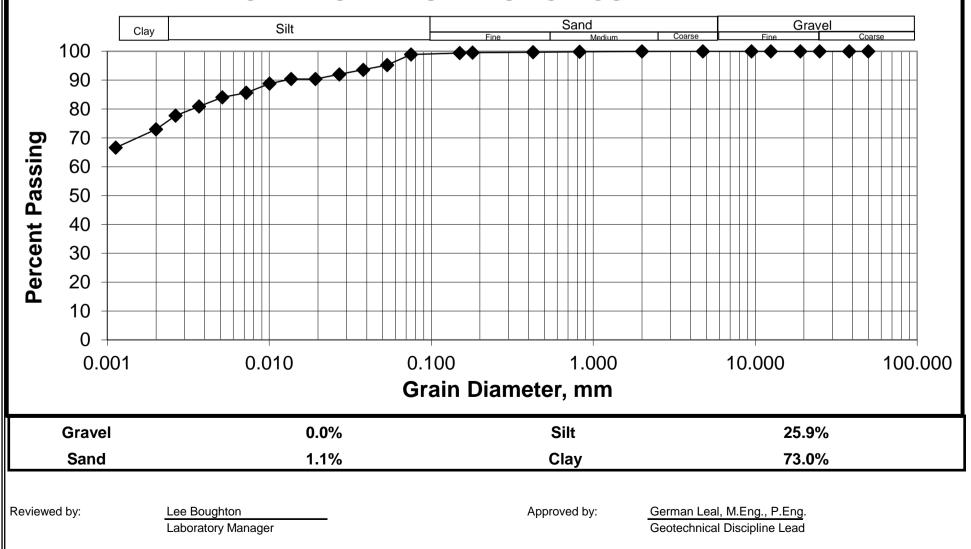

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada :el (204) 477-5381 fax (431) 800-1210

Job No.: Client: Project : Date Tested: Tested By:

60721079
City of Winnipeg
Winnipeg North Transit Garage
27-Feb-24
LBoughton

Hole No.:	TH24-02
Sample No.:	G8
Depth:	8.99 - 9.14 m
Date Sampled:	9-Feb-24
Sampled By:	CWooster

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	99.2	0.0750	91.2
38.0	100.0	2.00	98.1	0.0578	76.3
25.0	100.0	0.825	96.5	0.0417	71.6
19.0	100.0	0.425	95.3	0.0303	65.4
12.5	100.0	0.18	94.1	0.0220	57.6
9.5	100.0	0.15	92.6	0.0160	49.8
4.75	99.2	0.075	91.2	0.0120	42.0
				0.0087	35.8
				0.0063	29.5
				0.0045	24.9
				0.0032	23.3
				0.0020	21.8
				0.0013	18.6

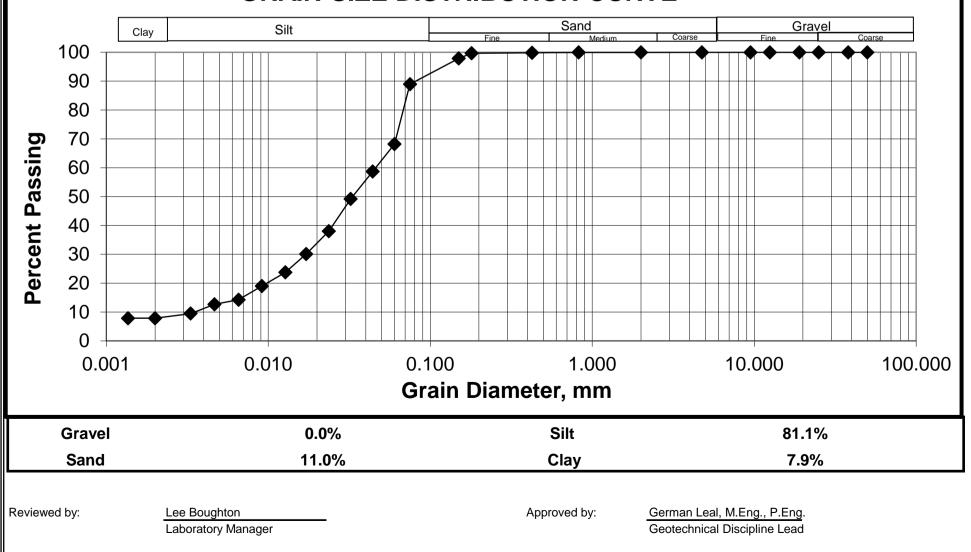

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada :el (204) 477-5381 fax (431) 800-1210

Job No.: Client: Project : Date Tested: Tested By:

60721079
City of Winnipeg
Winnipeg North Transit Garage
27-Feb-24
LBoughton

Hole No.:	TH24-03
Sample No.:	G5
Depth:	4.42 - 4.57 m
Date Sampled:	9-Feb-24
Sampled By:	CWooster

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	98.9
38.0	100.0	2.00	99.9	0.0534	95.2
25.0	100.0	0.825	99.8	0.0380	93.6
19.0	100.0	0.425	99.7	0.0271	92.0
12.5	100.0	0.18	99.5	0.0193	90.4
9.5	100.0	0.15	99.4	0.0137	90.4
4.75	100.0	0.075	98.9	0.0100	88.8
				0.0072	85.7
				0.0051	84.1
				0.0037	80.9
				0.0026	77.7
				0.0020	73.0
				0.0011	66.6

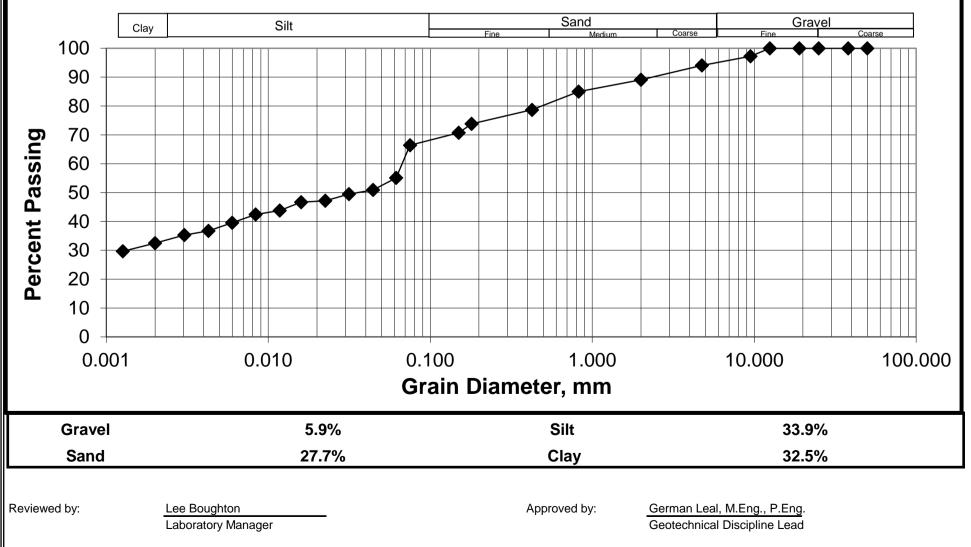

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada :el (204) 477-5381 fax (431) 800-1210

Job No.: Client: Project : Date Tested: Tested By:

60721079
City of Winnipeg
Winnipeg North Transit Garage
27-Feb-24
LBoughton

Hole No.:	TH24-07
Sample No.:	G5
Depth:	2.90 - 3.05 m
Date Sampled:	9-Feb-24
Sampled By:	CWooster

GRAVEL SIZES		SAND SIZES		FINES	
Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	
100.0	4.75	100.0	0.0750	89.0	
100.0	2.00	100.0	0.0601	68.2	
100.0	0.825	99.9	0.0441	58.7	
100.0	0.425	99.8	0.0322	49.2	
100.0	0.18	99.7	0.0237	38.1	
100.0	0.15	97.9	0.0171	30.1	
100.0	0.075	89.0	0.0128	23.8	
			0.0091	19.0	
			0.0066	14.2	
			0.0047	12.6	
			0.0033	9.5	
			0.0020	7.9	
			0.0014	7.9	
	Total Percent Passing 100.0 100.0 100.0 100.0 100.0 100.0	Total Percent PassingGrain Size (mm.)100.04.75100.02.00100.00.825100.00.425100.00.18100.00.15	Total Percent PassingGrain Size (mm.)Total Percent Passing100.04.75100.0100.02.00100.0100.00.82599.9100.00.42599.8100.00.1899.7100.00.1597.9	Total Percent Passing Grain Size (mm.) Total Percent Passing Grain Size (mm.) 100.0 4.75 100.0 0.0750 100.0 2.00 100.0 0.0601 100.0 0.825 99.9 0.0441 100.0 0.425 99.8 0.0322 100.0 0.18 99.7 0.0237 100.0 0.15 97.9 0.0171 100.0 0.075 89.0 0.0128 0.001 0.075 89.0 0.00237 100.0 0.075 89.0 0.00128 0.0001 0.075 89.0 0.00237 100.0 0.075 89.0 0.00237 100.0 0.075 89.0 0.00218 0.00047 0.0033 0.0033 0.0020	

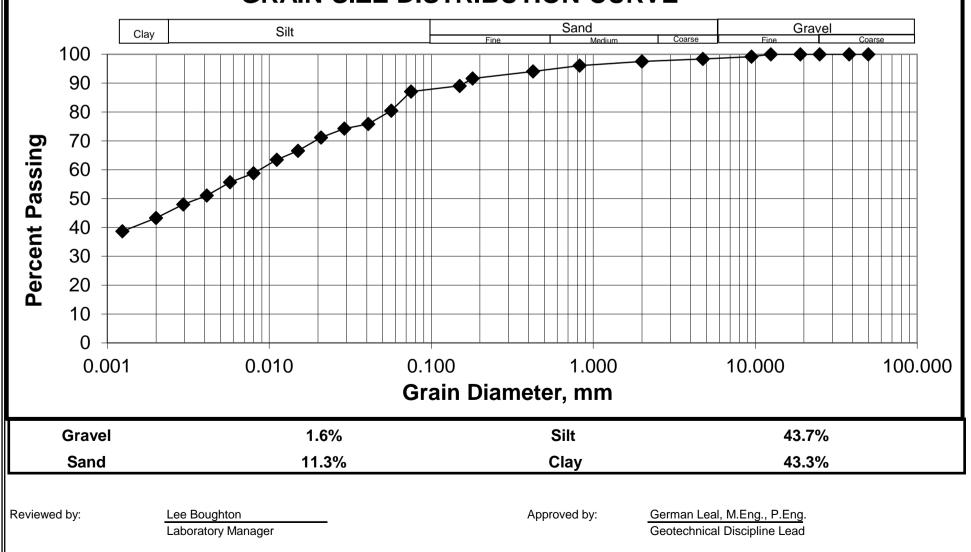

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada :el (204) 477-5381 fax (431) 800-1210

Job No.: Client: Project : Date Tested: Tested By:

60721079
City of Winnipeg
Winnipeg North Transit Garage
27-Feb-24
LBoughton

Hole No.:	TH24-12
Sample No.:	G3
Depth:	1.37 - 1.52 m
Date Sampled:	9-Feb-24
Sampled By:	CWooster

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	94.1	0.0750	66.4
38.0	100.0	2.00	89.1	0.0616	55.1
25.0	100.0	0.825	85.0	0.0443	50.9
19.0	100.0	0.425	78.7	0.0315	49.5
12.5	100.0	0.18	73.8	0.0225	47.2
9.5	97.2	0.15	70.7	0.0159	46.6
4.75	94.1	0.075	66.4	0.0118	43.8
				0.0084	42.4
				0.0060	39.6
				0.0043	36.7
				0.0030	35.3
				0.0020	32.5
				0.0013	29.7


WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada :el (204) 477-5381 fax (431) 800-1210

Job No.: Client: Project : Date Tested: Tested By:

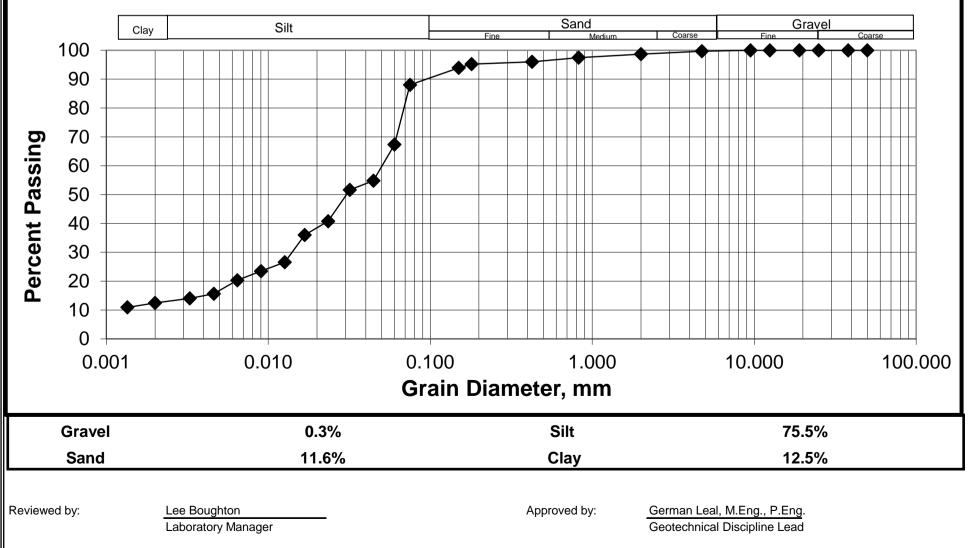
60721079
City of Winnipeg
Winnipeg North Transit Garage
27-Feb-24
LBoughton

Hole No.:	TH24-13
Sample No.:	G10
Depth:	10.52 - 10.67 m
Date Sampled:	9-Feb-24
Sampled By:	CWooster

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	98.4	0.0750	87.0
38.0	100.0	2.00	97.5	0.0567	80.5
25.0	100.0	0.825	96.0	0.0409	75.8
19.0	100.0	0.425	94.0	0.0291	74.3
12.5	100.0	0.18	91.6	0.0209	71.2
9.5	99.2	0.15	89.1	0.0150	66.5
4.75	98.4	0.075	87.0	0.0111	63.4
				0.0080	58.8
				0.0057	55.7
				0.0041	51.0
				0.0029	47.9
				0.0020	43.3
				0.0012	38.7

GRAIN SIZE DISTRIBUTION (AASHTO T88)

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada :el (204) 477-5381 fax (431) 800-1210


Job No.: Client: Project : Date Tested: Tested By:

60721079
City of Winnipeg
Winnipeg North Transit Garage
27-Feb-24
LBoughton

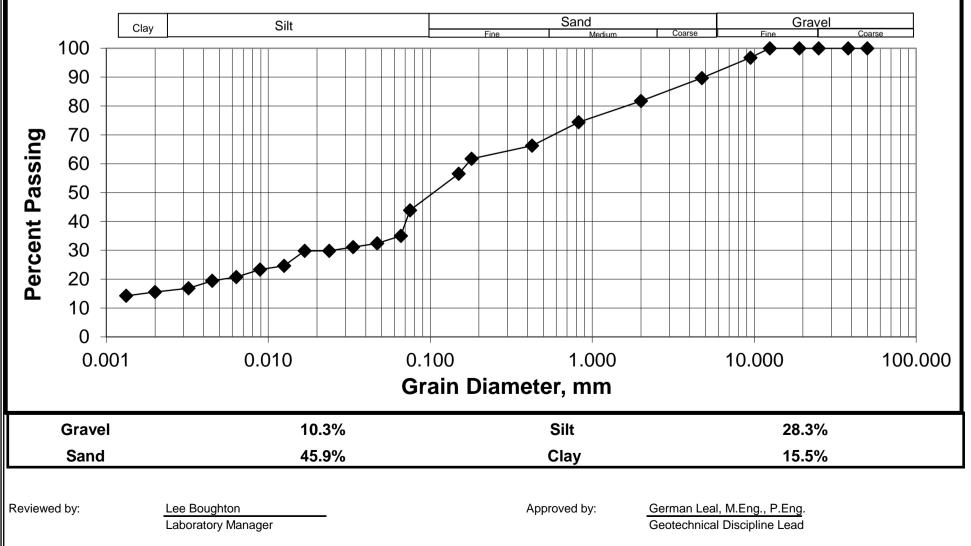
Hole No.:	TH24-16
Sample No.:	G2
Depth:	0.61 - 0.76 m
Date Sampled:	9-Feb-24
Sampled By:	CWooster
Depth: Date Sampled:	0.61 - 0.76 m 9-Feb-24

GRAVEL SIZES		SANI	O SIZES	FINES		
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	
50.0	100.0	4.75	99.7	0.0750	88.0	
38.0	100.0	2.00	98.7	0.0601	67.3	
25.0	100.0	0.825	97.5	0.0446	54.8	
19.0	100.0	0.425	96.0	0.0319	51.6	
12.5	100.0	0.18	95.2	0.0234	40.7	
9.5	100.0	0.15	93.9	0.0168	36.0	
4.75	99.7	0.075	88.0	0.0126	26.6	
				0.0090	23.4	
				0.0064	20.3	
				0.0046	15.6	
				0.0033	14.0	
				0.0020	12.5	
				0.0013	10.9	

GRAIN SIZE DISTRIBUTION CURVE

GRAIN SIZE DISTRIBUTION (AASHTO T88)

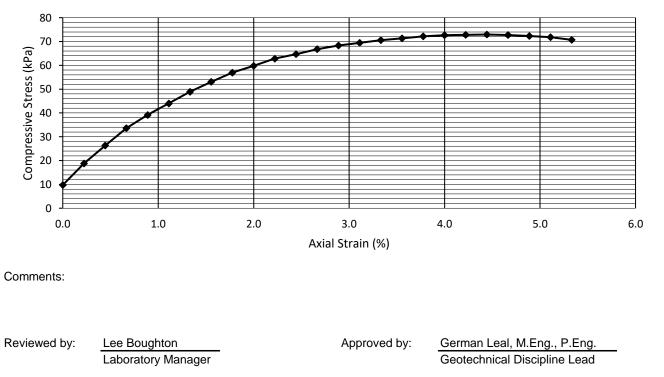
WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada :el (204) 477-5381 fax (431) 800-1210

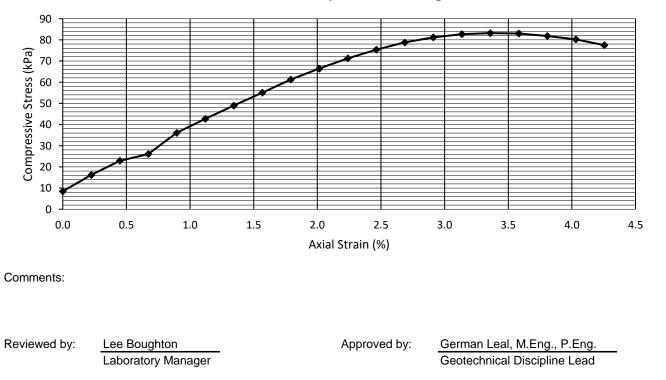

Job No.: Client: Project : Date Tested: Tested By:

60721079
City of Winnipeg
Winnipeg North Transit Garage
27-Feb-24
LBoughton

TH24-18
G2
0.61 - 0.76 m
9-Feb-24
CWooster

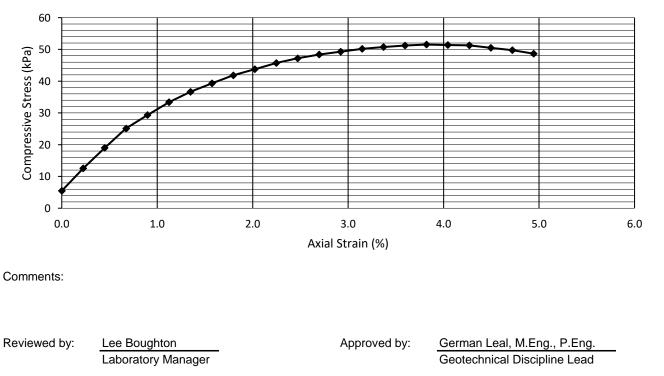
GRAVEL SIZES		SANI	O SIZES	FINES		
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	
50.0	100.0	4.75	89.7	0.0750	43.8	
38.0	100.0	2.00	81.7	0.0659	35.0	
25.0	100.0	0.825	74.4	0.0471	32.4	
19.0	100.0	0.425	66.2	0.0335	31.1	
12.5	100.0	0.18	61.7	0.0238	29.8	
9.5	96.8	0.15	56.5	0.0168	29.8	
4.75	89.7	0.075	43.8	0.0125	24.6	
				0.0089	23.3	
				0.0063	20.7	
				0.0045	19.4	
				0.0032	16.8	
				0.0020	15.5	
				0.0013	14.2	


GRAIN SIZE DISTRIBUTION CURVE


Project Name:	Winnipeg North Transit Garage		
Project Number:	60721079	Date Sampled:	February 9, 2024
Client:	City of Winnipeg	Sampled By:	CWooster
Supplier/Location:	Winnipeg, MB	Date Received:	February 9, 2024
Sample Depth (m):	4.57 - 5.18 m	Submitted By:	CWooster
Sample Location:	TH24-06	Date Tested:	February 28, 2024
Sample Number:	Т8	Tested By:	LCampodonico
Uı	nconfined Compressiv	e Strength (A	ASTM D2166)
Standard Test Metl	hod for Unconfined Compressive Strenght o	f Cohesive Soil, using stra	ain-controlled application of the axial load.

Soil Descr	iption: CL	₋AY - grey, firm, moi	ist, silty, tı	ace sand, hig	gh plasticity, homogeneous	
Average Dia	ameter (cm):	7.24	FAILU	RE SKETCH		
Average Lei	ngth (cm):	15.01			A CONTRACTOR	
Length/Dian	neter Ratio:	2.07				
Moisture co	ntent (%):	57.8				
Bulk Density	/ (g/cm³):	1.673				
Bulk Unit W	eight (kN/m ³)): 16.4				
Bulk Unit W	eight (pcf):	104.4				
Dry Unit We	eight (kN/m³):	10.40		45°		
Torvane	Undrained	Shear Strength (kPa	a)	41.2		
Pocket Pen.	Undrained	Shear Strength (kPa	a)	35.9		
	Unconfined	compressive streng	gth (kPa)	72.92	Undrained Shear Strength (kPa)	36.46
UCS	Unconfined	compressive streng	gth (ksf)	1.523	Undrained Shear Strength (ksf)	0.761
	Avg. Rate of	of Strain to Failure (%/min):	1.33	Strain at Failure (%):	4.44

Project Name:	Winnipeg I	North Transit Gar	age				
Project Number:	60721079	60721079			pled:	February 9, 2024	
Client:	City of Win	nipeg		Sampled E	By:	CWooster	
Supplier/Location:	Winnipeg,	MB		Date Rece	eived:	February 9, 2024	
Sample Depth (m):	: 6.10 - 6.71	m		Submitted	l By:	CWooster	
Sample Location:	TH24-06			Date Teste	ed:	February 28, 2024	
Sample Number:	Т9			Tested By	:	LCampodonico	
		•		0		STM D2166)	kial load.
Soil Description	n: CLAY -	grey, firm, mois	st, silty, tra	ace sand, hiç	gh plasticit	y, homogeneous	
Average Diamete	er (cm):	7.21	FAILUI	RE SKETCH	l		l
Average Length ((cm):	14.88					1
Length/Diameter	. ,	2.06				1 March 1	1
Moisture content		46.6					1
Bulk Density (g/c	· /	1.841					1
Bulk Unit Weight	,	18.1					1
Bulk Unit Weight	· · · · ·	115.0					I
Dry Unit Weight (<u>u</u> /	12.31		50°			l
Torvane Und	drained Shea	r Strength (kPa))	37.3	7	100	l
		r Strength (kPa)	,	25.5]	TH24-06 T9	I
Un	confined com	pressive streng	th (kPa)	83.17	Undraine	d Shear Strength (kPa)	41.58
UCS Und	confined com	pressive streng	th (ksf)	1.737	Undraine	d Shear Strength (ksf)	0.868
Ανς	g. Rate of Stra	ain to Failure (%	%/min):	1.34	Strain at	Failure (%):	3.36

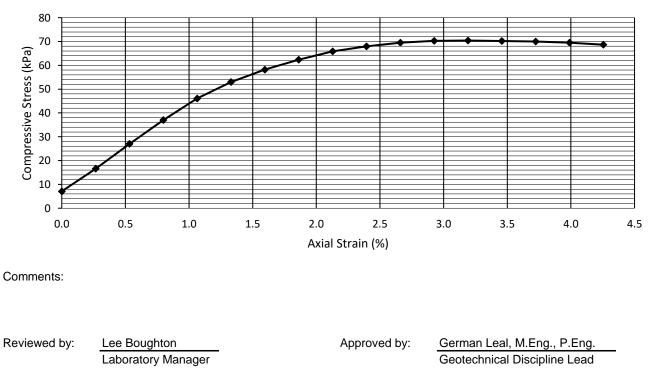

Project Name:	Winnipeg North Transit Garage		
Project Number:	60721079	Date Sampled:	February 9, 2024
Client:	City of Winnipeg	Sampled By:	CWooster
Supplier/Location:	Winnipeg, MB	Date Received:	February 9, 2024
Sample Depth (m):	7.62 - 8.23 m	Submitted By:	CWooster
Sample Location:	TH24-06	Date Tested:	February 28, 2024
Sample Number:	T10	Tested By:	LCampodonico

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, firm, moist, silty, trace sand, high plasticity, homogeneous	
---	--

Average Dia	meter (cm):	7.17	FAILU	RE SKETCH	1	
Average Len	gth (cm):	14.83				
Length/Diam	eter Ratio:	2.07				
Moisture con	itent (%):	39.8				
Bulk Density	(g/cm ³):	1.746				
Bulk Unit We	eight (kN/m ³):	17.1				
Bulk Unit We	eight (pcf):	109.0				
Dry Unit Wei	ight (kN/m³):	12.25		50 ⁰		
Torvane	Undrained Shea	r Strength (kP	Pa)	40.2		
Pocket Pen.	Undrained Shea	r Strength (kP	Pa)	22.3		
	Unconfined com	pressive strer	ngth (kPa)	51.53	Undrained Shear Strength (kPa)	25.76
UCS	Unconfined com	pressive strer	ngth (ksf)	1.076	Undrained Shear Strength (ksf)	0.538
	Avg. Rate of Stra	ain to Failure	(%/min):	1.35	Strain at Failure (%):	3.82


Project Name:	Winnipeg North Transit Garage		
Project Number:	60721079	Date Sampled:	February 9, 2024
Client:	City of Winnipeg	Sampled By:	CWooster
Supplier/Location:	Winnipeg, MB	Date Received:	February 9, 2024
Sample Depth (m):	4.57 - 5.18 m	Submitted By:	CWooster
Sample Location:	TH24-07	Date Tested:	February 29, 2024
Sample Number:	T7	Tested By:	LCampodonico

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description:	CLAY - grey, firm, moist, silty, trace sand, high plasticity, blocky
-------------------	--

Average Dia	meter (cm):	7.18	FAILU	RE SKETCH		
Average Ler	ngth (cm):	12.53				
Length/Diam	neter Ratio:	1.74			and the second sec	
Moisture cor	ntent (%):	44.0		,		
Bulk Density	′ (g/cm³):	1.736				
Bulk Unit We	eight (kN/m³):	17.0				
Bulk Unit We	eight (pcf):	108.4				
Dry Unit We	ight (kN/m³):	11.83		55 ⁰		
Torvane	Undrained Shea	r Strength (kP	°a)	47.1		
Pocket Pen.	Undrained Shea	r Strength (kP	Pa)	61.4		
	Unconfined com	pressive strer	ngth (kPa)	70.39	Undrained Shear Strength (kPa)	35.20
UCS Unconfined compressive strength (ksf)		1.470	Undrained Shear Strength (ksf)	0.735		
	Avg. Rate of Str	ain to Failure	(%/min):	1.60	Strain at Failure (%):	3.19

Moisture content (%):

Bulk Density (g/cm³):

Bulk Unit Weight (pcf):

Torvane

UCS

Pocket Pen.

Bulk Unit Weight (kN/m³):

Dry Unit Weight (kN/m³):

60.5

17.3

110.0

10.77

Unconfined compressive strength (kPa)

Unconfined compressive strength (ksf)

Avg. Rate of Strain to Failure (%/min):

Undrained Shear Strength (kPa)

Undrained Shear Strength (kPa)

1.762

AECOM Canada Ltd. Winnipeg Geotechnical Laboratory 99 Commerce Drive, Winnipeg, MB R3P 0Y7 Phone: 204 477 5381

TH24-07 T8

35.06

0.732

2.90

Undrained Shear Strength (kPa)

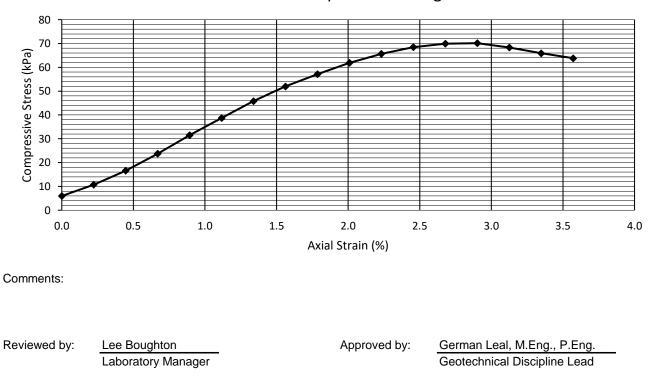
Undrained Shear Strength (ksf)

Strain at Failure (%):

Project Name:	Winnipeg N	North Transit Ga	arage	
Project Number:	60721079		Date Sampled:	February 9, 2024
Client:	City of Win	nipeg	Sampled By:	CWooster
Supplier/Location:	Winnipeg,	MB	Date Received:	February 9, 2024
Sample Depth (m):	6.10 - 6.71	m	Submitted By:	CWooster
Sample Location:	TH24-07		Date Tested:	February 29, 2024
O a second a Nicora la ass	T8		Tested By:	LCampodonico
Sample Number:	-	ed Comp	pressive Strength (/	
Ur	nconfine	•	pressive Strength (/	
Ur	od for Unconf	fined Compressive	e Strenght of Cohesive Soil, using str	ASTM D2166)
Ur Standard Test Meth	od for Unconf	fined Compressive	e Strenght of Cohesive Soil, using str	ASTM D2166) rain-controlled application of the axial load.
Ur Standard Test Meth Soil Description:	od for Unconf CLAY - (cm):	fined Compressive grey, firm, moi	e Strenght of Cohesive Soil, using str ist, silty, trace gravel, trace sa	ASTM D2166) rain-controlled application of the axial load.

Unconfined Compressive Strength

60°

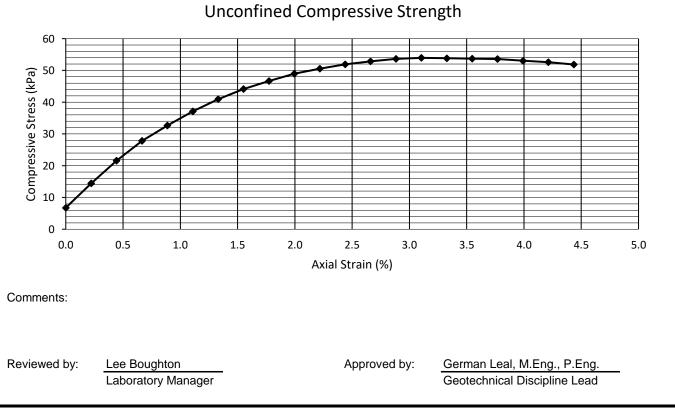

54.9

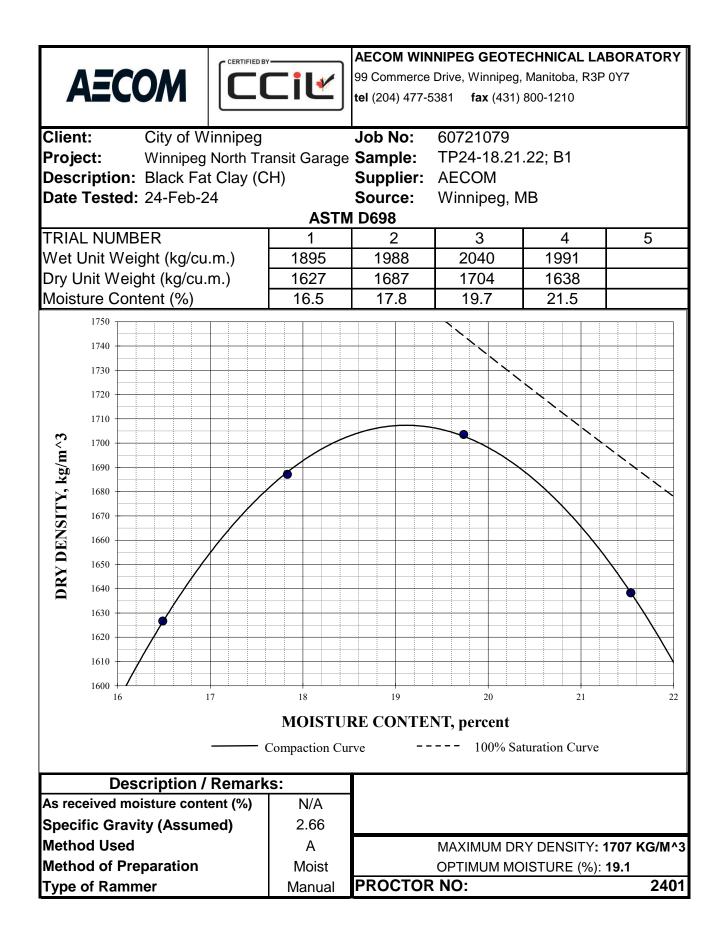
35.9

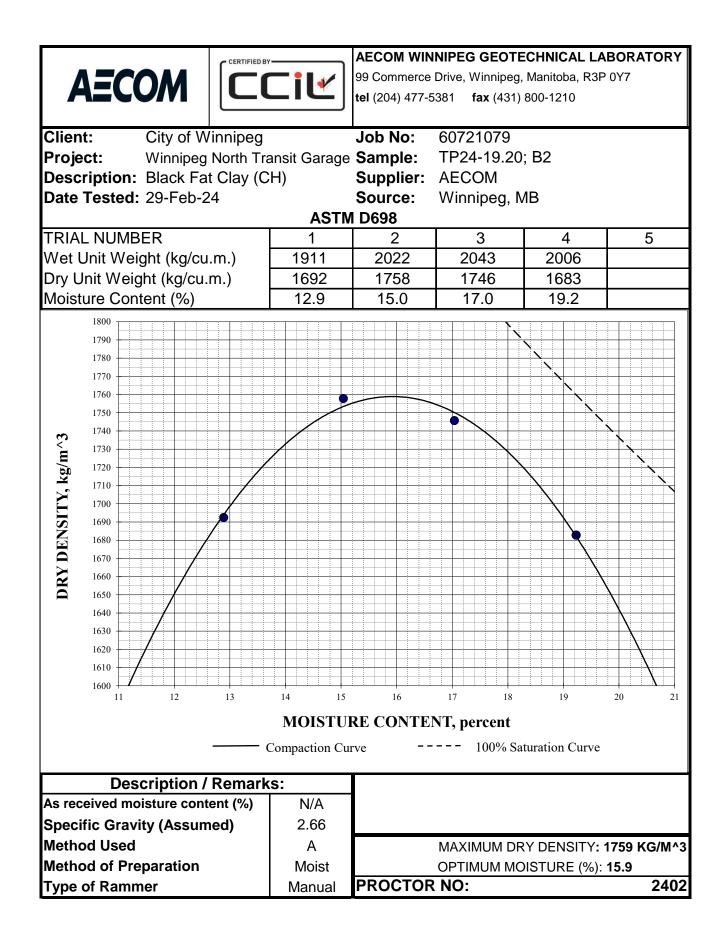
70.12

1.465

1.34






3.10

Project Name:	Winnipeg	North Transit Ga	arage				
Project Number:	: 60721079			Date Samp	oled: Fe	ebruary 9, 2024	
Client:	City of Win	nipeg		Sampled B	Sy: C	Wooster	
Supplier/Locatio	on: Winnipeg,	MB		Date Rece	ived: Fe	ebruary 9, 2024	
Sample Depth (r	m): 7.62 - 8.23	m		Submitted	By: C	Wooster	
Sample Location	n: TH24-07			Date Teste	ed: Fe	ebruary 28, 2024	
Sample Number	r: T9			Tested By:		Campodonico	
Standard Test		•		0	, (TM D2166) ntrolled application of the a	xial load.
Soil Descripti	ion: CLAY -	grey, firm, mo		-		igh plasticity, homoger	neous
Average Diame	eter (cm):	7.03	FAILU	RE SKETCH			
Average Lengt	th (cm):	15.03				4	
Length/Diamet	ter Ratio:	2.14				and the second s	
Moisture conte		37.9					
Bulk Density (g		1.807					
Bulk Unit Weig	· /	17.7					
Bulk Unit Weig		112.8			100	1	
Dry Unit Weigh		12.85		45°	0	1 Marsh	
Torvane L	Jndrained Shear	r Strength (kP	a)	45.1			
	Jndrained Shear			16.0		TH24-07 T9	
L	Jnconfined com	pressive stren	igth (kPa)	53.95	Undrained S	Shear Strength (kPa)	26.97
UCS U	Jnconfined com	pressive stren	gth (ksf)	1.127	Undrained S	Shear Strength (ksf)	0.563

Avg. Rate of Strain to Failure (%/min): 1.33 Strain at Failure (%):

CALIFORNIA BEARING RATIO (CBR) TEST

AECOM **ASTM D1883** Client: City of Winnipeg Test Hole ID: See Note Project Name: Winnipeg North Transit Garage Sample ID: TH24-18.21.22; B1 Sample Depth (m): 0.30m to 1.50 m Project Number: 60721079 Soil Description: Clay Fill (CH) Location: Winnipeg, MB Tested By: LB Tested Date: February 26, 2024 PROCTOR DATA CBR DATA 10 blows 25 blows 56 blows Optimum Moisture Content (%) 19.1 Moisture Content, MC (%) 16.7% 16.8% 16.7% Maximum Dry Density (kg/m3) 1707 Wet Density (kg/m3) 1529.8 1712.4 1914.8 Proctor Test Method Standard Dry Density (kg/m3) 1310.5 1466.6 1640.7 Tested by: LB Compaction Degree (%) 77% 86% 96% Remark: Surcharge Weight (g) 4506 4506 4506 Soaked CBR at 95% of SPMDD Soaked for (days) 4 4 4 1.2% 0.9% 1.5% Swell (%) PENETRATION DATA Penetration Pressure (MPa) (mm) 0.35 0 0.0 0.0 0.0 0.30 0.635 0.04 0.06 0.11 0.25 1.27 0.05 0.08 0.17 Pressure (MPa) 0.09 0.20 0.20 1.905 0.05 2.54 0.06 0.10 0.23 0.15 3.175 0.06 0.11 0.26 0.10 3.81 0.07 0.11 0.27 0.05 4.445 0.08 0.12 0.27 5.08 0.12 0.00 0.08 0.29 2 6 8 0 4 10 6.35 0.08 0.13 0.30 Penetration (mm) 7.62 0.08 0.14 0.32 10.16 0.08 0.16 0.37 12.7 0.09 0.17 0.40 4.0 Corrected Pressure (MPa) at 2.54 mm 0.06 0.11 0.24 3.0 at 5.08 mm 0.08 0.12 0.28 C Corrected Bearing Ratio 2.0 at 2.54 mm 0.9 1.6 3.4 CBR at 5.08 mm 0.7 2.7 1.1 1.0 Standard pressure: 6.9 Mpa at 2.54 mm penetration 10.3 Mpa at 5.08mm penetration 0.0 1400 1500 1300 1600 1700 **CBR Value** Dry Density (kg/m3) CBR at 95 % of maximum dry density Dry density, kg/m3: 1622 Test Data at 2.54 mm penetration CBR at 2.54 mm penetration CBR at 2.54 mm: 3.3 Test Data at 5.08 mm penetration CBR at 5.08mm penetration CBR at 5.08 mm: 2.5 Reviewed and Approved by: Note **PROCTOR NUMBER: 2401** German Leal, M.Eng., P.Eng. Geotechnical Discipline Lead

CALIFORNIA BEARING RATIO (CBR) TEST

AECOM **ASTM D1883** Client: City of Winnipeg Test Hole ID: See Note Project Name: Winnipeg North Transit Garage Sample ID: TH24-19.20; B2 Sample Depth (m): 0.30m to 1.50 m Project Number: 60721079 Soil Description: Clay Fill (CH) Location: Winnipeg, MB Tested By: LB Tested Date: March 1, 2024 PROCTOR DATA CBR DATA 10 blows 25 blows 56 blows Optimum Moisture Content (%) 15.9 Moisture Content, MC (%) 12.6% 12.7% 12.7% Maximum Dry Density (kg/m3) 1759 Wet Density (kg/m3) 1599.4 1691.8 1899.4 Proctor Test Method Standard Dry Density (kg/m3) 1420.2 1500.6 1685.7 Tested by: LB Compaction Degree (%) 81% 85% 96% Remark: Surcharge Weight (g) 4506 4506 4506 Soaked CBR at 95% of SPMDD Soaked for (days) 4 4 4 3.2% 2.4% 1.8% Swell (%) PENETRATION DATA Penetration Pressure (MPa) (mm) 0.35 0 0.0 0.0 0.0 0.30 0.635 0.04 0.04 0.08 0.25 1.27 0.05 0.05 0.12 Pressure (MPa) 0.06 0.20 1.905 0.06 0.16 2.54 0.07 0.08 0.18 0.15 3.175 0.08 0.09 0.21 0.10 3.81 0.08 0.10 0.23 0.05 4.445 0.09 0.11 0.25 5.08 0.11 0.26 0.00 0.09 2 6 8 0 4 10 6.35 0.09 0.12 0.29 Penetration (mm) 7.62 0.09 0.13 0.31 10.16 0.09 0.16 0.34 12.7 0.10 0.17 0.38 4.0 Corrected Pressure (MPa) at 2.54 mm 0.07 0.08 0.19 3.0 at 5.08 mm 0.09 0.11 0.26 Corrected Bearing Ratio 2.0 at 2.54 mm 1.1 1.2 2.7 CBR at 5.08 mm 0.9 2.5 1.1 1.0 Standard pressure: 6.9 Mpa at 2.54 mm penetration 10.3 Mpa at 5.08mm penetration 0.0 1400 1450 1500 1550 1600 1650 1700 **CBR Value** Dry Density (kg/m3) CBR at 95 % of maximum dry density Dry density, kg/m3: 1671 Test Data at 2.54 mm penetration CBR at 2.54 mm penetration CBR at 2.54 mm: 2.6 Test Data at 5.08 mm penetration CBR at 5.08mm penetration CBR at 5.08 mm: 2.4 Reviewed and Approved by: Note **PROCTOR NUMBER: 2402** German Leal, M.Eng., P.Eng. Geotechnical Discipline Lead

Geo-Lab Report

GEOTECHNICA TESTING LABO		Revision #	0	
Report Date:	March 8, 2024			
Client:	AECOM Canada			
Address:	99 Commerce Dr., Winnipeg, MB R3P 0Y7			
Attn:	Colton Wooster / Linh Trinh / German Leal			
Project No:	60721079			
Project Name:	Winnipeg Transit North Garage Project			
Solum Job No.:	06901240222(54)			
Sample Received I	Date: February 22, 2024			

Sample Quantity: 6 ST			
Test	Quantity	Destination	
WATER CONTENT	5	D2216	
ATTERBERG LIMITS	6	D4318	
PARTICLE-SIZE ANALYSIS (FULL GRADATION)	6	D6913 & D7928	
UNCONFINED COMPRESSIVE STRENGTH FOR SOIL	1	D2166	
1-D SWELL (Method C)	3	D4546	
1-D CONSOLIDATION	3	D2435	

Mb

President: Saad Farag

Laboratory Analysis Summary Sheet

GEOTECHNICAL & MATERIAL TESTING LABORATORY

Project Info: 60721079 / Winnipeg Transit North Garage Project

Client: AECOM Canada

Solum Job No.: 06901240222(54)

Reviewed S. F.

* Note: Soil classification is for material less than 0.425 mm (material used for Atterberg Limits), this includes the fine sand, silt and clay fraction of the sample.

** Note: Soil classification is for the whole sample. Soil classification uses the Atterberg Limits results and the percent fines, percent sand and percent gravel as described in ASTM D2487.

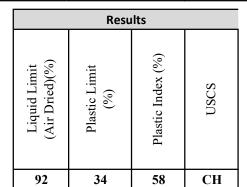
			(%)		Atterb	erg Limit	S		Partic	e Size A	nalysis		*
Borehole ID	Sample ID	Depth (ft)	MC as Received	Liquid Limit(%)	Plastic Limit(%)	Plastic Index(%)	Classification* (USCS)	Cobble Size (%) (75-300mm)	Gravel Size (%) (4.75-75mm)	Sand Size (%) (0.075-4.5mm)	Silt Size (%) (0.002-0.075 mm)	Clay Size (%) (<0.002mm)	Soil Classification** Group Symbols
TH24-04	Τ7	10	54.8	92	34	58	СН	0.0	0.0	0.7	18.3	81.0	СН
TH24-05	T4	5	43.0	73	30	43	СН	0.0	0.0	1.6	19.5	78.9	СН
TH24-05	T5	7.5	50.3	81	32	49	СН	0.0	0.0	0.6	25.9	73.5	СН
TH24-08	T12	30	43.6	65	24	41	СН	0.0	0.0	6.7	29.8	63.5	СН
TH24-11	T10	20	51.3	81	31	50	СН	0.0	0.0	0.7	26.6	72.7	СН
TH24-14	T4	5	18.9	41	21	20	CL	0.0	8.7	29.7	31.1	30.5	CL

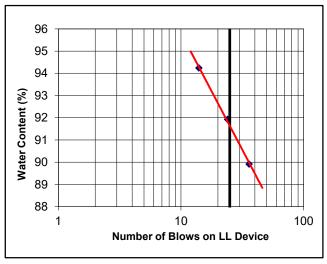
TESTING LABORATORY

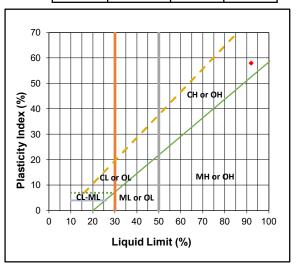
Project Info: 60721079 / Winnipeg Transit North Garage Project

Reviewed by:

S. F.


Client: AECOM Canada


Solum Job No.: 06901240222(54)


Sample Info: TH24-04 T7 10'

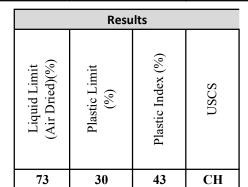
	Liquid Limit	(Air-Dried) - Multip	oint Method	d Michael Cambrada Danaina d				
Container ID	1	2	3	Water Content Received				
Number of Blows	14	24	36					
W _{Wet Soil} + Tare (g)	22.45	25.77	25.03					
W _{Dry Soil} + Tare (g)	14.27	16.09	15.85					
W _{water} (g)	8.18	9.68	9.18					
Tare (g)	5.59	5.56	5.64					
W _{Dry Soil} (g)	8.68	10.53	10.21	Watar Cantont (%)	54.8			
Water Content (%)	94.2	91.9	89.9	Water Content (%)	34.8			

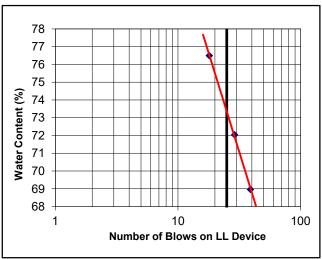
	Plastic Limit					
Container ID	4	5				
W _{Wet Soil} + Tare (g)	14.74	16.69				
W _{Dry Soil} + Tare (g)	12.45	13.91				
W _{Water} (g)	2.29	2.78				
Tare (g)	5.64	5.56				
W _{Dry Soil} (g)	6.81	8.35				
Water Content (%)	33.6	33.3				
Average Mc (%)	33.5					

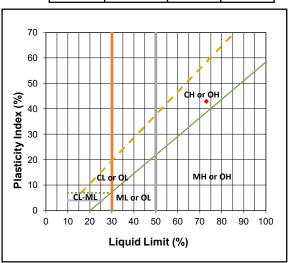
TESTING LABORATORY

Project Info: 60721079 / Winnipeg Transit North Garage Project

Reviewed by: S. F.


Client: AECOM Canada


Solum Job No.: 06901240222(54)


Sample Info: TH24-05 T4 5'

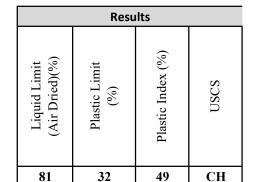
	Liquid Limit	(Air-Dried) - Multip				
Container ID	1	2	3	Water Content Received		
Number of Blows	18	29	39			
W _{Wet Soil} + Tare (g)	30.75	19.71	23.81			
W _{Dry Soil} + Tare (g)	19.85	13.81	16.41			
W _{Water} (g)	10.90	5.90	7.40			
Tare (g)	5.60	5.62	5.68			
W _{Dry Soil} (g)	14.25	8.19	10.73	Water Content (%)	43.0	
Water Content (%)	76.5	72.0	69.0	Water Content (%)	43.0	

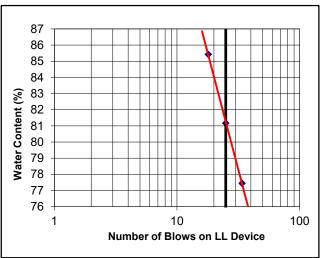
	Plastic Limit					
Container ID	4	5				
W _{wet Soil} + Tare (g)	13.23	19.10				
W _{Dry Soil} + Tare (g)	11.48	16.00				
W _{water} (g)	1.75	3.10				
Tare (g)	5.68	5.62				
W _{Dry Soil} (g)	5.80	10.38				
Water Content (%)	30.2	29.9				
Average Mc (%)	30.0					

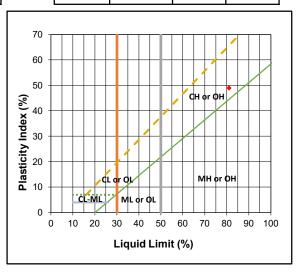
Project Info: 60721079 / Winnipeg Transit North Garage Project

Reviewed by: S. F.

Client:


: AECOM Canada


Solum Job No.: 06901240222(54)


Sample Info: TH24-05 T5 7.5'

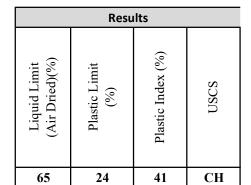
	Liquid Limit	(Air-Dried) - Multip					
Container ID	1	2	3	Water Content Received			
Number of Blows	18	25	34				
W _{Wet Soil} + Tare (g)	18.57	19.64	19.76				
W _{Dry Soil} + Tare (g)	12.65	13.35	13.58				
W _{water} (g)	5.92	6.29	6.18				
Tare (g)	5.72	5.60	5.60				
W _{Dry Soil} (g)	6.93	7.75	7.98	Mator Contort (%)	50.3		
Water Content (%)	85.4	81.2	77.4	Water Content (%)	50.5		

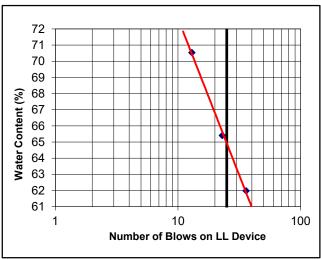
	Plastic Limit				
Container ID	4	5			
W _{Wet Soil} + Tare (g)	12.34	14.76			
W _{Dry Soil} + Tare (g)	10.71	12.52			
W _{Water} (g)	1.63	2.24			
Tare (g)	5.60	5.60			
W _{Dry Soil} (g)	5.11	6.92			
Water Content (%)	31.9	32.4			
Average Mc (%)	32.1				

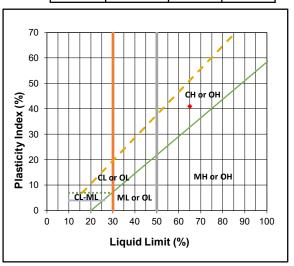
Project Info: 60721079 / Winnipeg T

60721079 / Winnipeg Transit North Garage Project

Reviewed by: S. F.


Client: AECOM Canada


Solum Job No.: 06901240222(54)

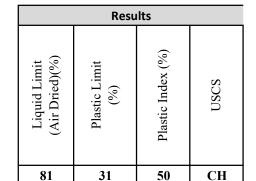

Sample Info: TH24-08 T12 30'

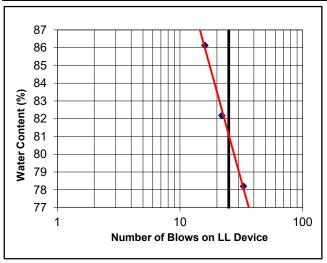
	Liquid Limit	(Air-Dried) - Multip			
Container ID	1	2	3	Water Conte	nt Received
Number of Blows	13	23	36		
W _{wet Soil} + Tare (g)	21.19	20.40	17.89		
W _{Dry Soil} + Tare (g)	14.75	14.54	13.18		
W _{Water} (g)	6.44	5.86	4.71		
Tare (g)	5.62	5.58	5.58		
W _{Dry Soil} (g)	9.13	8.96	7.60	Matar Cantart (%)	43.6
Water Content (%)	70.5	65.4	62.0	Water Content (%)	43.0

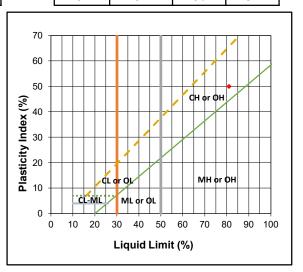
	Plastic Limit			
Container ID	4	5		
W _{Wet Soil} + Tare (g)	12.90	14.95		
W _{Dry Soil} + Tare (g)	11.48	13.14		
W _{Water} (g)	1.42	1.81		
Tare (g)	5.58	5.58		
W _{Dry Soil} (g)	5.90	7.56		
Water Content (%)	24.1	23.9		
Average Mc (%)	24.0			

Project Info: 60721079 / Winnipeg Transit North Garage Project

Reviewed by:	S. F.
-	Mby


Client: AECOM Canada


Solum Job No.: 06901240222(54)


Sample Info: TH24-11 T10 20'

	Liquid Limit	(Air-Dried) - Multip		at Decesional			
Container ID	1	2	3	Water Content Received			
Number of Blows	16	22	33				
W _{Wet Soil} + Tare (g)	26.15	26.41	28.54				
W _{Dry Soil} + Tare (g)	16.65	17.00	18.46				
W _{water} (g)	9.50	9.41	10.08				
Tare (g)	5.62	5.55	5.57				
W _{Dry Soil} (g)	11.03	11.45	12.89	Water Content (%)	51.3		
Water Content (%)	86.1	82.2	78.2	water content (%)	51.5		

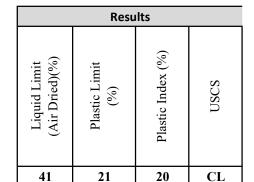
	Plastic Limit			
Container ID	4	5		
W _{Wet Soil} + Tare (g)	12.80	15.60		
W _{Dry Soil} + Tare (g)	11.11	13.23		
W _{Water} (g)	1.69	2.37		
Tare (g)	5.57	5.55		
W _{Dry Soil} (g)	5.54	7.68		
Water Content (%)	30.5	30.9		
Average Mc (%)	30.7			

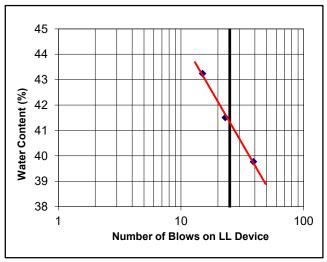
TESTING LABORATORY

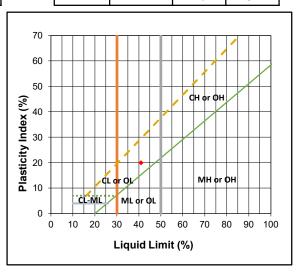
Project Info: 60721079 / Winnipeg Transit North Garage Project

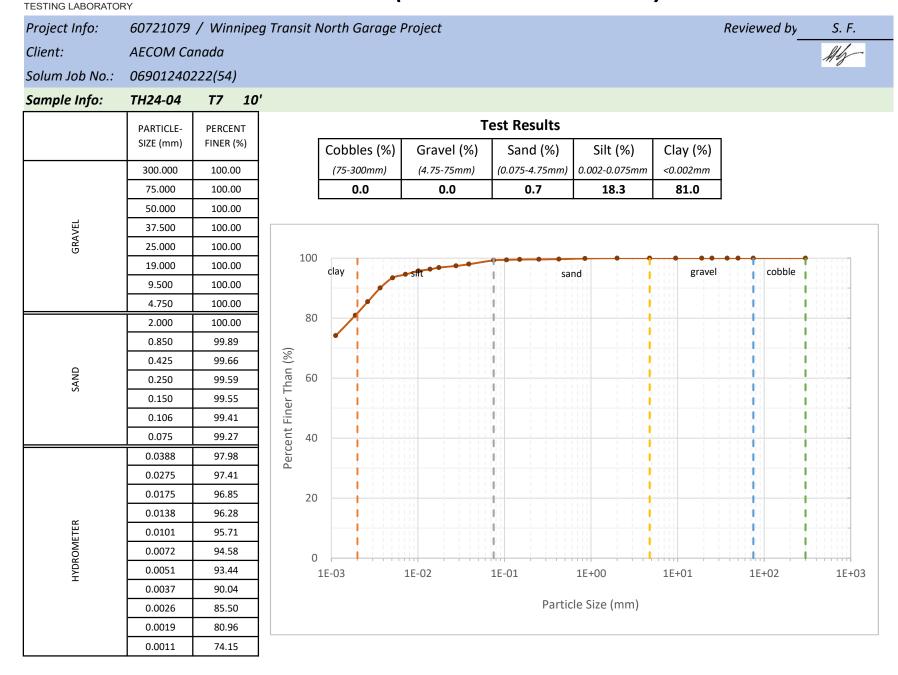
Reviewed by: S. F.

Client:

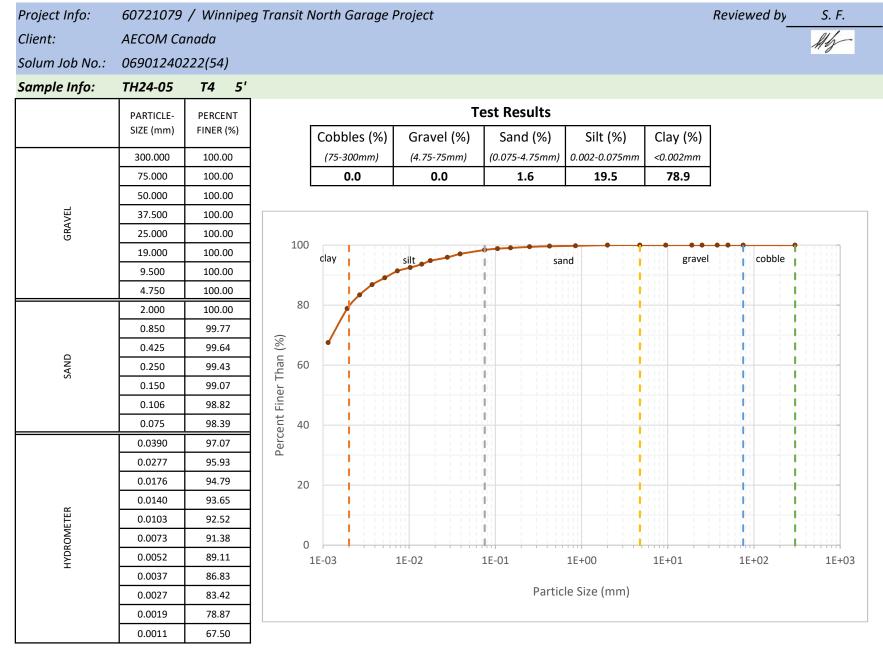

: AECOM Canada


Solum Job No.: 06901240222(54)

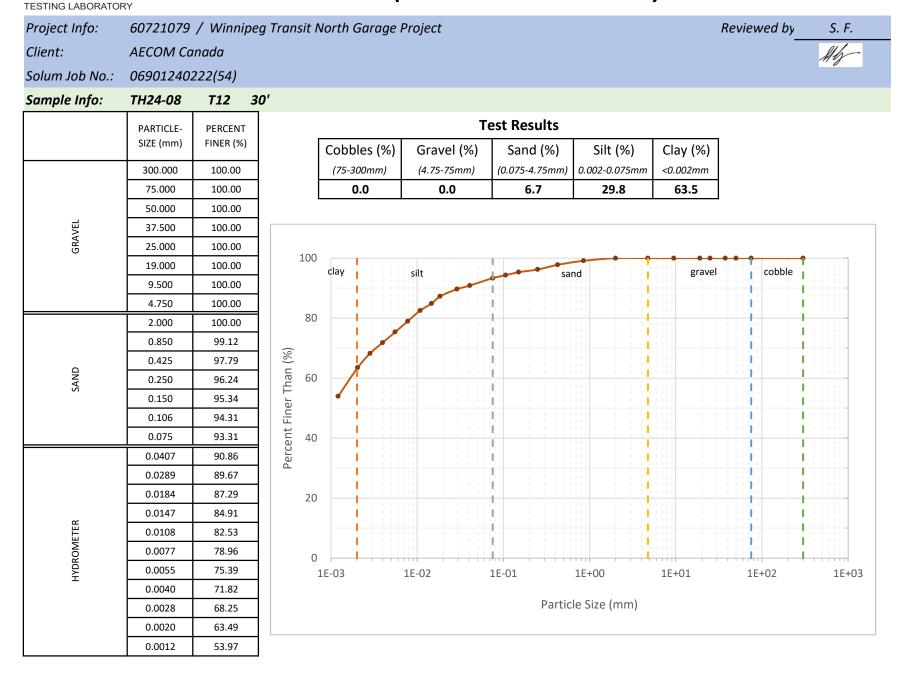

Sample Info: TH24-14 T4 5'

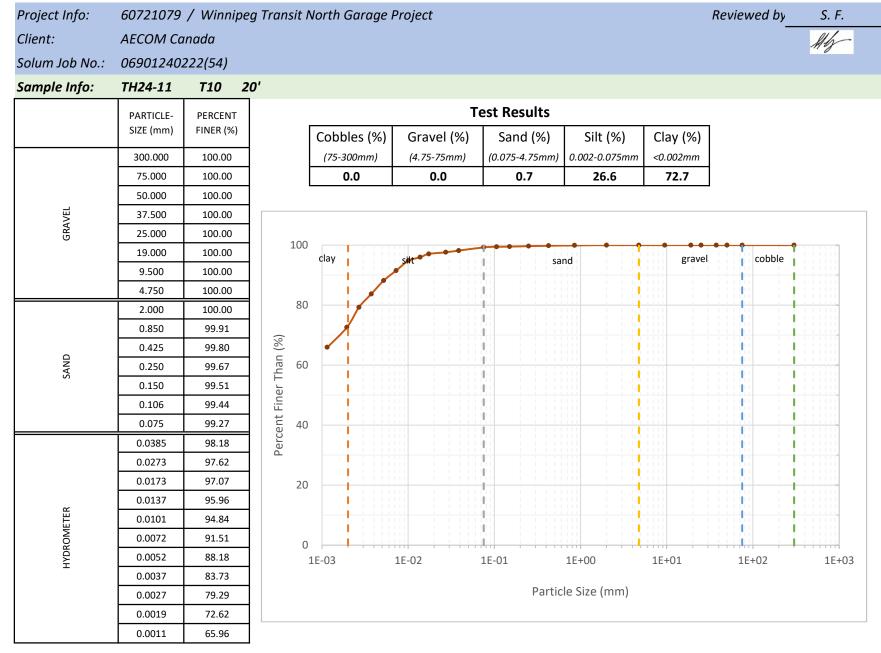

	Liquid Limit	(Air-Dried) - Multip				
Container ID	1 2 3					
Number of Blows	15	23	39			
W _{wet Soil} + Tare (g)	32.91	35.01	21.47			
W _{Dry Soil} + Tare (g)	24.66	26.38	16.96			
W _{Water} (g)	8.25	8.63	4.51			
Tare (g)	5.58	5.59	5.62			
W _{Dry Soil} (g)	19.08	20.79	11.34	Motor Contort (%)	18.9	
Water Content (%)	43.2	41.5	39.8	Water Content (%)	18.9	

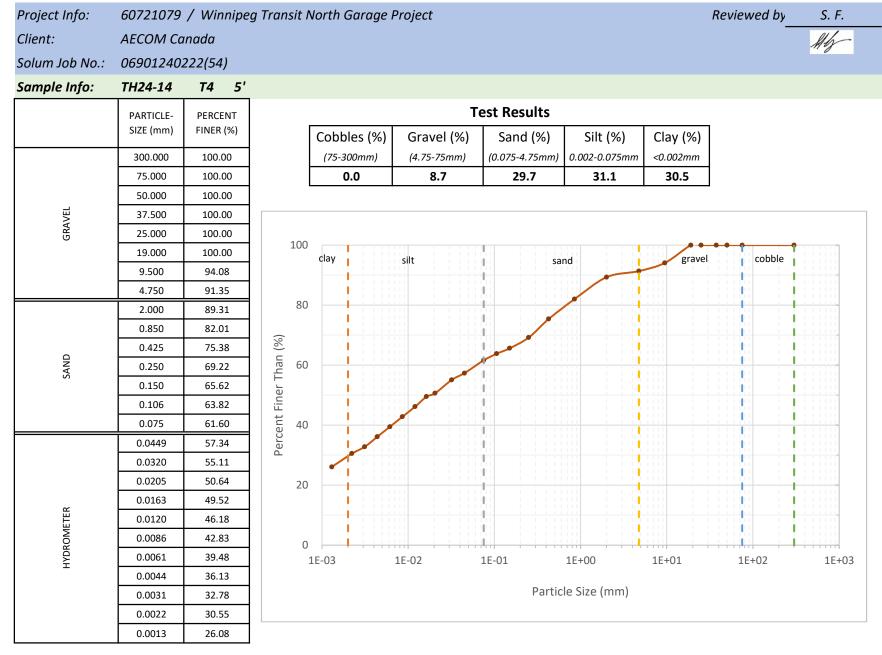
	Plastic Limit				
Container ID	4	5			
W _{Wet Soil} + Tare (g)	15.25	16.05			
W _{Dry Soil} + Tare (g)	13.55	14.23			
W _{water} (g)	1.70	1.82			
Tare (g)	5.62	5.59			
W _{Dry Soil} (g)	7.93	8.64			
Water Content (%)	21.4	21.1			
Average Mc (%)	21.3				



CONSULTANTS LTD.

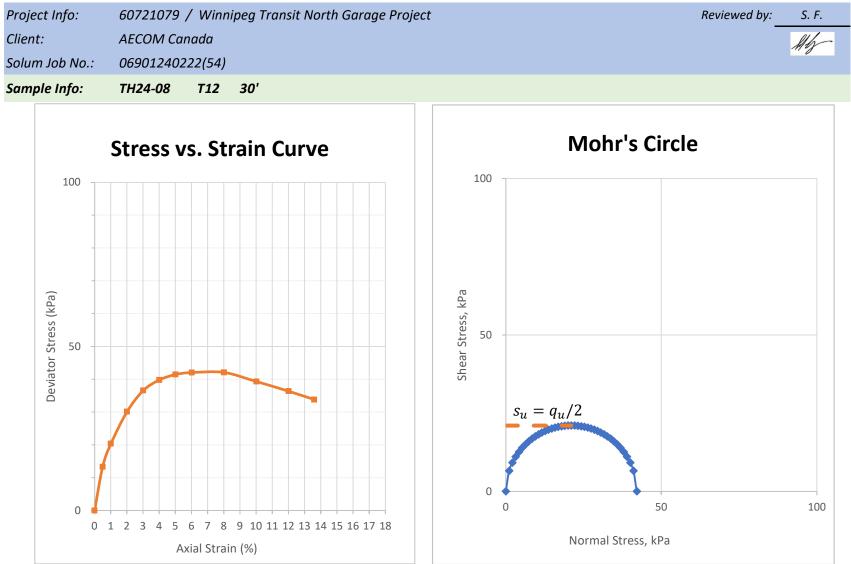

GEOTECHNICAL & MATERIAL





CONSULTANTS LTD.

GEOTECHNICAL & MATERIAL



Unconfined Compression Test (ASTM D2166)

Project Info:	60721079 /	60721079 / Winnipeg Transit North Garage Project Reviewed by:							S. F.
Client:	AECOM Can	ada							Mby
Solum Job No.:	0690124022	22(54)							
Sample Info:	TH24-08	T12 30'							
Diameter (cm)	7.24	Height (cm)	16.05	H/D Ratio	2.22	Mass (g)	1167.0	Shear Rate (mm/min)	1.5
Sample Area (cm^2)	41.16	Assumed Gs	2.69	Initial Void Ratio	1.19	Initial Sat. Degree (%)	98.8		
MC as Received (%)	43.6	Wet BD (kg/m^3)	1766	Dry BD (kg/m^3)	1230	Remarks	N/A		
Vert. Displ. (cm)	Load Cell (kN)	ε1	Corrected Area (cm²)	σ1 (kPa)	σ1/2 (kPa)	Test R	esults		
0.00	0.03	0.00	41.16	0.00	0.00				
0.08	0.08	0.50	41.36	13.32	6.66	UCS q _u (kPa)	42.09	_	
0.16	0.11	1.01	41.58	20.40	10.20	Shear Strength s _u			
0.32	0.15	2.01	42.00	30.12	15.06	(kPa) _	21.04	_	
0.48	0.18	3.01	42.44	36.58	18.29				
0.64	0.20	4.01	42.88	39.80	19.90	Axial Fal. Strain (%)	8.01	_	
0.80	0.21	5.01	43.33	41.45	20.73				
0.97	0.21	6.02	43.79	42.04	21.02	Failure Mode	Shear		
1.29	0.21	8.01	44.74	42.09	21.04	_		- /	
1.61	0.21	10.02	45.74	39.31	19.65	$\beta = 45^0 + \frac{\varphi}{2}$	~ 60°	B	
1.93	0.20	12.01	46.78	36.35	18.18	2 —			
2.18	0.19	13.60	47.64	33.81	16.90				

Unconfined Compression Test (ASTM D2166)

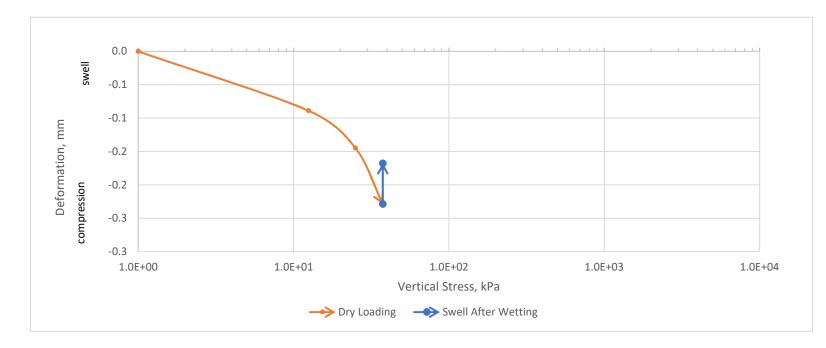
Swell Test (Method C) (ASTM D4546)

GEOTECHNICAL & MATERIAL TESTING LABORATORY

Project Info:	oject Info: 60721079 / Winnipeg Transit North Garage Project						S. F.
Client:	Client: AECOM Canada						Aby
Solum Job No.:	069012402	22(54					
Sample Info:	TH24-05	Т4	5'				
Specific Gr	avity Gs (Est)		2.70	Water for Inundate Specimens	Distilled	_	
in-situ Overburdo (kPa)			37.5	(estimated based on sample's depth)			

	Before Test
Height (cm)	2.00
- Diameter (cm)	6.18
Area (cm^2)	30.00
Volume (cm^3)	60.00
Wt. (ring + wet soil)	148.65
Wt. (ring + dry soil)	116.88
Wt. of ring	43.00
Wt. of wet soil	105.65
Wt. of dry soil	73.88
Moisture Content (%)	43.0
Wet Density (kg/m^3)	1761
Dry Density (kg/m^3)	1231
Solid Height (cm)	0.9121
Ht. of water(cm)	1.0590
Initial Void Ratio	1.193
Degree of Saturation(%)	97.3

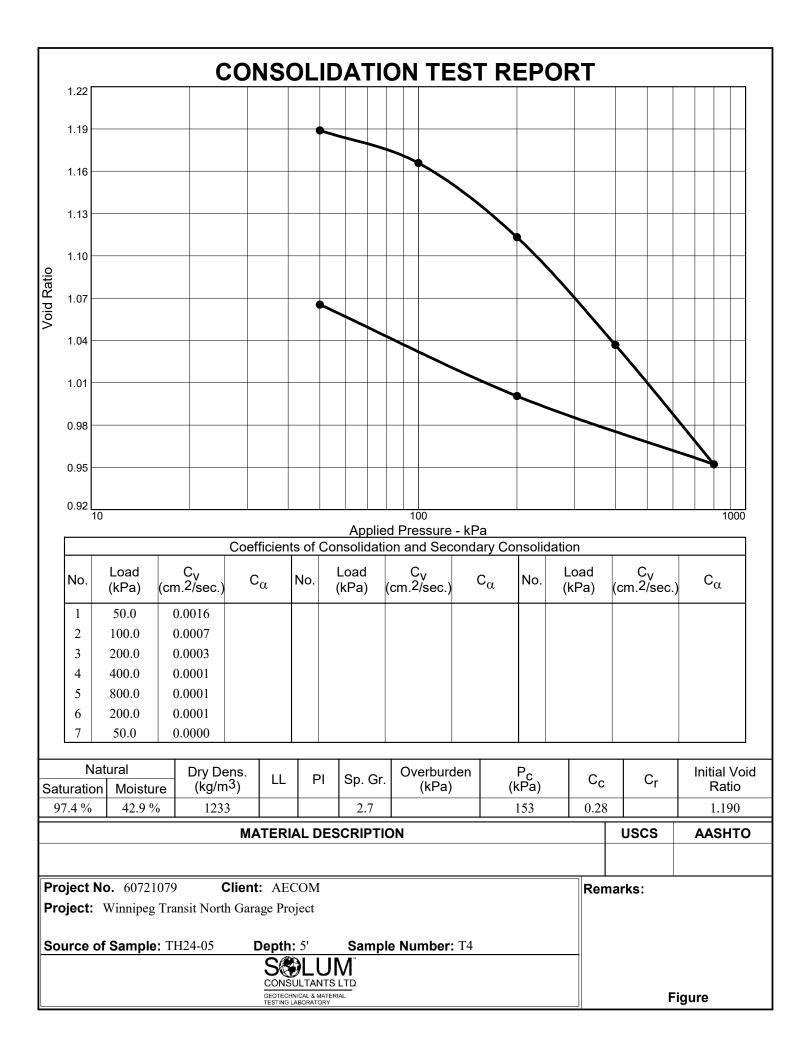
	After Test
Wt (ring) wat call	140 13
Wt. (ring + wet soil) Wt. (ring + dry soil)	148.12
Wt. of ring	43.00
Wt. of wet soil	105.12
Wt. of dry soil	73.88
Moisture Content (%)	42.3
Solid Height (cm)	0 9121
Solid Height (cm)	0.9121

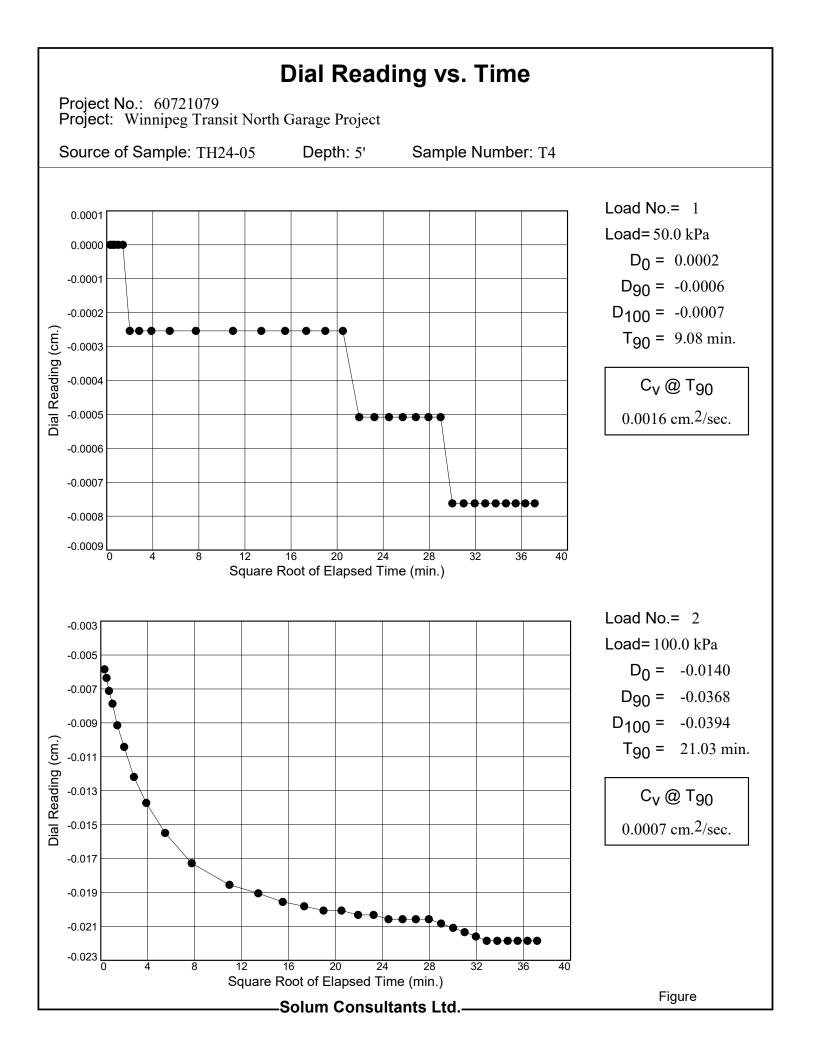

Ht. of water(cm)

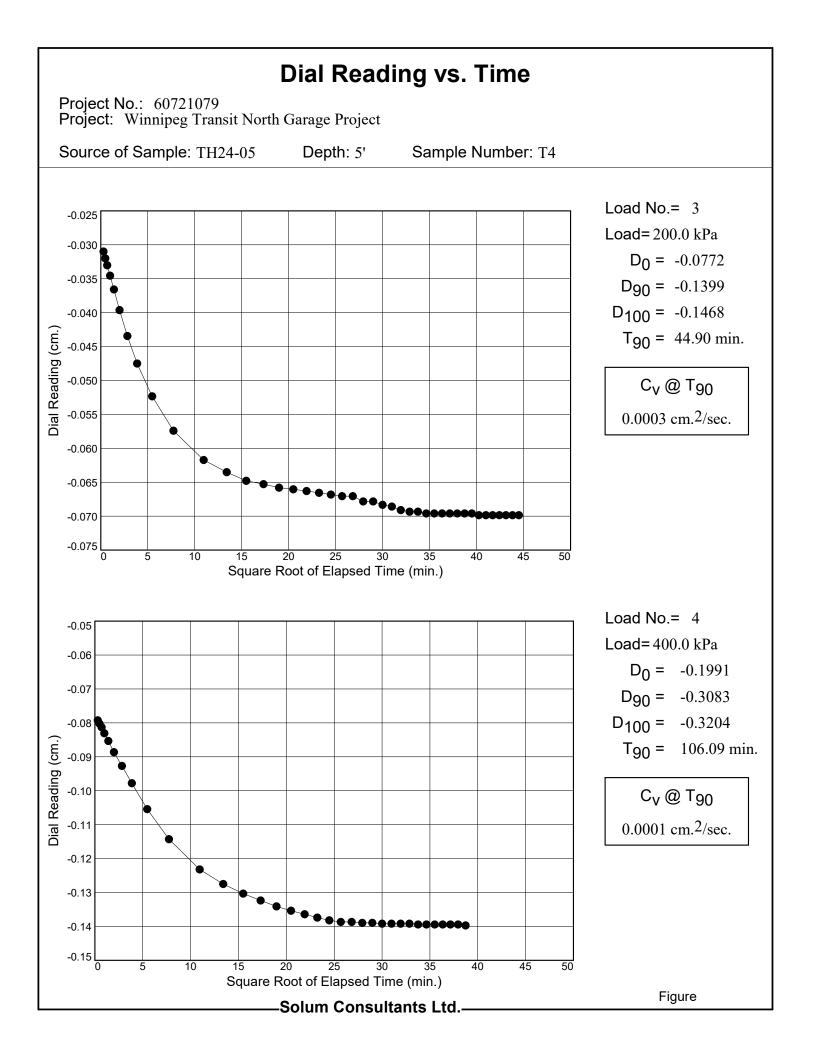
1.0413

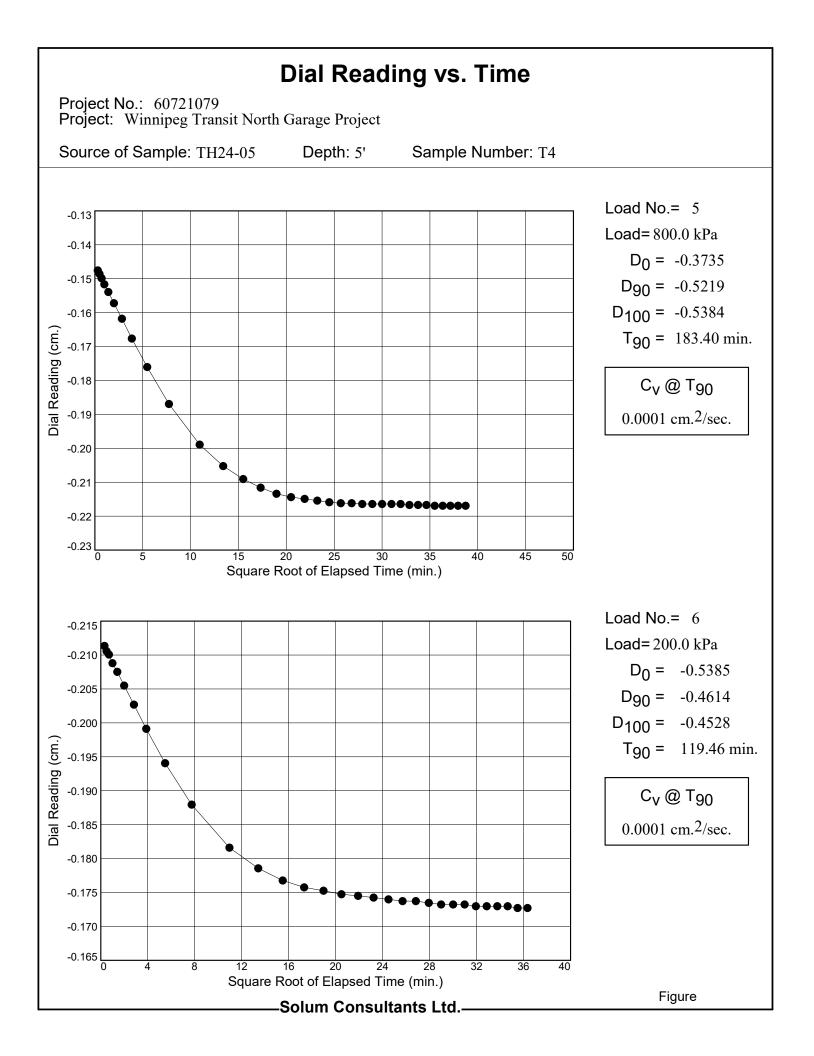
Swell Test (Method C) (ASTM D4546)

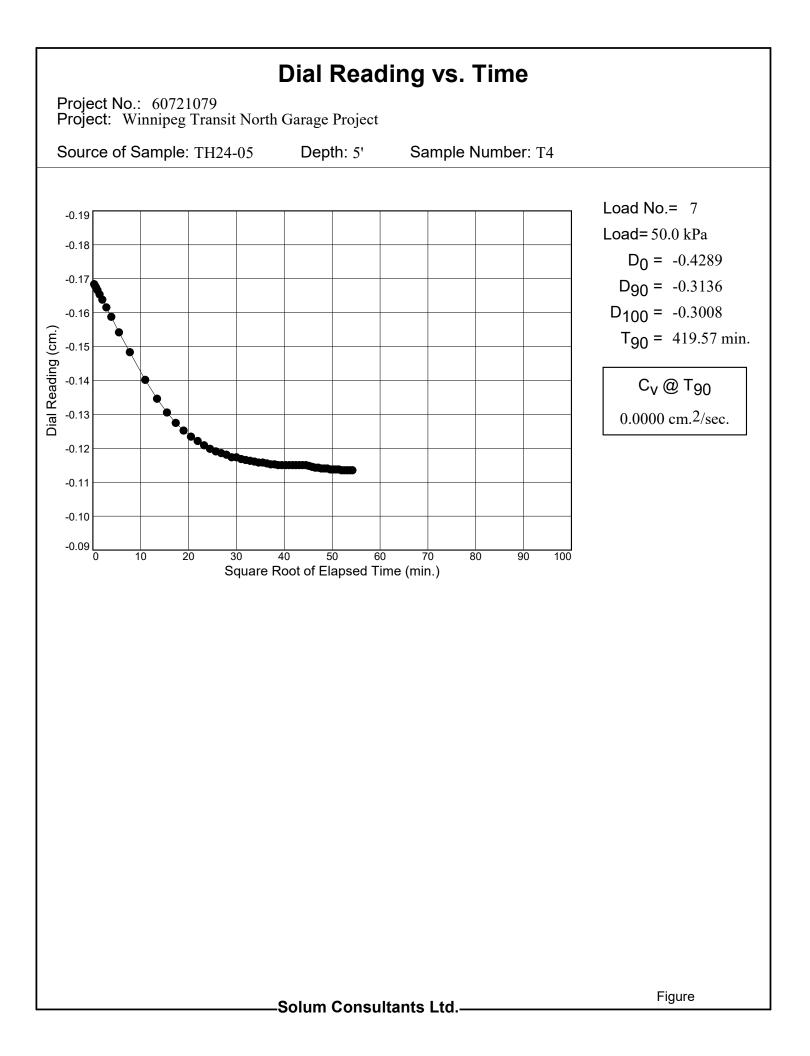
Project Info:	60721079	sit North Garage Project Reviewed by:	S. F.					
Client:	AECOM Ca	nada		Aly				
Solum Job No.:	069012402	06901240222(54)						
Sample Info:	TH24-05	T4 5'						
Stage No.	Load (kPa)	Deformation (mm)						
1	1.0	0.0000						
2	12.5	-0.0889						
3	25.0	-0.1448						
4	37.5	-0.2286						
5 (wetting)	37.5	-0.1676						


CONSOLIDATION TEST DATA


2024-03-08

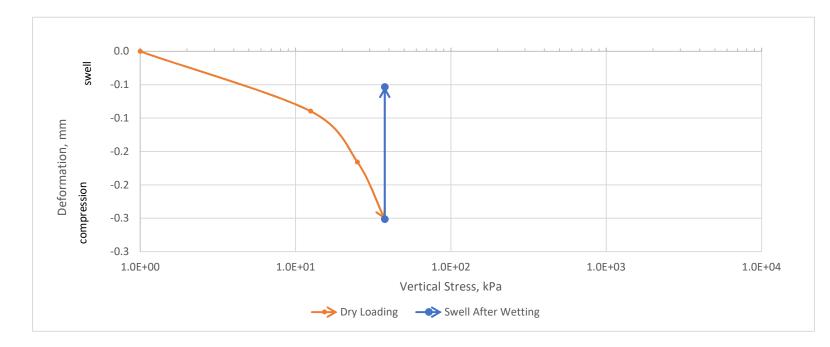

Client: AECOM Project: Winnipeg Transit North Garage Project Project Number: 60721079 Location: TH24-05 Depth: 5'


Sample Number: T4


-										
			٦	Fest Sp	ecimen Da	ta				
NATURAL MOISTURE VOID RATIO						AFTER TEST				
Wet w+t =	96.71 g.		Spec. Gr	. =	2.7		Wet w+t	=	148.12	g.
Dry w+t =	75.23 g.		Est. Ht. S	Solids =	0.913 cm.		Dry w+t	=	116.88	g.
Tare Wt. =	25.17 g.		Init. V.R.	=	1.190		Tare Wt.	=	43.00	g.
Moisture =	42.9 %		Init. Sat.	=	97.4 %		Moisture	=		e
UNIT WEIGH			TEST S	TART			Dry Wt.	=	73.88	g.
Height =	0.787 in.		Height	=	0.787 in.					
Diameter =	2.433 in.		Diameter	r =	2.433 in.					
Weight =	105.65 g.									
Dry Dens. =	1233 kg/m	1 ³								
			Er	nd-Of-L	.oad Summ	ary				
Pressure (kPa)	Final Dial (in.)	Deformation (in.)	C _v (cm. ² /sec.)	cα	Void Ratio	% Strain				
start	0.00000	0.00000			1.190					
50.0	-0.00030	0.00030	0.0016		1.189	0.0 Comprs.				
100.0	-0.00860	0.00860	0.0007		1.166	1.1 Comprs.				
200.0	-0.02750	0.02750	0.0003		1.113	3.5 Comprs.				
400.0	-0.05500	0.05500	0.0001		1.037	7.0 Comprs.				
800.0	-0.08540	0.08540	0.0001		0.952	10.9 Comprs.				
200.0	-0.06800	0.06800	0.0001		1.001	8.6 Comprs.				
50.0	-0.04470	0.04470	0.0000		1.065	5.7 Comprs.				
						1				

GEOTECHNICAL & MATERIAL TESTING LABORATORY

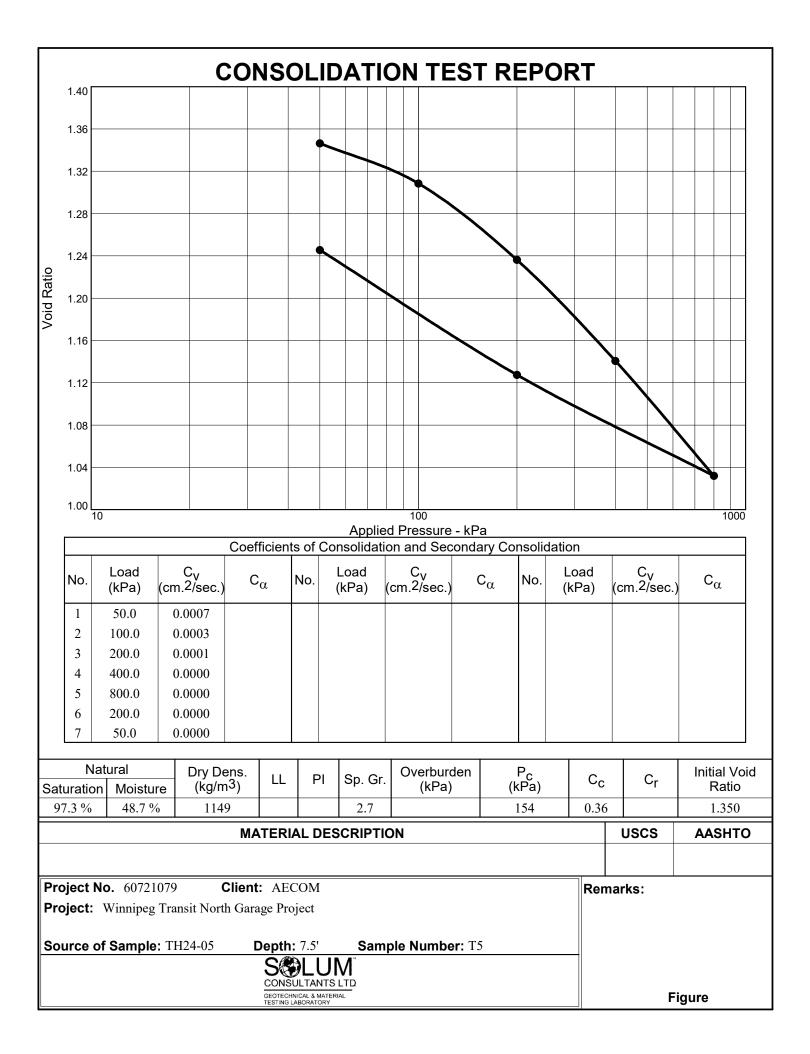
Project Info:	60721079 /	Reviewed by:	S. F.				
Client:	AECOM Can	ada	_	Als			
Solum Job No.:	0690124022	22(54)				
Sample Info:	TH24-05	T5	7.5'				
Specific Gravity Gs (Est) 2		2.70	Water for Inundate Specimens	Distilled	_		
in-situ Overburden Pressure (kPa)			37.5	(estimated based on sample's depth)			

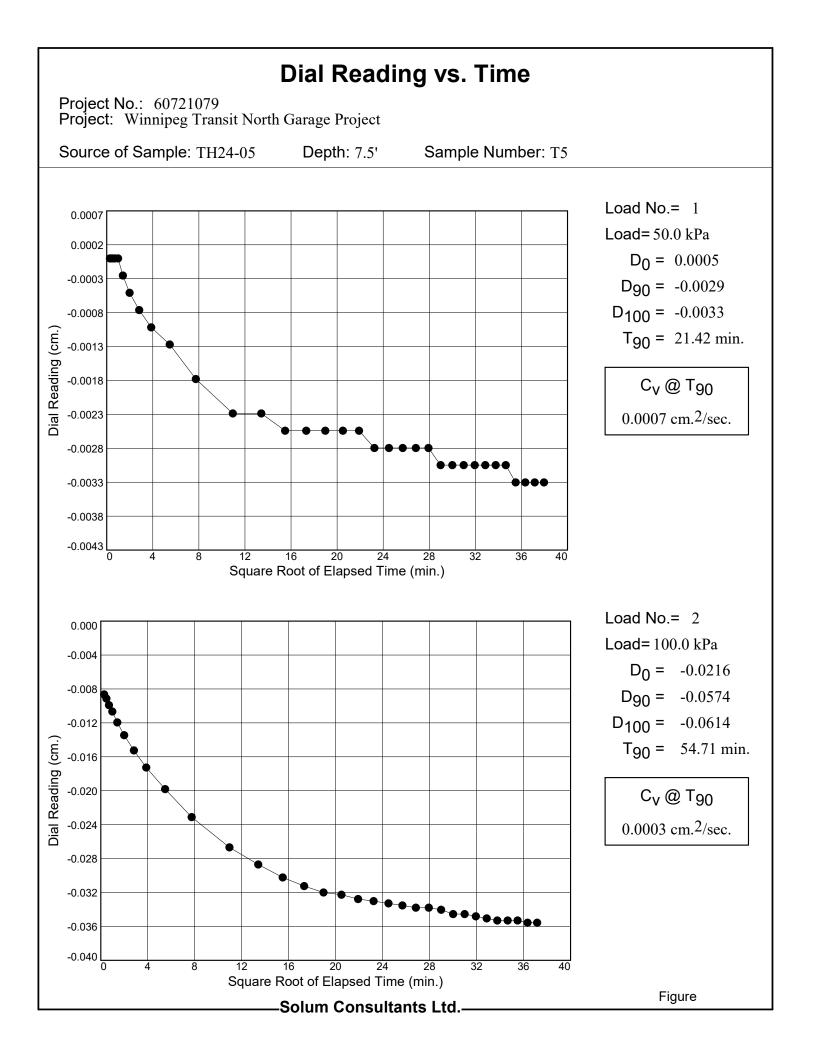

	Before Test
Height (cm)	2.00
- Diameter (cm)	6.18
Area (cm^2)	30.00
Volume (cm^3)	60.00
Wt. (ring + wet soil)	145.39
Wt. (ring + dry soil)	111.12
Wt. of ring	43.00
Wt. of wet soil	102.39
Wt. of dry soil	68.12
Moisture Content (%)	50.3
Wet Density (kg/m^3)	1707
Dry Density (kg/m^3)	1135
Solid Height (cm)	0.8410
Ht. of water(cm)	1.1423
Initial Void Ratio	1.378
Degree of Saturation(%)	98.6

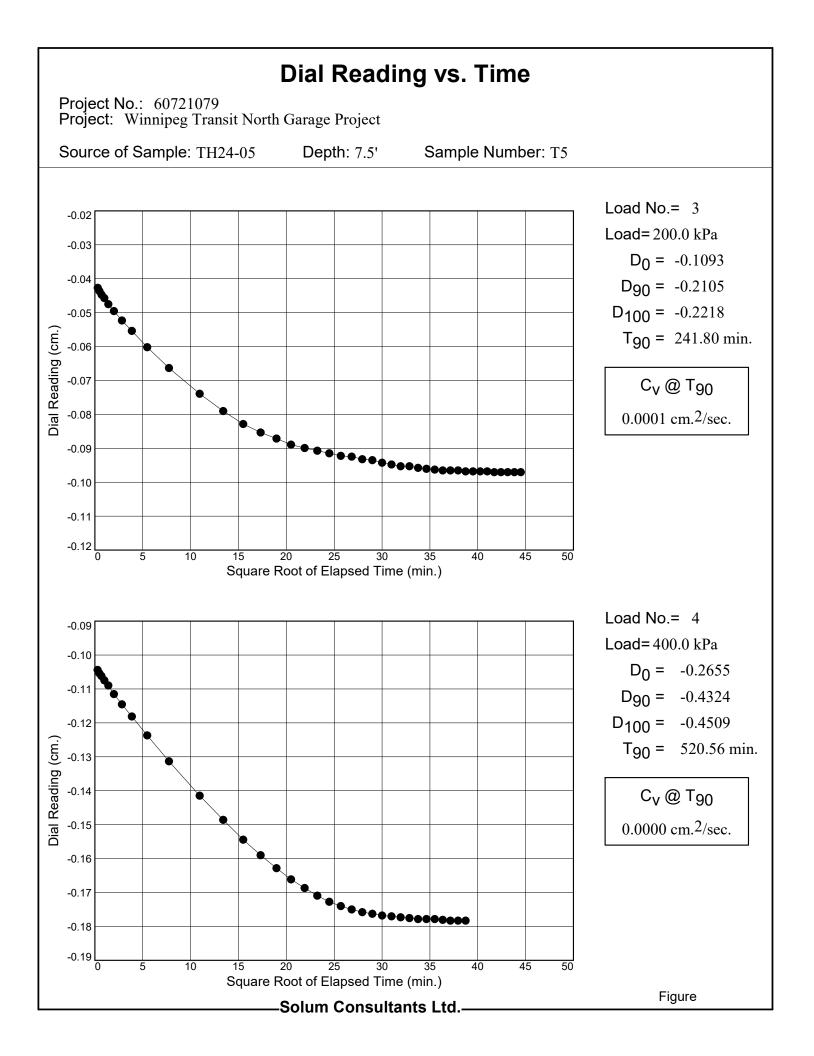
	After Test
Wt. (ring + wet soil)	144.31
Wt. (ring + dry soil)	111.12
Wt. of ring	43.00
Wt. of wet soil	101.31
Wt. of dry soil	68.12
Moisture Content (%)	48.7
Solid Height (cm)	0.8410
Ht. of water(cm)	1.1063

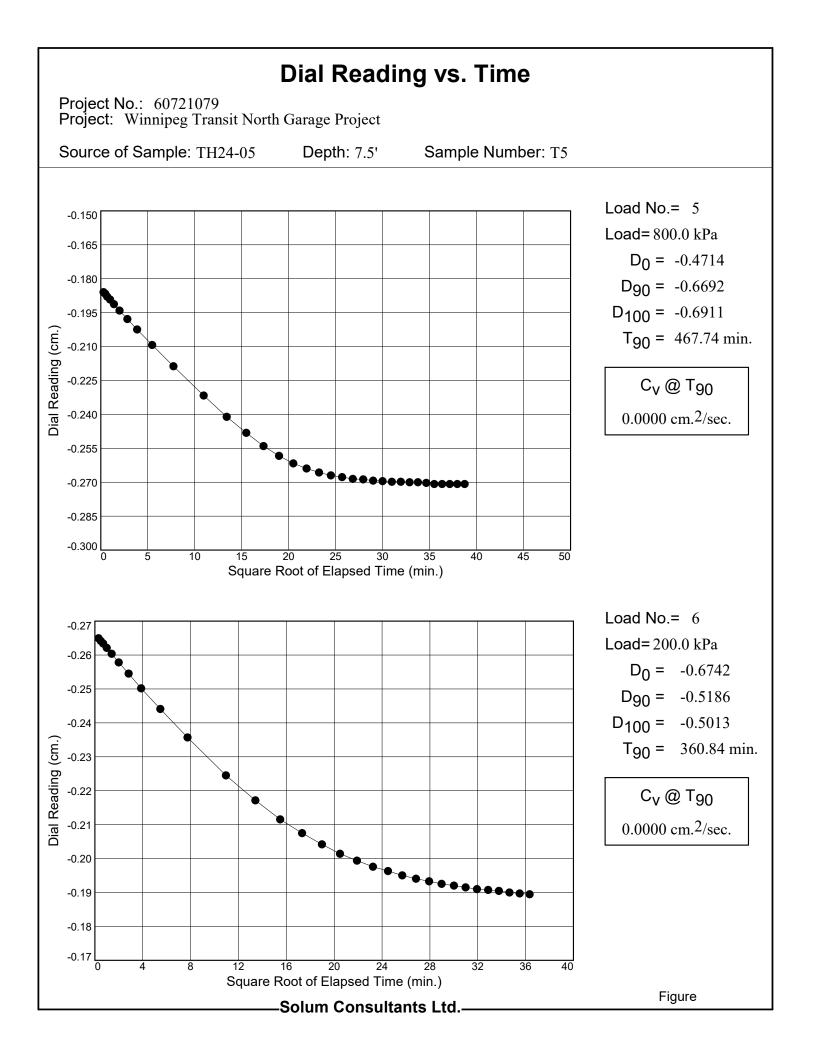
GEOTECHNICAL & MATERIAL TESTING LABORATORY

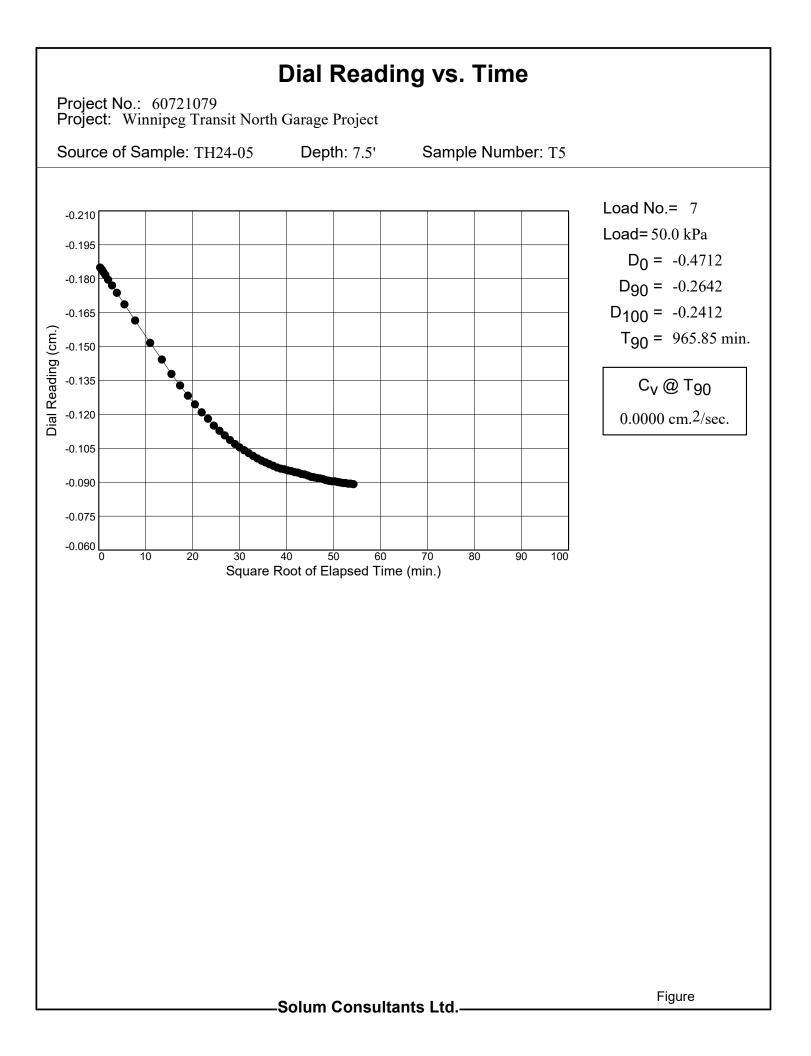
Project Info:	60721079	/ Winnipeg Tran	sit North Garage Project Reviewed by	: S. F.
Client:	AECOM Ca	nada		Als
Solum Job No.:	069012402	222(54)		
Sample Info:	TH24-05	T5 7.5'		
Stage No.	Load (kPa)	Deformation (mm)		
1	1.0	0.0000		
2	12.5	-0.0897		
3	25.0	-0.1659		
4	37.5	-0.2515		
5 (wetting)	37.5	-0.0533		




2024-03-08


Client: AECOM Project: Winnipeg Transit North Garage Project Project Number: 60721079 Location: TH24-05 Depth: 7.5'


Sample Number: T5

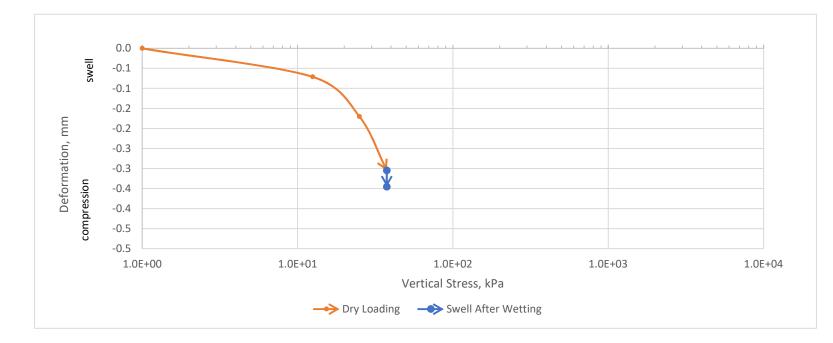

·••••••										
			Т	est Sp	ecimen Da	ta				
NATURAL	MOISTURE		VOID F	RATIO			AFTEF	R TE	ST	
Wet w+t =	118.53 g.		Spec. Gr	. =	2.7		Wet w+t	=	144.31 g.	
Dry w+t =	88.06 g.		Est. Ht. S	olids =	0.851 cm.		Dry w+t	=	111.12 g.	
Tare Wt. =	25.43 g.		Init. V.R.	=	1.350		Tare Wt.	=	43.00 g.	
Moisture =	48.7 %		Init. Sat.	=	97.3 %		Moisture	. =	48.7 %	
UNIT WEIGH	нт		TEST S	TART			Dry Wt.	=	68.12 g.	
Height =	0.787 in.		Height	=	0.787 in.					
Diameter =	2.433 in.		Diameter	- =	2.433 in.					
Weight =	102.39 g.									
Dry Dens. =	1149 kg/m	n ³								
	-		En	d-Of-Lo	oad Summ	ary				
Pressure (kPa)	Final Dial (in.)	Deformation (in.)	C _v (cm. ² /sec.)	cα	Void Ratio	% Strain				
start	0.00000	0.00000			1.350					
50.0	-0.00130	0.00130	0.0007		1.346	0.2 Comprs.				
100.0	-0.01400	0.01400	0.0003		1.308	1.8 Comprs.				
200.0	-0.03820	0.03820	0.0001		1.236	4.9 Comprs.				
400.0	-0.07020	0.07020	0.0000		1.141	8.9 Comprs.				
800.0	-0.10660	0.10660	0.0000		1.032	13.5 Comprs.				
200.0	-0.07460	0.07460	0.0000		1.128	9.5 Comprs.				
50.0	-0.03510	0.03510	0.0000		1.245	4.5 Comprs.				

GEOTECHNICAL & MATERIAL TESTING LABORATORY

Project Info:	60721079 /	Reviewed by:	S. F.				
Client:	AECOM Can	ada	_	Aly			
Solum Job No.:	0690124022	22(54)				
Sample Info:	TH24-14	T4	5'				
Specific Gravity Gs (Est)			2.70	Water for Inundate Specimens	Distilled	_	
in-situ Overburden Pressure (kPa)			37.5	(estimated based on sample's depth)			

Before Test
2.00
6.18
30.00
60.00
167.73
147.90
43.00
124.73
104.90
18.9
2079
1748
1.2951
0.6610
0.544
93.8

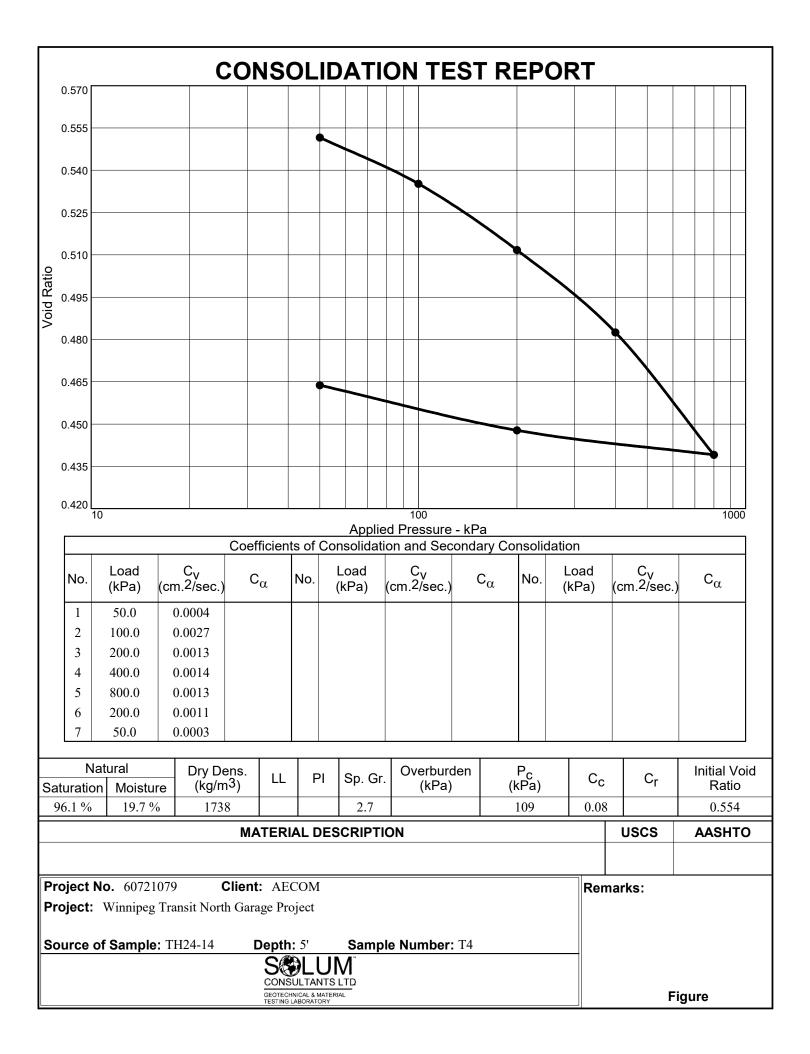
	After Test
Wt. (ring + wet soil)	168.10
Wt. (ring + dry soil)	147.90
Wt. of ring	43.00
Wt. of wet soil	125.10
Wt. of dry soil	104.90
Moisture Content (%)	19.3
Solid Height (cm)	1.2951

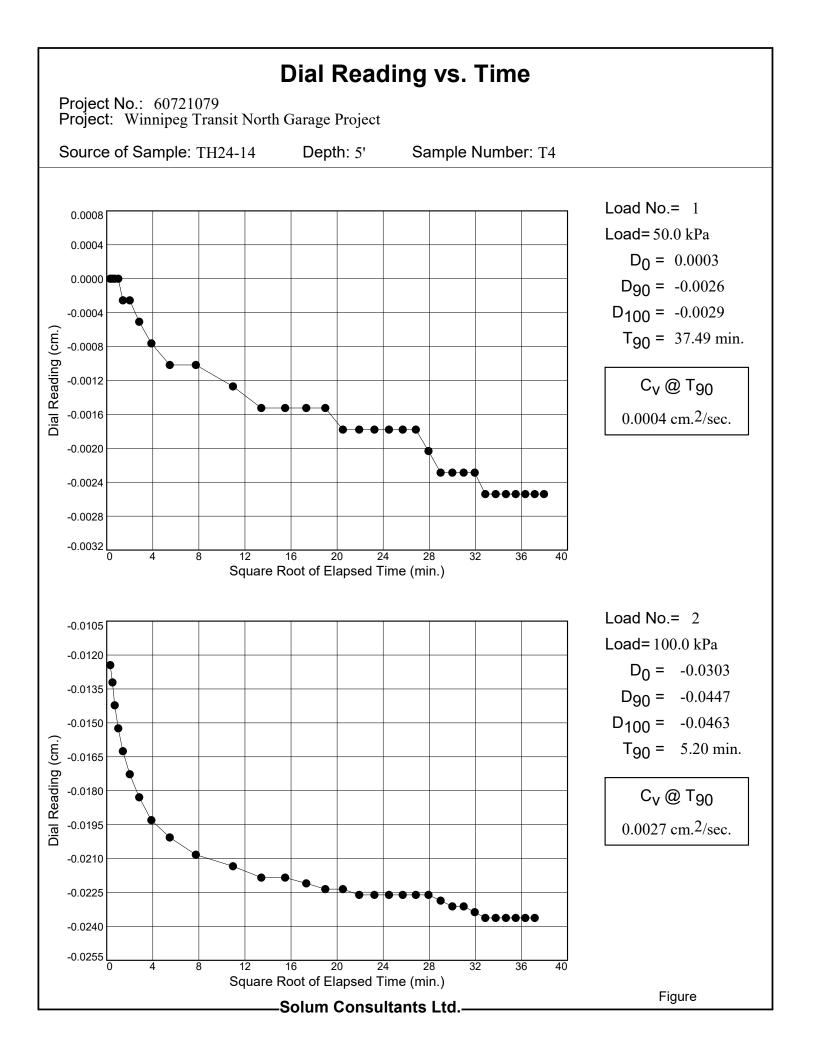

It. of water(cm) 0.6733
-----------------	----------

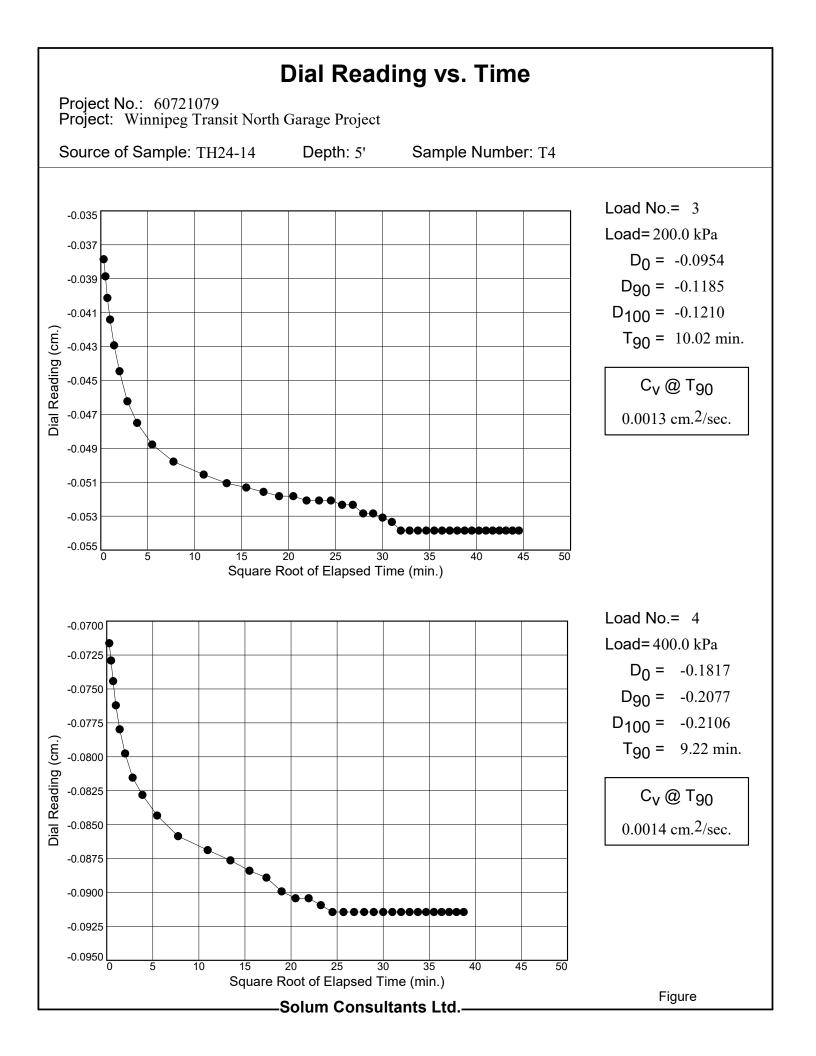
н

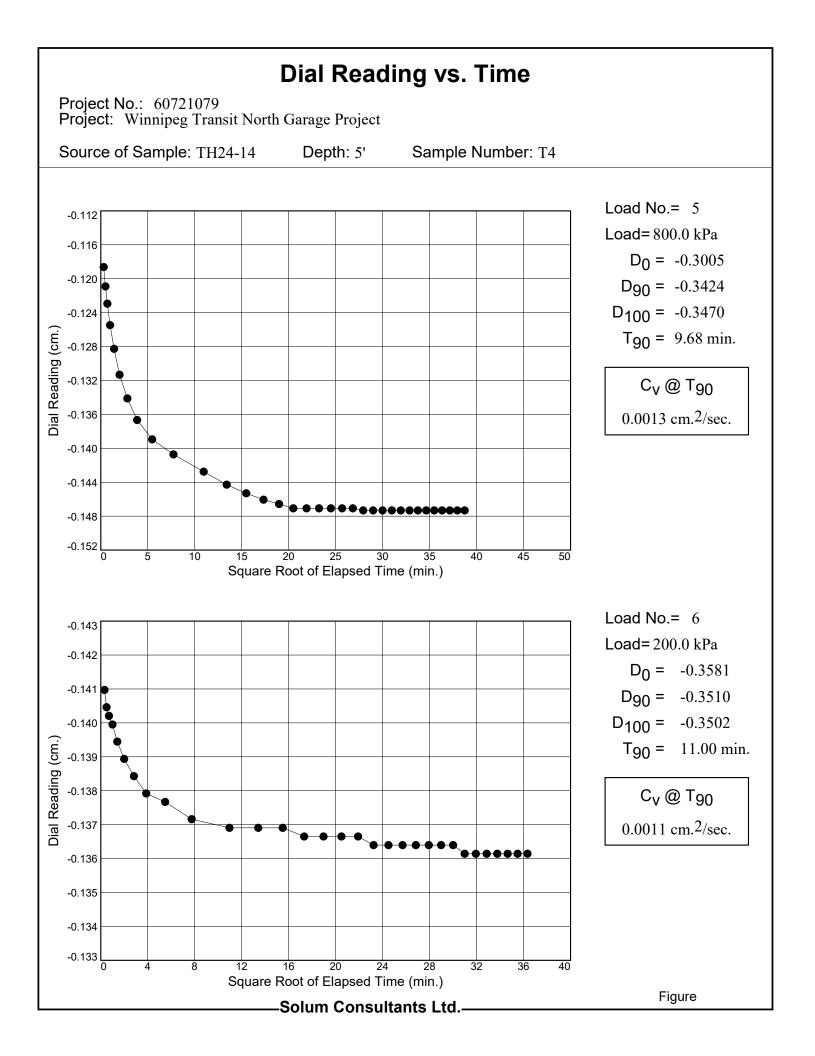
GEOTECHNICAL & MATERIAL TESTING LABORATORY

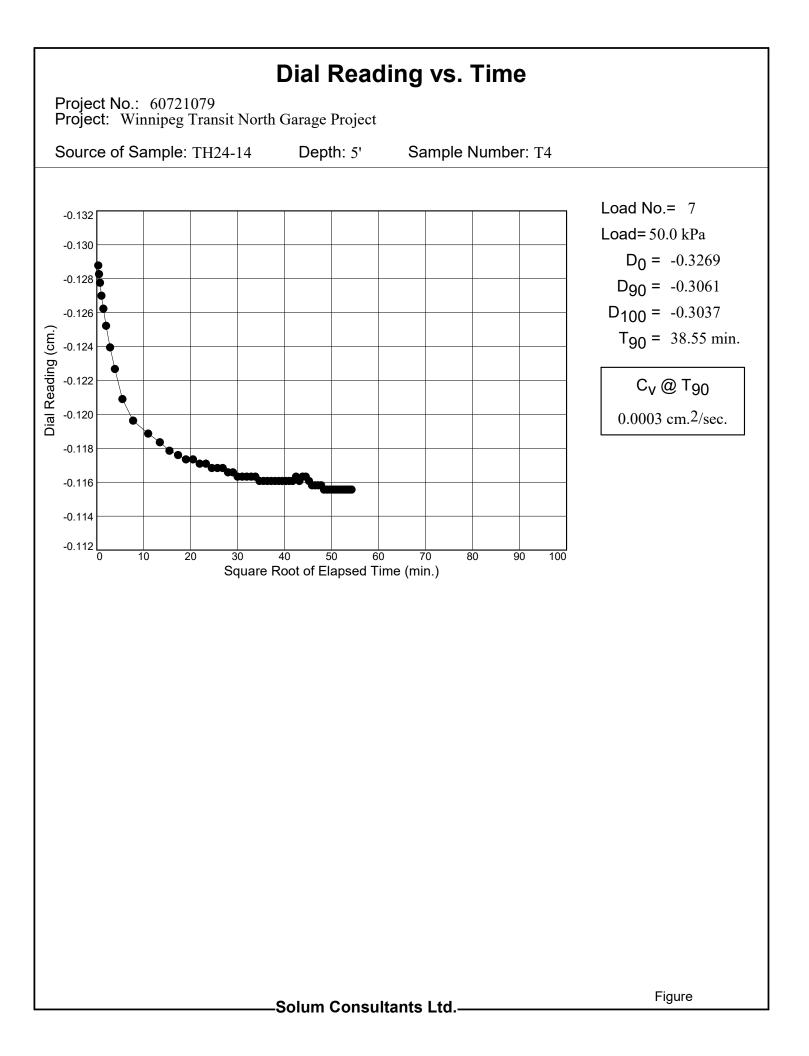
Project Info:	60721079	/ Winnipeg Tran	sit North Garage Project Reviewed by:	S. F.
Client:	AECOM Ca	nada		Mby
Solum Job No.:	069012402	222(54)		
Sample Info:	TH24-14	T4 5'		
Stage No.	Load (kPa)	Deformation (mm)		
1	1.0	0.0000		
2	12.5	-0.0711		
3	25.0	-0.1702		
4	37.5	-0.3048		
5 (wetting)	37.5	-0.3454		

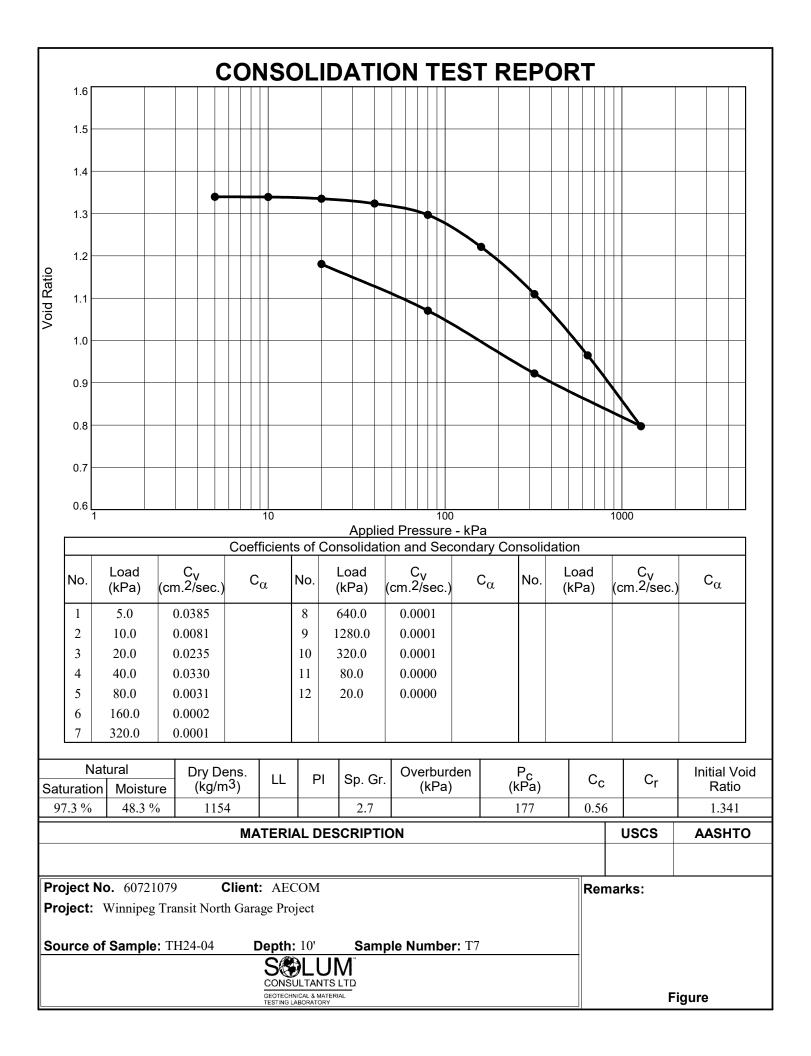



2024-03-08

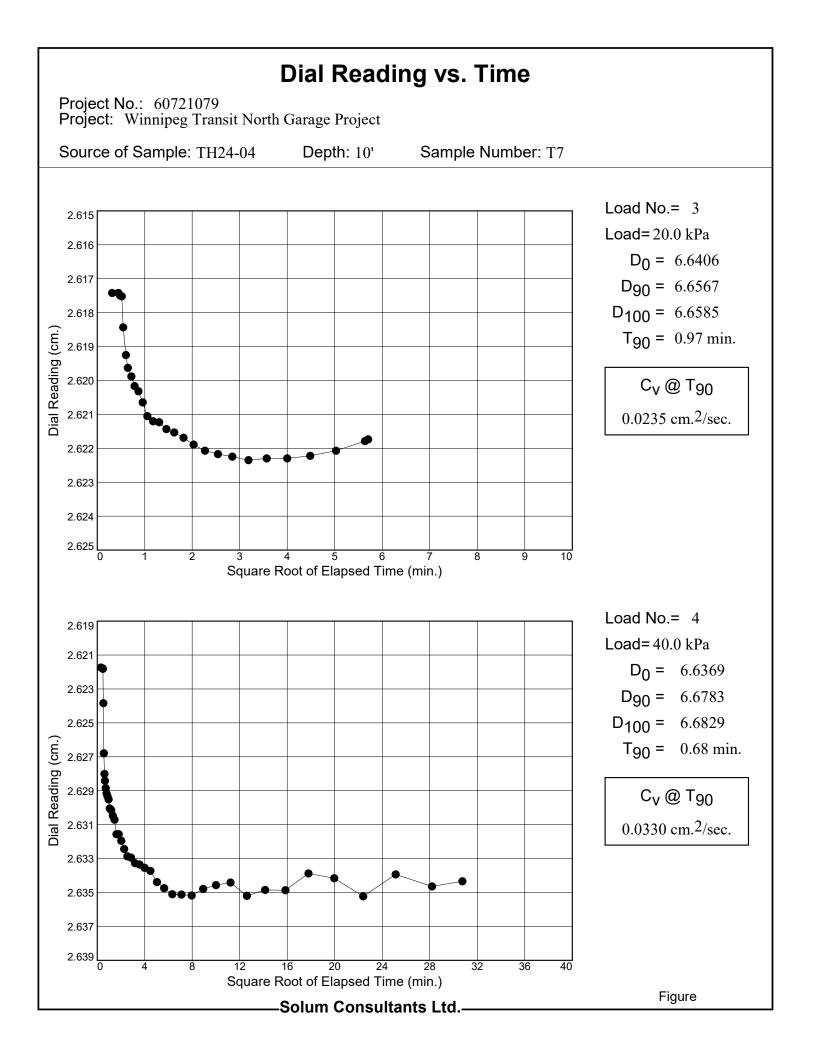

Client: AECOM Project: Winnipeg Transit North Garage Project Project Number: 60721079 Location: TH24-14 Depth: 5'

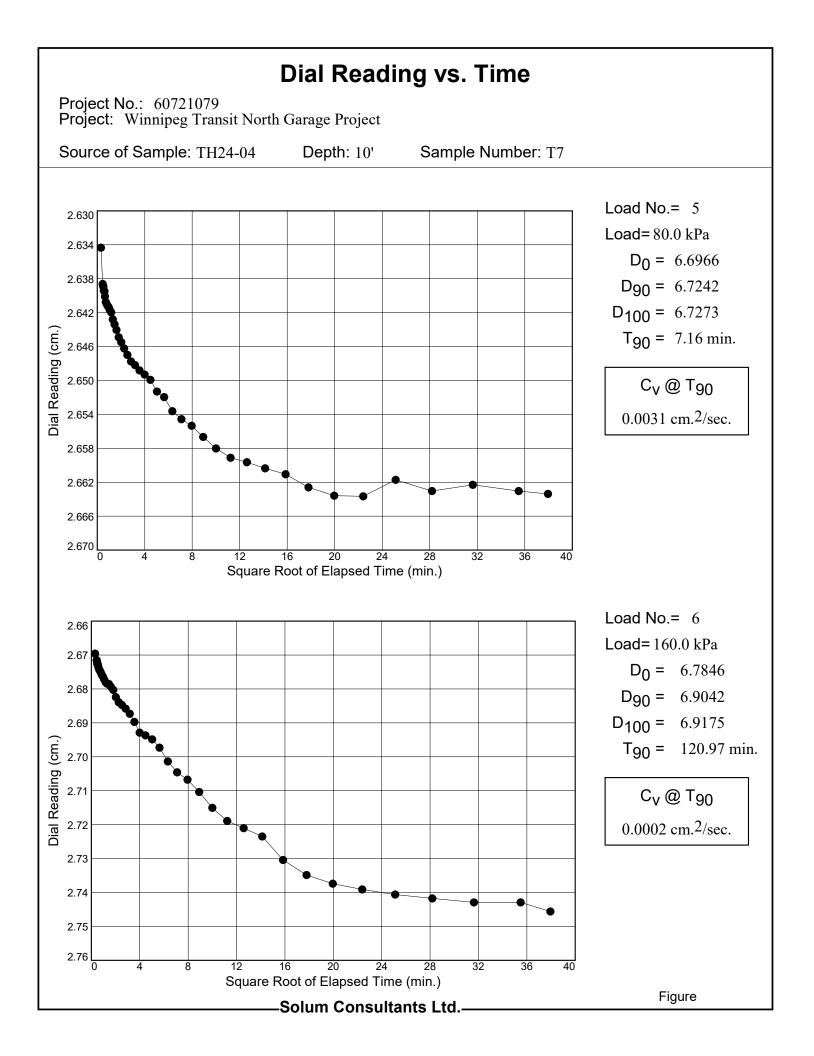

Sample Number: T4

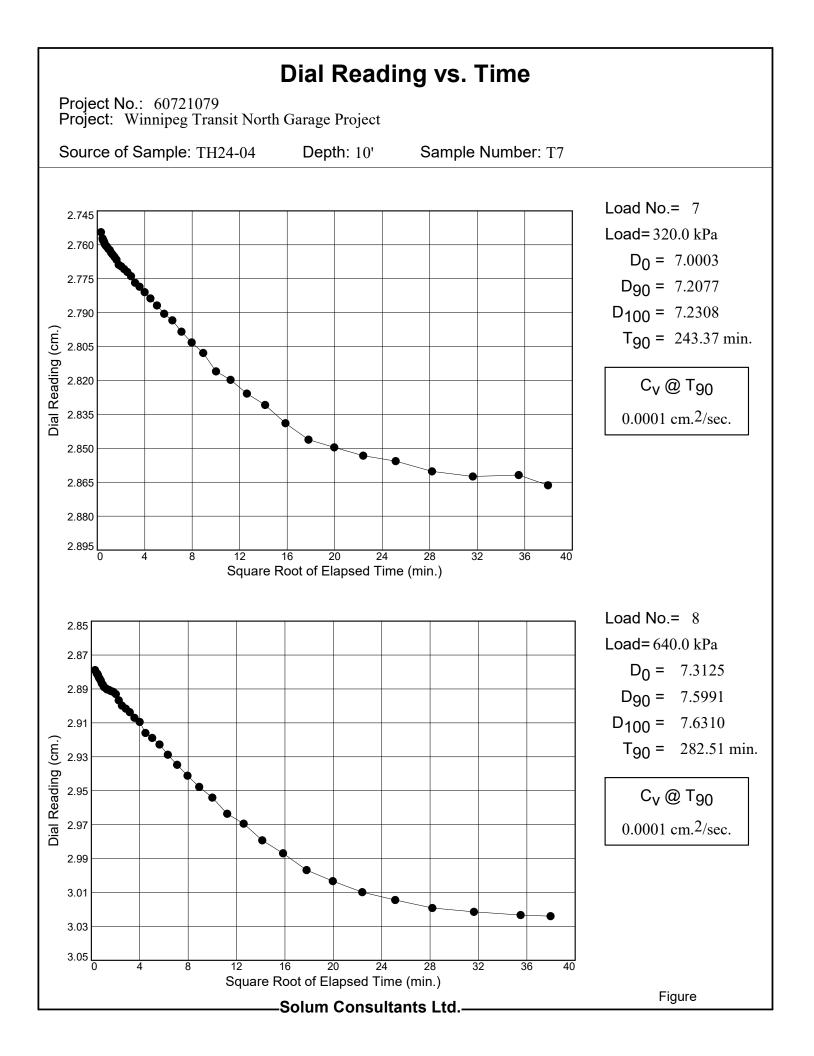

••••••										
			٦	est Sp	ecimen Dat	ta				
NATURAL	MOISTURE		VOID F	RATIO			AFTEF	R TE	ST	
Wet w+t =	108.37 g.		Spec. Gr	. =	2.7		Wet w+t	=	168.10 g.	
Dry w+t =	94.12 g.		Est. Ht. S	olids =	1.287 cm.		Dry w+t	=	147.90 g.	
Tare Wt. =	21.78 g.		Init. V.R.	=	0.554		Tare Wt.	=	43.00 g.	
Moisture =	19.7 %		Init. Sat.	=	96.1 %		Moisture	=	19.3 %)
UNIT WEIGI	нт		TEST S	TART			Dry Wt.	=	104.90 g.	
Height =	0.787 in.		Height	=	0.787 in.					
Diameter =	2.433 in.		Diameter	- =	2.433 in.					
Weight =	124.73 g.									
Dry Dens. =	1738 kg/m	1 ³								
			Er	d-Of-L	oad Summa	ary				
Pressure (kPa)	Final Dial (in.)	Deformation (in.)	C _v (cm.²/sec.)	cα	Void Ratio	% Strain				
start	0.00000	0.00000			0.554					
50.0	-0.00100	0.00100	0.0004		0.552	0.1 Comprs.				
100.0	-0.00930	0.00930	0.0027		0.535	1.2 Comprs.				
200.0	-0.02120	0.02120	0.0013		0.512	2.7 Comprs.				
400.0	-0.03600	0.03600	0.0014		0.483	4.6 Comprs.				
800.0	-0.05800	0.05800	0.0013		0.439	7.4 Comprs.				
200.0	-0.05360	0.05360	0.0011		0.448	6.8 Comprs.				
50.0	-0.04550	0.04550	0.0003		0.464	5.8 Comprs.				



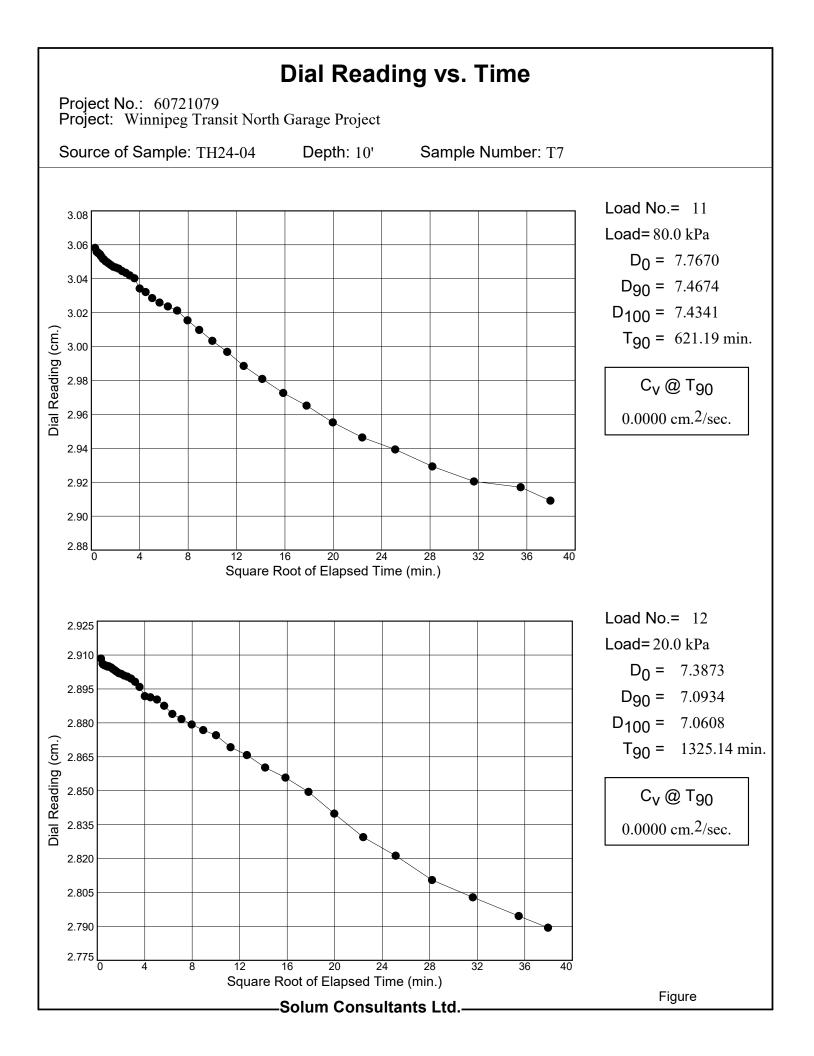


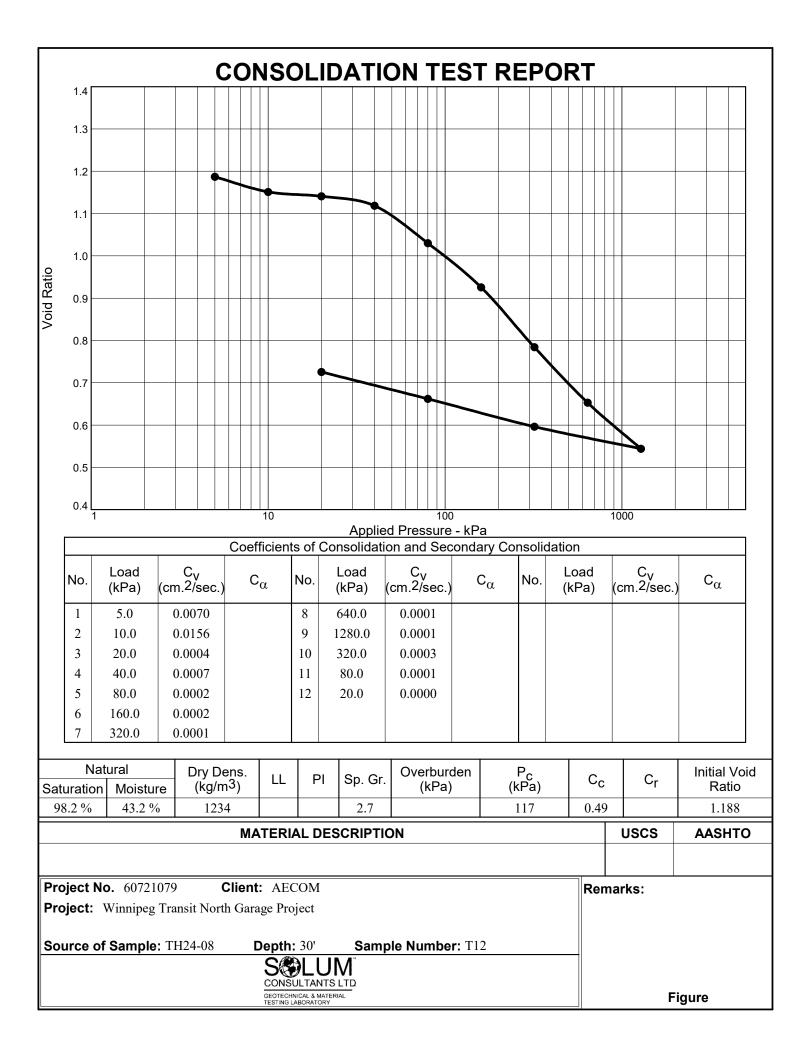


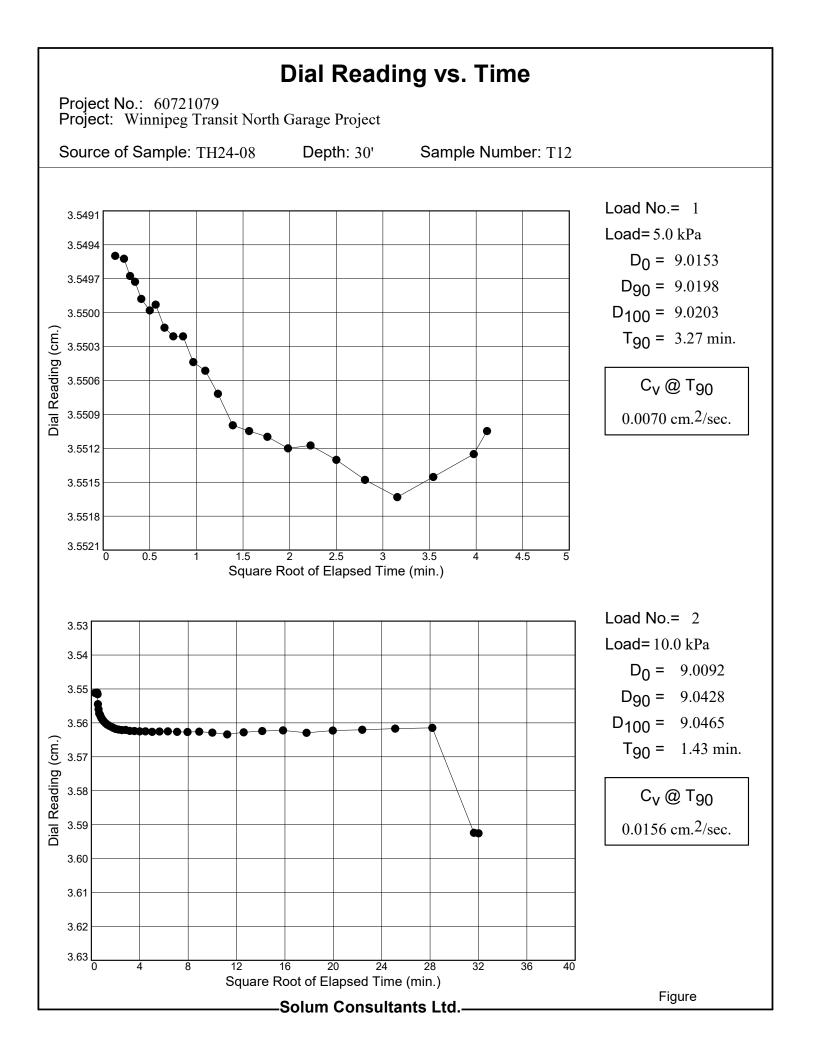

2024-03-08

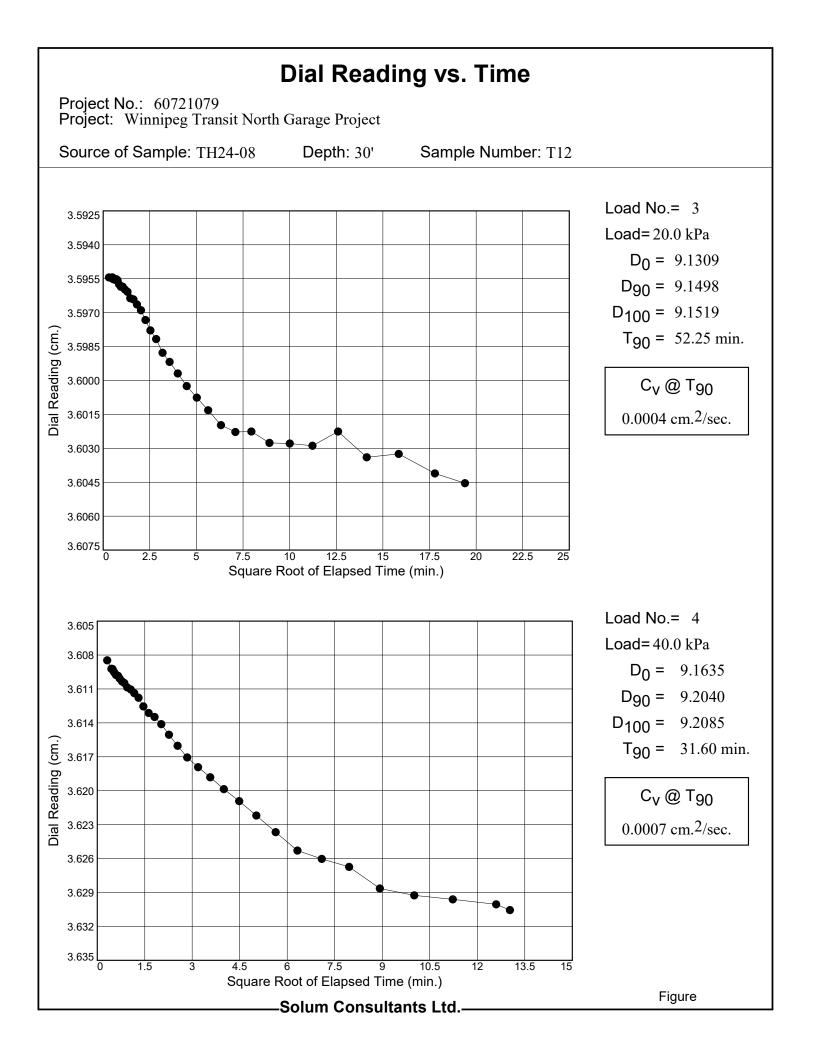

Client: AEC	ОМ									
-		it North Garage	e Project							
Project Num		1/9								
Location: T	H24-04				.					
Depth: 10'					-	Number: T7				
					ecimen Dat	ta				
	MOISTURE		VOID F				AFTEF			
	164.36 g.		Spec. Gr		2.7		Wet w+t		178.50 g.	
-	118.78 g.				1.085 cm.		Dry w+t		134.80 g.	
Tare Wt. =	24.38 g.		Init. V.R.		1.341		Tare Wt.	=	43.00 g.	
Moisture =	48.3 %		Init. Sat.	=	97.3 %		Moisture	=	47.6 %	
	IT		TEST S	TART			Dry Wt.	=	91.80 g.	
Height =	1.000 in.		Height	=	1.000 in.					
Diameter =	2.500 in.		Diameter	- = :	2.500 in.					
Weight =	137.60 g.									
Dry Dens. =	1154 kg/m	3								
	-		Er	d-Of-Lo	oad Summa	ary				
Pressure (kPa)	Final Dial (in.)	Deformation (in.)	C _v (cm.²/sec.)	cα	Void Ratio	% Strain				
start	1.02991	0.00000			1.341					
5.0	1.03032	0.00041	0.0385		1.340	0.0 Comprs.				
10.0	1.03051	0.00060	0.0081		1.339	0.1 Comprs.				
20.0	1.03218	0.00227	0.0235		1.335	0.2 Comprs.				
40.0	1.03714	0.00723	0.0330		1.324	0.7 Comprs.				
80.0	1.04857	0.01866	0.0031		1.297	1.9 Comprs.				
160.0	1.08094	0.05103	0.0002		1.221	5.1 Comprs.				
320.0	1.12848	0.09857	0.0001		1.110	9.9 Comprs.				
640.0	1.19052	0.16061	0.0001		0.965	16.1 Comprs.				
1280.0	1.26203	0.23212	0.0001		0.797	23.2 Comprs.				
320.0	1.20867	0.17876	0.0001		0.922	17.9 Comprs.				
80.0	1.14534	0.11543	0.0000		1.070	11.5 Comprs.				
20.0	1.09821	0.06830	0.0000		1.181	6.8 Comprs.				
Compression	i index (C _C), k	Pa = 0.56 P i	reconsolidation p	oressure	(P _p), kPa =	177 Void ratio	o at P _p (e _m) = 1	1.207	

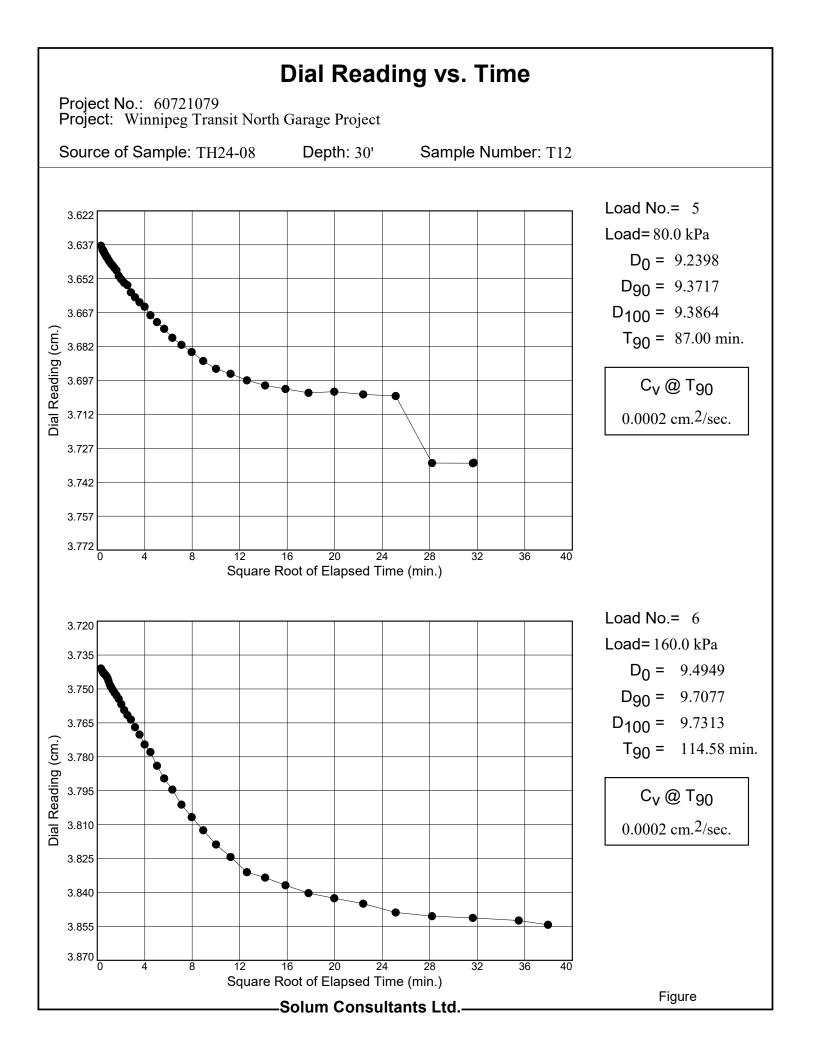


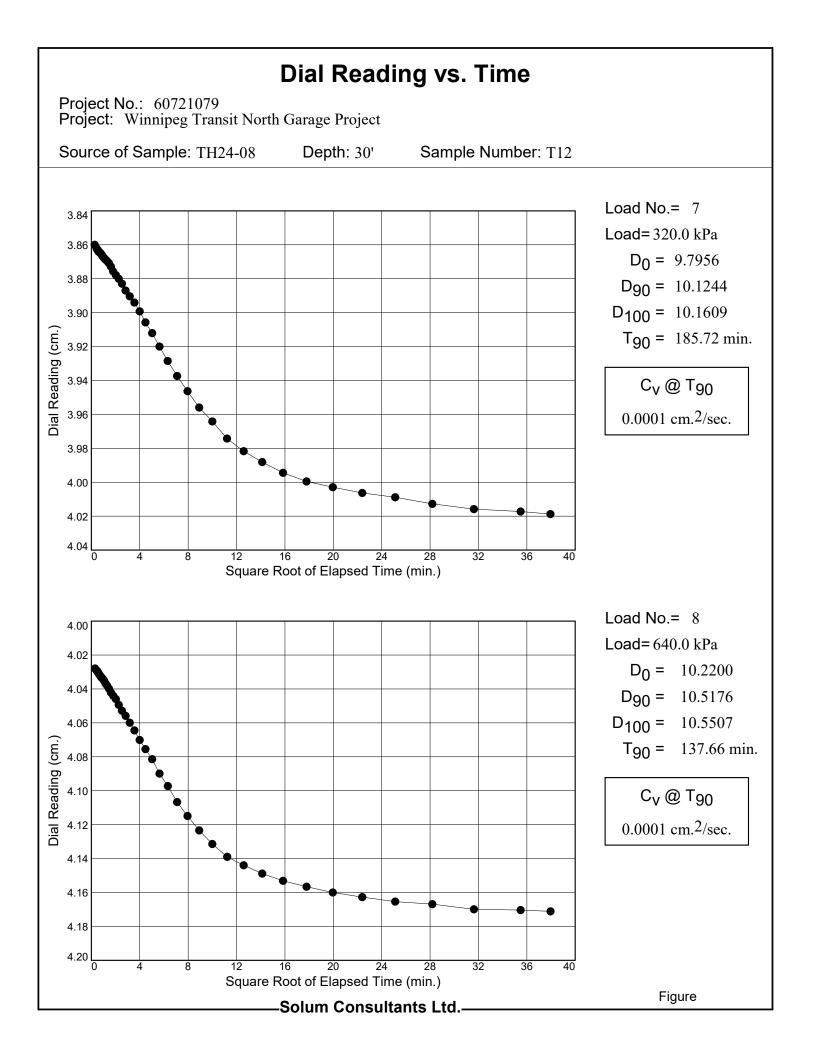


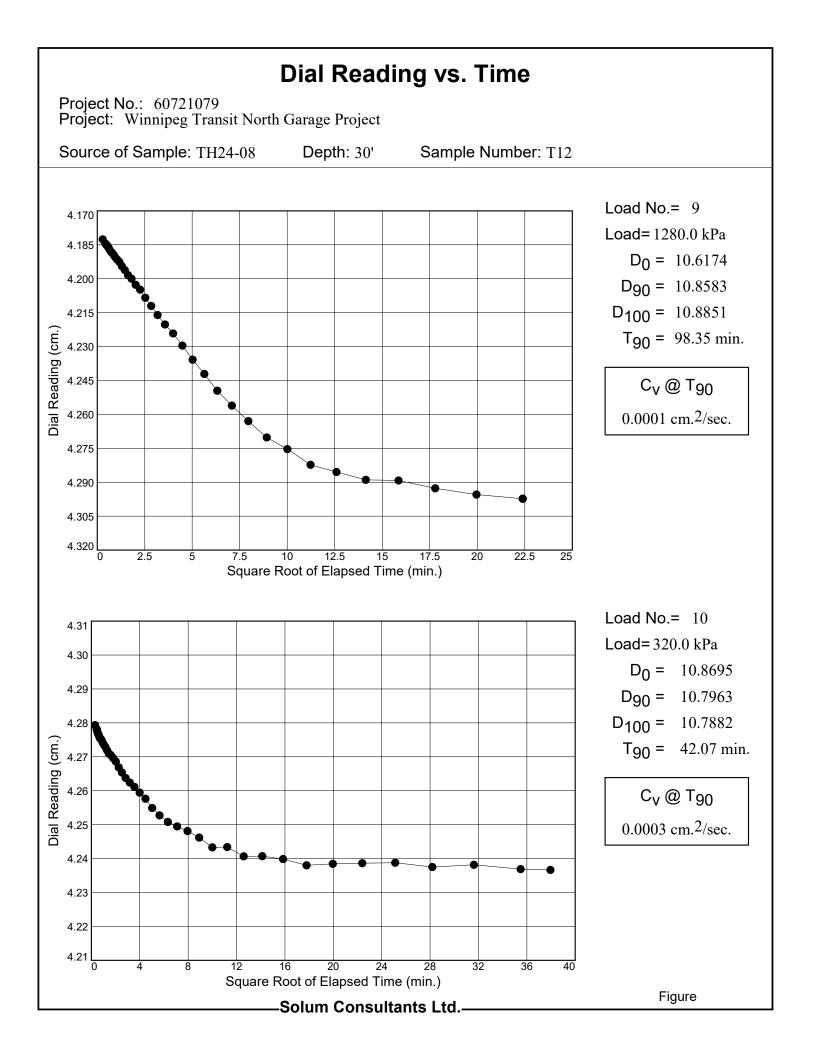


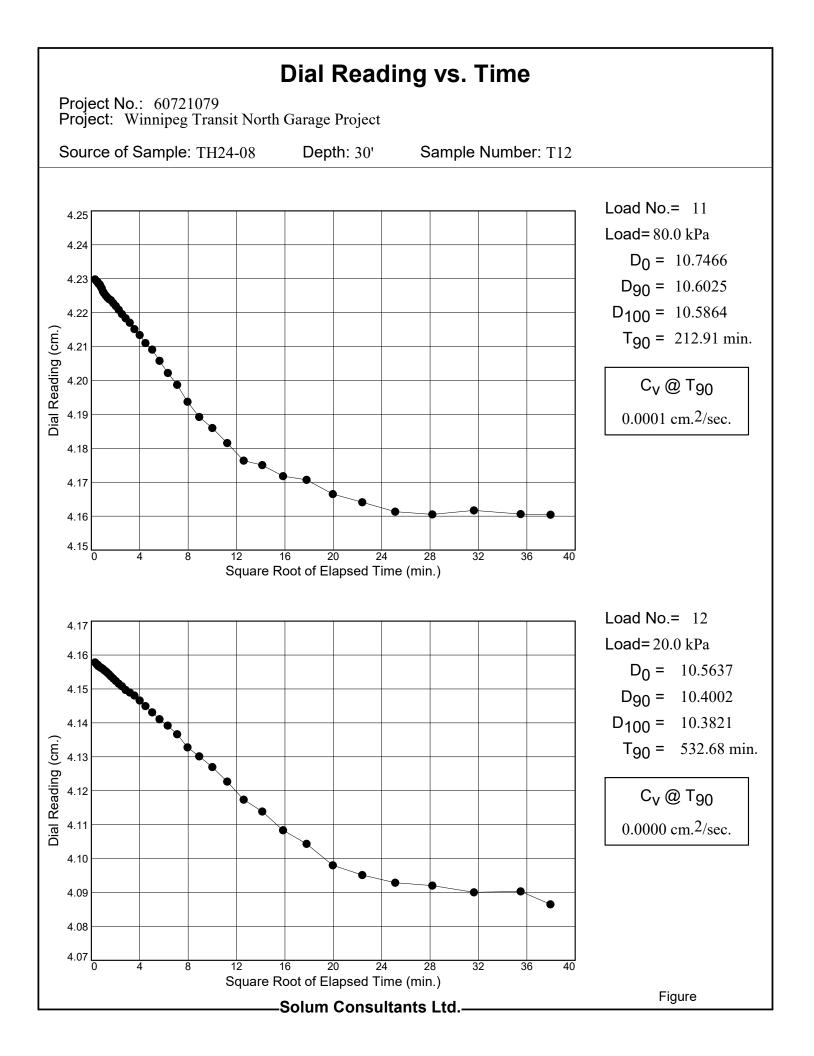

2024-03-08

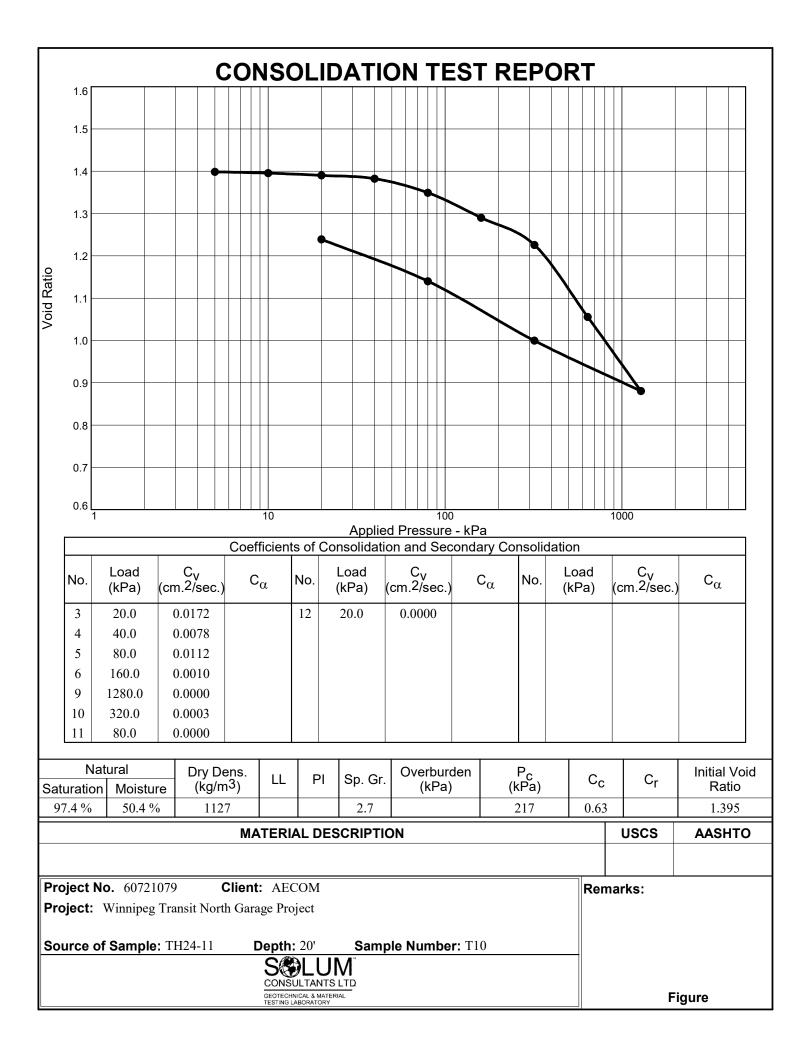

Client: AECOM
Project: Winnipeg Transit North Garage Project
Project Number: 60721079
Location: TH24-08
Depth: 30'

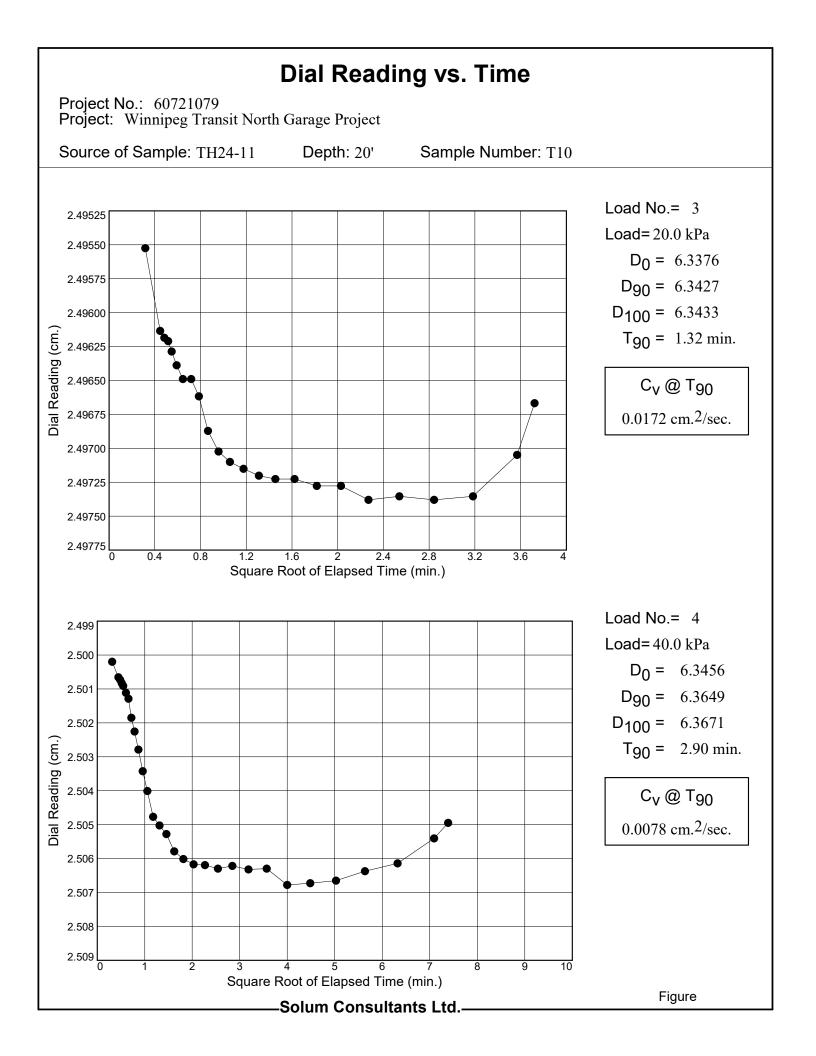

Sample Number: T12

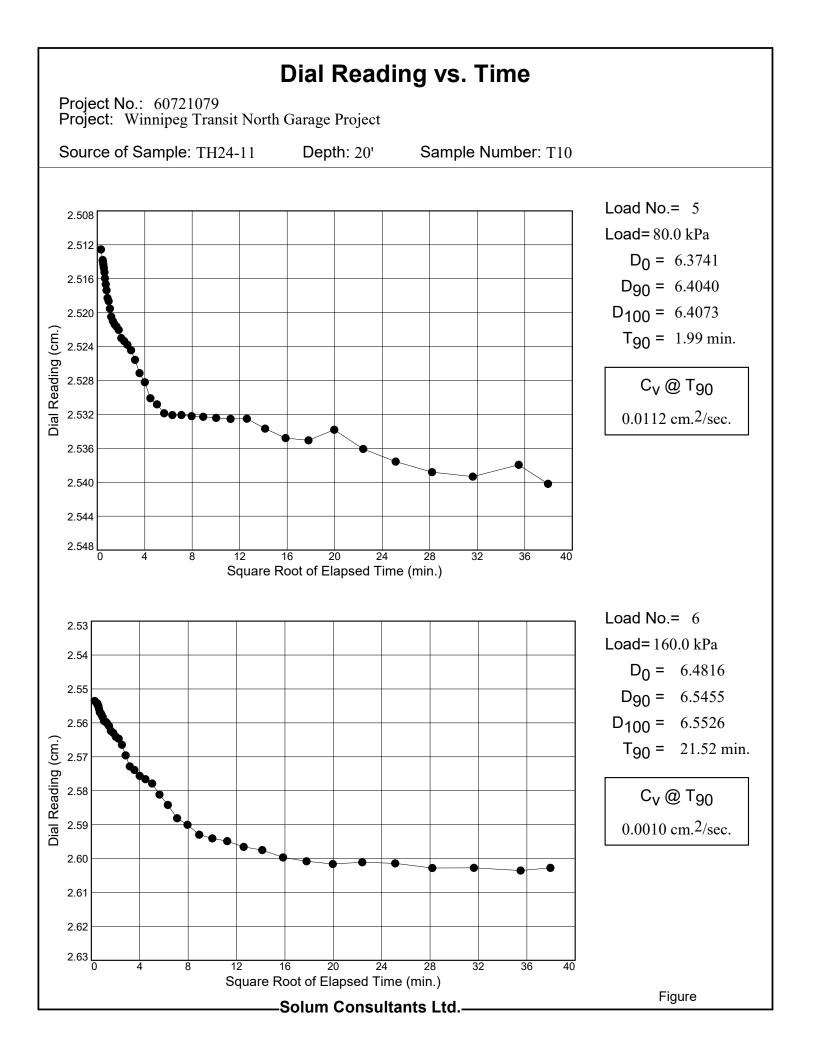

-										
			Те	st Spe	ecimen Da	ta				
NATURAL	MOISTURE		VOID RA	TIO			AFTER	TE	ST	
Wet w+t =	105.33 g.		Spec. Gr.	= 1	2.7		Wet w+t	=	145.38 g.	
Dry w+t =	77.36 g.		Est. Ht. So	lids =	1.161 cm.		Dry w+t	=	115.69 g.	
Tare Wt. =	12.65 g.		Init. V.R.	=	1.188		Tare Wt.	=	43.00 g.	
Moisture =	43.2 %		Init. Sat.	=	98.2 %		Moisture	=	40.8 %	
UNIT WEIGI	нт		TEST ST	ART			Dry Wt.	=	72.69 g.	
Height =	1.000 in.		Height	=	1.000 in.					
Diameter =	2.500 in.		Diameter	= 1	2.500 in.					
Weight =	142.15 g.									
Dry Dens. =	1234 kg/m	13								
			End	-Of-Lo	oad Summ	ary				
Pressure	Final	Deformation	Cv		Void					
(kPa)	Dial (in.)	(in.)	(cm. ² /sec.)	cα	Ratio	% Strain				
start	1.39742	0.00000			1.188					
5.0	1.39805	0.00063	0.0070		1.187	0.1 Comprs.				
10.0	1.41438	0.01696	0.0156		1.151	1.7 Comprs.				
20.0	1.41911	0.02169	0.0004		1.141	2.2 Comprs.				
40.0	1.42935	0.03193	0.0007		1.118	3.2 Comprs.				
80.0	1.46982	0.07240	0.0002		1.030	7.2 Comprs.				
160.0	1.51744	0.12002	0.0002		0.926	12.0 Comprs.				
320.0	1.58217	0.18475	0.0001		0.784	18.5 Comprs.				
640.0	1.64217	0.24475	0.0001		0.653	24.5 Comprs.				
1280.0	1.69183	0.29441	0.0001		0.544	29.4 Comprs.				
320.0	1.66797	0.27055	0.0003		0.596	27.1 Comprs.				
80.0	1.63797	0.24055	0.0001		0.662	24.1 Comprs.				
20.0	1.60887	0.21145	0.0000		0.726	21.1 Comprs.				
Compressior	n index (C _C), I	kPa = 0.49 Pr	econsolidation pro	essure	e (P _p), kPa =	117 Void ratio	o at P _p (e _m)) = (0.976	

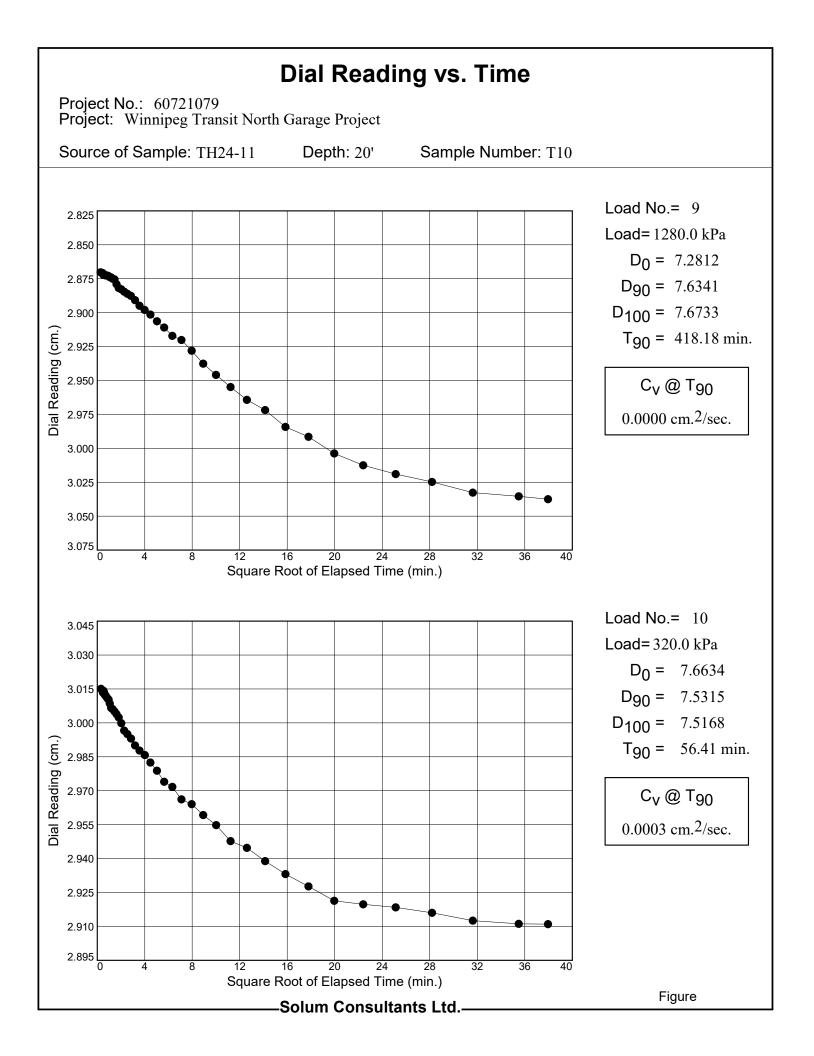


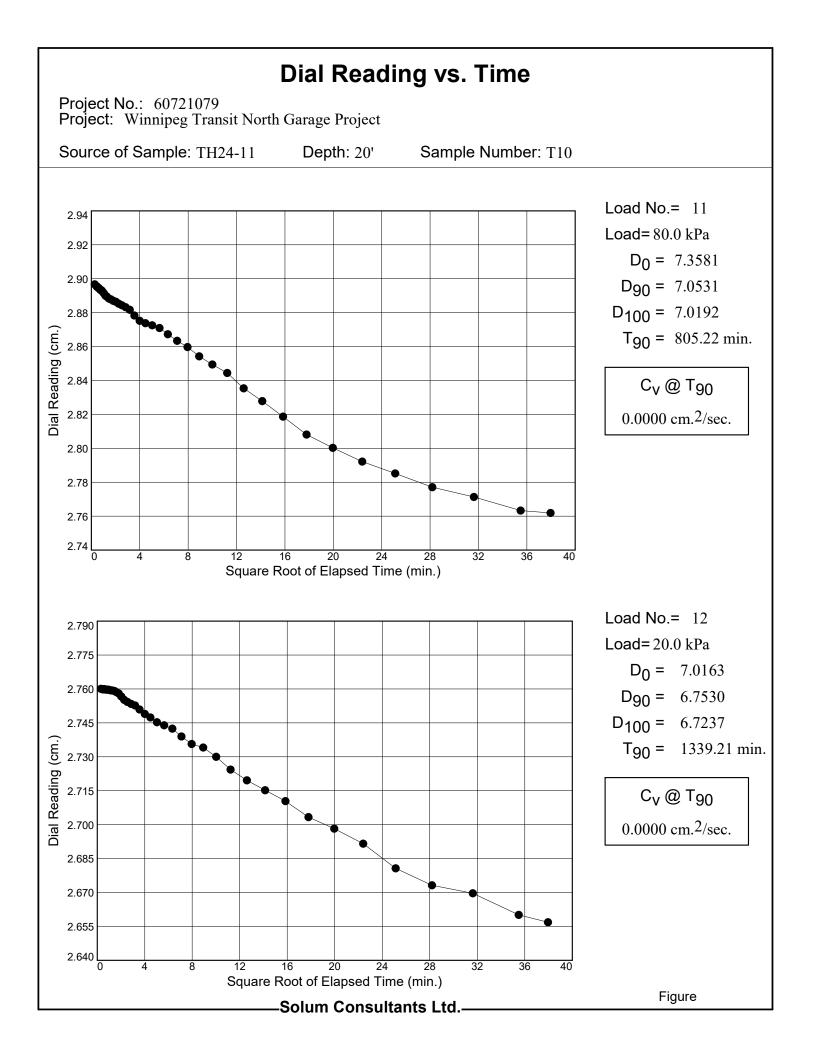









2024-03-08


	OM								
Project: Wit		it North Garage	Project						
Project Num		-	5						
Location: T									
Depth: 20'					Sample I	Number: T10			
- •p - •			То	et Sna	cimen Dat				
NATURAL	MOISTURE						AFTER	R TE	ST
Wet w+t =	117.36 g.		Spec. Gr.	= 2			Wet w+t		142.86 g.
Dry w+t =	86.54 g.		Est. Ht. So				Dry w+t		110.32 g.
Tare Wt. =	25.33 g.		Init. V.R.		.395		Tare Wt.		43.00 g.
Moisture =	50.4 %		Init. Sat.		07.4 %		Moisture		48.3 %
Molature -	50.4 70		init. Odt.	/	/ /0		Moistare	_	40.5 /0
UNIT WEIGH	нт		TEST ST	ART			Dry Wt.	=	67.32 g.
Height =	1.000 in.		Height	= 1	.000 in.		•		U
Diameter =			Diameter	= 2	= 2.500 in.				
	136.33 g.								
Dry Dens. =	e	3							
-	E.		End	-Of-Lo	ad Summ	ary			
Pressure (kPa)	Final Dial (in.)	Deformation (in.)	C _v (cm.2/sec.)	Cα	Void Ratio	% Strain			
start	0.98085	0.00000	. ,		1.395				
5.0	0.97940	-0.00145			1.399	0.1 Swell			
10.0	0.98071	-0.00014			1.396	0.0 Swell			
20.0	0.00004								
20.0	0.98294	0.00209	0.0172		1.390	0.2 Comprs.			
40.0	0.98294 0.98620	0.00209 0.00535	0.0172 0.0078		1.390 1.382	0.2 Comprs. 0.5 Comprs.			
						-			
40.0	0.98620	0.00535	0.0078		1.382	0.5 Comprs.			
40.0 80.0	$0.98620 \\ 1.00007$	0.00535 0.01922	0.0078 0.0112		1.382 1.349	0.5 Comprs. 1.9 Comprs.			
40.0 80.0 160.0	0.98620 1.00007 1.02469	0.00535 0.01922 0.04384	0.0078 0.0112		1.382 1.349 1.290	0.5 Comprs. 1.9 Comprs. 4.4 Comprs.			
40.0 80.0 160.0 320.0	0.98620 1.00007 1.02469 1.05152	0.00535 0.01922 0.04384 0.07067	0.0078 0.0112		1.382 1.349 1.290 1.226	0.5 Comprs.1.9 Comprs.4.4 Comprs.7.1 Comprs.			
40.0 80.0 160.0 320.0 640.0	0.98620 1.00007 1.02469 1.05152 1.12261	0.00535 0.01922 0.04384 0.07067 0.14176	0.0078 0.0112 0.0010		1.382 1.349 1.290 1.226 1.056	0.5 Comprs. 1.9 Comprs. 4.4 Comprs. 7.1 Comprs. 14.2 Comprs.			
40.0 80.0 160.0 320.0 640.0 1280.0	0.98620 1.00007 1.02469 1.05152 1.12261 1.19583	0.00535 0.01922 0.04384 0.07067 0.14176 0.21498	0.0078 0.0112 0.0010 0.0000		1.382 1.349 1.290 1.226 1.056 0.880	 0.5 Comprs. 1.9 Comprs. 4.4 Comprs. 7.1 Comprs. 14.2 Comprs. 21.5 Comprs. 			
40.0 80.0 160.0 320.0 640.0 1280.0 320.0	0.98620 1.00007 1.02469 1.05152 1.12261 1.19583 1.14606	0.00535 0.01922 0.04384 0.07067 0.14176 0.21498 0.16521	0.0078 0.0112 0.0010 0.0000 0.0003		1.382 1.349 1.290 1.226 1.056 0.880 1.000	 0.5 Comprs. 1.9 Comprs. 4.4 Comprs. 7.1 Comprs. 14.2 Comprs. 21.5 Comprs. 16.5 Comprs. 			

Standard Laboratory Terms and Conditions

GEOTECHNICAL & MATERIAL TESTING LABORATORY

1.0 Description of Services to be Performed by Solum Consultants Ltd. (Solum)

Solum shall provide geotechnical and material laboratory testing services on samples in general conformance with these terms and conditions and excuted Laboratory Testing Requested Forms. Solum shall perform its work in accordance with accepted laboratory standards and accepted standard operating procedures as well as in-house developed procedures. Solum reserves the right to modify methods as necessary based upon experience and/or current scientific literature. If the Client requests a manner of analysis that varies from standard operating or recommanded procedures, the Client shall not hold Solum responsible for the results. Solum reserves the right to subcontract laboratory testing (especially chemical related testing) if a particular test cannot be performed by Solum after liason with the Client.

2.0 Reports, Confidentiality and Third Parties

Laboratory reports provided by Solum will be composed of a cover page, tables and figures if applicable. Reports will be emailed in PDF format to the individual(s) specified on the Laboratory Testing Request Forms. Laboratory reports may also be faxed or mailed to the Client upon request. Except as required by law, Solum shall not disclose testing results or reports to any party other than the Client, unless the Client, in writing, requests information to be provided to a third party. Solum shall abide by any additional confidentiality requirements requested by the Client provided that such requirements are provided to Solum at or before execution of the testing.

Indormation provided by Solum is inteded for Client use only. Any use by a third party, of reports or documents authored by Solum, or any reliance on or decisions made by a third party based on the findings described in said documents, are the sole responsibility of such third parties, and Solum accepts no responsibility of damages suffered by any third party as a result of decisions made or actions conducted.

3.0 Laboratory Testing Request Form (Chain of Custody)

The laboratory testing request form must be completed by the Client and be accompanied with the samples. Other form of COC may be accepted; however, the condition of Solum COC is still applied. Testing will not commence until the laboratory testing request form has been completed. If requested by the Client, Solum shall provide a copy of the laboratory testing request form with the report.

No persons other than the designated representitives for each Laboratory Testing Request Form are authorized to act regarding changes to the testing request form. Any changes or amendments of the laboratory testing request form must be in writing and be completed by the originator.

4.0 Acceptance, Contamination and Disposal of Samples

Loss or damages to samples remains the responsibility of the Client until Solum representitives acceptance of samples by notation on the laboratory testing request form.

As to any samples that are suspected of containing hazardous substances, the Client will specify the suspected or known substance and level of contamination. This information is to be stated on the laboratory testing request form and be accompanied with the samples before testing can commence.

Solum may refuse acceptance of samples if it determines they present a risk to health and safety.

Samples accepted by Solum shall remain the property and liability of the Client while in the custody of Solum. Solum will discard all non-containinated samples after two weeks of submitting lab report or a month from the date of receiving the samples without additional retention period at a fixed disposal charge, or if requested by the Client, samples may be returned to the Client at no cost to Solum. If requested by Client, Solum will store samples provided the Client agrees to pay for the storage charge. Contaminated material may be returned/shipped to the Client at the Client's expense or Solum will discard samples with disposal rates varying for samples containing higher levels of contamination, refer to price list.

Soil samples will be discarded upon the expiration date of the storage period unless the Client requests either extending storage period or return samples back to client at no cost to Solum.

5.0 Indemnification / Hold Harmless

Solum shall protect, indemnify and save harmless Client, and its directors, officers, employees, agents, represensitives, invitees and subcontractors, and at Client's request, investigate and defend such entities form and against all claims, demands and causes of action, of every kind and character, without limitation, arising in favor of or made by third parties, on account of bodily injury, death or damage to or loss of their property resulting from any negligent act or wilful misconduct of Solum.

The client shall protect, indemnify and save harmness Solum, and its directors, officers, employees, agents, represensitives, invitees and subcontractors, and at Solum's request, investigate and defend such entities form and against all claims, demands and causes of action, of every kind and character, without limitation, arising in favor of or made by third parties, on account of bodily injury, death or damage to or loss of their property resulting from any negligent act or wilful misconduct of Client.

6.0 Limitation of Liability

The total liability of Solum or its staff whether based in contract or tort, will be limited to the lesser of the fees paid or actual damages incurred by the Client.

Solum will not be responsible for any consequencial or indirect damages even if caused by negligence of Solum. Solum will only be liable for damages resulting from negligence of Solum. All claims by the client shall be deemed relinquished if not made within three months after lab report submittal date. No warranty is either expressed or implied, or intended by any agreement or by furnishing oral or written reports or findings.

7.0 Termination of Testing Work Order

The client may order work suspended or terminated upon seven days advance written notice. If work suspended, Solum shall receive, upon resumption, and adjustment in the cost of services to compensate for additional costs incurred due to the interruption of services. Upon suspension or termination, Solum shall preserve samples provided that the Client agrees to pay the sample storage charge.

8.0 Pricing, Payments and Invoicing

Invoices will be based on most current Solum laboratory testing rates or a quote provided to the Client whichever is less; rates may change without notice. Solum invoices shall be paid within thirty(30) days of receipt of the invoice. Amounts not paid when due shall bear interest at the rate of 18% per annual from the date due until the date of payment.

420 Turenne Street Winnipeg, Manitoba R2J 3W8 engtech@mymts.net www.eng-tech.ca

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS

"Engineering and Testing Solutions That Work for You"

AECOM Canada Inc. 99 Commerce Drive Winnipeg, Manitoba R3P 0Y7
 File No.:
 24-027-01

 Ref. No.:
 24-27-1-1

Attention: Colton Wooster, E.I.T.

Project: PROJECT NO. 60721079, WINNIPEG NORTH BUS GARAGE, WINNIPEG, MANITOBA

Submitted By:	Client
Date Cored:	-
Received By:	ENG-TECH (Jessica Bauer)
Specimen Condition:	As received moisture
Specimen Temperature:	Room temperature

Page:	1 of 1
Date Received:	Feb 23/24 & Mar 7/24
Tested By:	ENG-TECH (Kyle Zebiere)

Method: ASTM D2938-95

Cara Client			Length		Average	Rate of	Compressive	Data Tasta d	
Core No.	Client I.D.	Location	Cored (mm)	Tested (mm)	Diameter (mm)	Loading (kN/s)	Strength (MPa)	Date Tested (m/d/y)	
1	C16	TH 24-01, 52.5' – 53.7'	223	-	62.00	-	-		
2	C17	TH 24-03, 60' – 60'10"	260	-	63.00	-	-	-	
3	C19	TH 24-15, 78' – 78.6'	195	-	62.00	-	-	-	
4	C11	TH 24-03, 33.5' – 35.5'	225	132.25	63.00	0.7	94	03/15/24	
5	C16	TH 24-03, 55'8" – 56'5"	185	-	63.00	-	-	Ξ	
6	C18	TH 24-01, 60' – 61'	325	155.00	63.00	0.7	34	03/15/24	

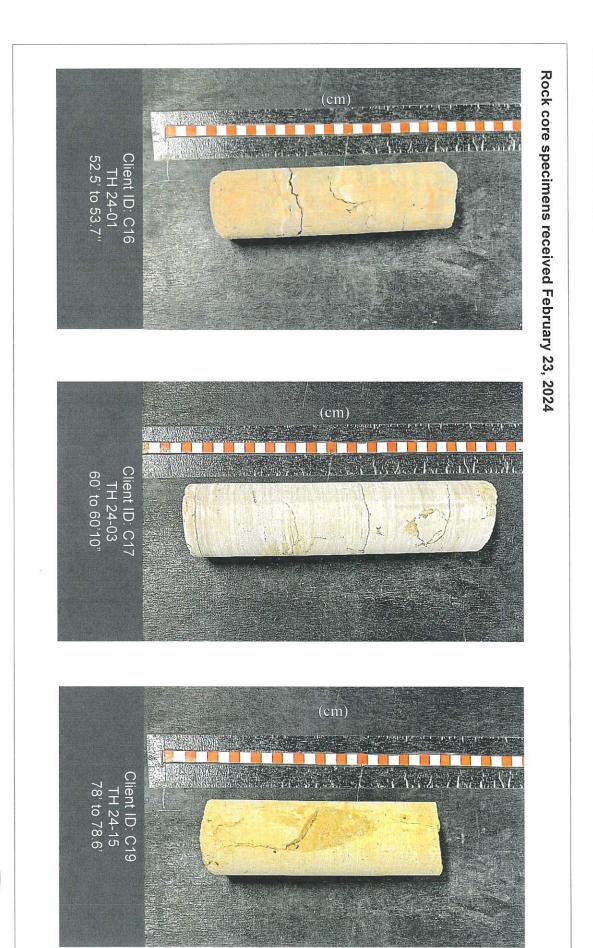
Reporting of these results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. *Denotes core Length/Diameter ratio not between 2.0 and 2.5.

Comments: Core No.'s 1, 2 and 3 contained multiple horizontal and vertical cracks rendering the cores not testable. Cores were returned to AECOM and replaced by Colton (AECOM) on March 7, 2024. Core No. 5 contained multiple horizontal cracks that fractured during end preparations. No segments remained of sufficient length to test. Core No. 4 contained a slight bow along the length of the core. Core No. 6 contained a slight fracture along the outer edge of the core. The end surface was prepared to the required planeness except at the fracture area to avoid damage to the core prior to testing.

Deviation from test procedure: Core No. 4 did not meet the 0.5mm side straightness requirement along the length. Core No. 6 did not meet the 0.025mm planeness requirement over entire end surface. Cores were not visually assessed for lithology and formation. Direction of load was not known to include.

Email: colton.wooster@aecom.com

Enclosure: Photographs (3 pages) Unconfined Compressive Strength Of Intact Rock Core Specimen Reports Ref. No.'s 24-27-1-2 and 3



ENG-TECH Consulting Limited

Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

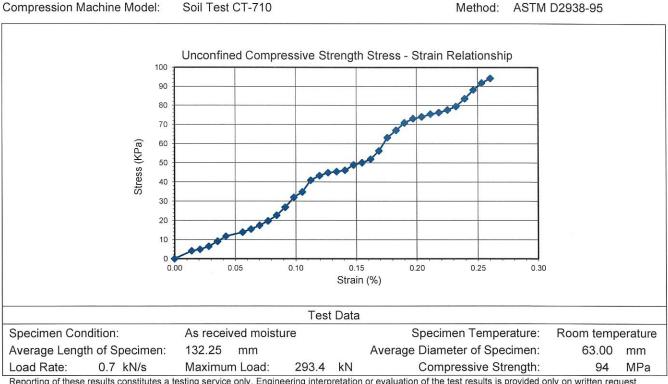
Darci Babisky, C.E.T.

Per

AECOM Canada Inc. PROJECT NO. 60721079, WINIPEG NORTH BUS GARAGE, WINNIPEG, MANITOBA

ENG-TECH Consulting Limited

420 Turenne Street Winnipeg, Manitoba R2J 3W8 engtech@mymts.net www.eng-tech.ca


UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK **CORE SPECIMENS**

Tested By: ENG-TECH (Kyle Zebiere)

"Engineering and Testing Solutions That Work for You"

Date Received:

AECOM Cana 99 Commerce Winnipeg, Mar R3P 0Y7	Drive		e No.: f. No.:	24-027-01 24-27-1-2	
Attention:	Colton Wooster, E.I.T.				
Project:	PROJECT NO. 60721079, WINNIPEG NORTH BUS GARAGE,	, WINN	IPEG, M	ANITOBA	
Source / Locatio	on: TH 24-03, 33.5' – 35.5'				
Client I.D.	C11 Submitt	ted By:	Client		
Date Cored:	- Date T	Fested:	Mar 15/	24	

Reporting of these results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. *Denotes core Length/Diameter ratio not between 2.0 and 2.5.

Core contained a slight bow along the length of the core. Comments:

Mar 7/24

Deviation from test procedure: Core did not meet the 0.5mm side straightness requirement along the length. Cores were not visually assessed for lithology and formation. Direction of load was not known to include.

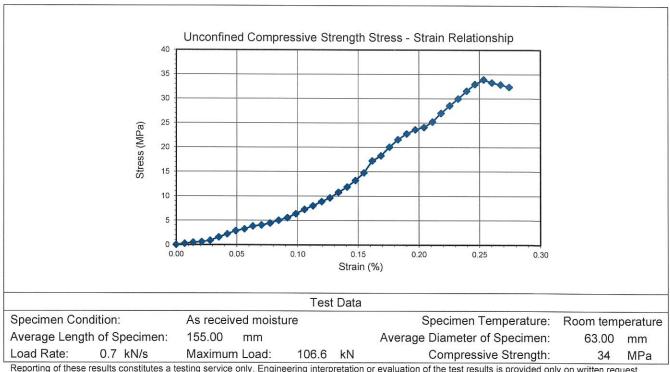
Per

Email: colton.wooster@aecom.com

ENG-TECH Consulting Limited

Darci Babisky, C.E.T. **Operations Manager - Laboratory** Ph: (204) 233-1694 Fx: (204) 235-1579

2024



420 Turenne Street Winnipeg, Manitoba R2J 3W8 engtech@mymts.net www.eng-tech.ca

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS

"Engineering and Testing Solutions That Work for You"

AECOM Cana 99 Commerce Winnipeg, Mar R3P 0Y7	Drive			e No.: f. No.:	24-027-01 24-27-1-3
Attention:	Colton Woost	er, E.I.T.			
Project:	PROJECT NO	D. 60721079, WINNIPEG NORTH E	BUS GARAGE, WINN	IPEG, M	ANITOBA
Source / Locatio	on:	TH 24-01, 60' – 61'			
Client I.D.		C18	Submitted By:	Client	
Date Cored:		-	Date Tested:	Mar 15/2	24
Date Received:		Mar 7/24	Tested By:	ENG-TE	CH (Kyle Zebiere)
Compression M	achine Model:	Soil Test CT-710	Method:	ASTM D	2938-95

Reporting of these results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. *Denotes core Length/Diameter ratio not between 2.0 and 2.5.

Core contained a slight fracture along the outer edge of the core. End surface was prepared to the required Comments: planeness except at the fracture area to avoid damage to the core prior to testing.

Deviation from test procedure: Core did not meet 0.025mm planeness requirement over entire end surface. Cores were not visually assessed for lithology and formation. Direction of load was not known to include.

Email: colton.wooster@aecom.com

ENG-TECH Consulting Limited

Per

Darci Babisky, C.E.T. **Operations Manager - Laboratory** Ph: (204) 233-1694 Fx: (204) 235-1579

ALS Canada Ltd.

	CERTIFICAT	E OF ANALYSIS	
Work Order	: WP2404448	Page	: 1 of 3
Client	: AECOM Canada Ltd.	Laboratory	: ALS Environmental - Winnipeg
Contact	: Colton Wooster	Account Manager	Craig Riddell
Address	: 99 Commerce Drive	Address	: 1329 Niakwa Road East, Unit 12
	Winnipeg MB Canada R3P 0Y7		Winnipeg MB Canada R2J 3T4
Telephone	:	Telephone	: +1 204 255 9720
Project	:	Date Samples Received	: 23-Feb-2024 11:48
PO	: 12473	Date Analysis Commenced	: 04-Mar-2024
C-O-C number	:	Issue Date	: 08-Mar-2024 15:39
Sampler	:		
Site	:		
Quote number	: 2024 - AECOM , ph, Cond, Resist, Tot & Sol Sulphate CSA		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Manager - Inorganics	Inorganics, Waterloo, Ontario
Katarzyna Glinka	Analyst	Inorganics, Calgary, Alberta
Nik Perkio	Inorganics Analyst	Inorganics, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
%	percent
mS/cm	millisiemens per centimetre
ohm cm	ohm centimetres (resistivity)
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Soil			CI	lient sample ID	TH24-8 G3	TH24-10 G8	TH24-11 G11	
(Matrix: Soil/Solid)								
			Client samp	ling date / time	09-Feb-2024 00:00	09-Feb-2024 00:00	09-Feb-2024 00:00	
Analyte	CAS Number	Method/Lab	LOR	Unit	WP2404448-001	WP2404448-002	WP2404448-003	
					Result	Result	Result	
Physical Tests								
Conductivity (1:2 leachate)		E100-L/WT	0.00500	mS/cm	1.08	8.57	1.24	
pH (1:2 soil:CaCl2-aq)		E108A/WT	0.10	pH units	7.97	8.10	8.25	
Resistivity		EC100R/WT	100	ohm cm	920	120	810	
Inorganics								
Sulfate, total, ion content	14808-79-8	E246.SO4/CG	0.050	%	0.118	3.16	0.119	
Sulfate, soluble ion content	14808-79-8	E246A.SO4/C G	0.05	%	NR		NR	
Sulfate, soluble ion content	14808-79-8	E246A.SO4/C G	0.050	%		3.14		

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: WP2404448	Page	: 1 of 7
Client	AECOM Canada Ltd.	Laboratory	: ALS Environmental - Winnipeg
Contact	: Colton Wooster	Account Manager	: Craig Riddell
Address	: 99 Commerce Drive	Address	: 1329 Niakwa Road East, Unit 12
	Winnipeg MB Canada R3P 0Y7		Winnipeg, Manitoba Canada R2J 3T4
Telephone	:	Telephone	: +1 204 255 9720
Project		Date Samples Received	: 23-Feb-2024 11:48
PO	: 12473	Issue Date	: 08-Mar-2024 15:39
C-O-C number			
Sampler			
Site			
Quote number	: 2024 - AECOM , ph, Cond, Resist, Tot & Sol Sulphate CSA		
No. of samples received	:3		
No. of samples analysed	:3		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- <u>No</u> Laboratory Control Sample (LCS) outliers occur
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Soil/Solid					Ev	/aluation: × =	Holding time exce	edance ; 🔹	<pre>< = Within</pre>	Holding Tim
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Preparation			Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Inorganics : Soluble Sulfate ion in soil by boiling water extraction, IC.										
LDPE bag										
TH24-10 G8	E246A.SO4	09-Feb-2024	06-Mar-2024	180	26	1	06-Mar-2024	28 days	0 days	✓
				days	days					
Inorganics : Soluble Sulfate ion in soil by boiling water extraction, IC.										
LDPE bag										
TH24-11 G11	E246A.SO4	09-Feb-2024	05-Mar-2024	180	26	1	05-Mar-2024	28 days	0 days	1
				days	days					
Inorganics : Soluble Sulfate ion in soil by boiling water extraction, IC.										
LDPE bag										
TH24-8 G3	E246A.SO4	09-Feb-2024	05-Mar-2024	180	26	1	05-Mar-2024	28 days	0 days	1
				days	days					
Inorganics : Total Sulfate ion in soil by acidic boiling water extraction, IC										
LDPE bag										
TH24-10 G8	E246.SO4	09-Feb-2024	04-Mar-2024	180	25	1	05-Mar-2024	28 days	1 days	1
				days	days					
Inorganics : Total Sulfate ion in soil by acidic boiling water extraction, IC										
LDPE bag										
TH24-11 G11	E246.SO4	09-Feb-2024	04-Mar-2024	180	25	1	05-Mar-2024	28 days	1 days	1
				days	days					
Inorganics : Total Sulfate ion in soil by acidic boiling water extraction, IC										
LDPE bag										,
TH24-8 G3	E246.SO4	09-Feb-2024	04-Mar-2024	180	25	1	05-Mar-2024	28 days	1 days	1
				days	days					
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap										
TH24-10 G8	E100-L	09-Feb-2024	07-Mar-2024	30	27	1	07-Mar-2024	30 days	27 days	1
				days	days					

Matrix: Soil/Solid Evaluation: **×** = Holding time exceedance ; **✓** = Within Holding Time Analyte Group : Analytical Method Extraction / Preparation Analysis Method Sampling Date Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Rec Actual Actual Date Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) Glass soil jar/Teflon lined cap TH24-8 G3 E100-L 09-Feb-2024 07-Mar-2024 ✓ 07-Mar-2024 30 days 27 days 1 27 30 days days Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) Glass soil jar/Teflon lined cap ✓ TH24-11 G11 E100-L 09-Feb-2024 08-Mar-2024 30 29 08-Mar-2024 30 days 29 days 1 days days Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received Glass soil jar/Teflon lined cap TH24-10 G8 E108A 09-Feb-2024 06-Mar-2024 ✓ 06-Mar-2024 30 days 27 days \checkmark 30 26 days days Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received Glass soil jar/Teflon lined cap E108A 09-Feb-2024 1 06-Mar-2024 30 days 27 days 1 TH24-11 G11 06-Mar-2024 30 26 days days Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received Glass soil jar/Teflon lined cap TH24-8 G3 E108A 09-Feb-2024 06-Mar-2024 1 06-Mar-2024 30 days 27 days 1 30 26 days days

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid		Evaluati	on: × = QC frequ	ency outside sp	ecification; 🗸 =	QC frequency wit	hin specificatio
Quality Control Sample Type			Co	ount	Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	1356731	2	25	8.0	5.0	✓
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A	1355343	2	32	6.2	5.0	~
Soluble Sulfate ion in soil by boiling water extraction, IC.	E246A.SO4	1355400	1	16	6.2	5.0	~
Total Sulfate ion in soil by acidic boiling water extraction, IC	E246.SO4	1353166	1	11	9.0	5.0	~
Laboratory Control Samples (LCS)							
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	1356731	4	25	16.0	10.0	✓
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A	1355343	2	32	6.2	5.0	✓
Soluble Sulfate ion in soil by boiling water extraction, IC.	E246A.SO4	1355400	4	16	25.0	10.0	~
Total Sulfate ion in soil by acidic boiling water extraction, IC	E246.SO4	1353166	2	11	18.1	10.0	✓
Method Blanks (MB)							
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	1356731	2	25	8.0	5.0	✓
Soluble Sulfate ion in soil by boiling water extraction, IC.	E246A.SO4	1355400	2	16	12.5	5.0	✓
Total Sulfate ion in soil by acidic boiling water extraction, IC	E246.SO4	1353166	1	11	9.0	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L ALS Environmental - Waterloo	Soil/Solid	CSSS Ch. 15 (mod)/APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Conductance is measured in the fluid that is observed in the upper
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A ALS Environmental - Waterloo	Soil/Solid	MECP E3530	layer. pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C) and is carried out in accordance with procedures described in the Analytical Protocol (prescriptive method). A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil by centrifuging, settling, or decanting and then analyzed using a pH meter and electrode. This method is equivalent to ASTM D4972 and is acceptable for topsoil analysis.
Total Sulfate ion in soil by acidic boiling water extraction, IC	E246.SO4 ALS Environmental - Calgary	Soil/Solid	CSA-A23.2-3B	The dried solid is mixed with water and acid then heated. After filtration the liquid is ready for analysis by IC with conductivity detector.
Soluble Sulfate ion in soil by boiling water extraction, IC.	E246A.SO4 ALS Environmental - Calgary	Soil/Solid	CSA-A23.2-3B	The dried solid is mixed with water at a specified ratio then heated. After filtration the liquid is ready for analysis by IC with conductivity detector. A result of "NR" indicates that the total sulfate analysis was <0.2% and based on CSA-A23.2-3B no analysis for soluble sulfate is required.
Resistivity Calculation for Soil Using E100-L	EC100R ALS Environmental - Waterloo	Soil/Solid	APHA 2510 B	Soil Resistivity (calculated) is determined as the inverse of the conductivity of a 2:1 water:soil leachate (dry weight). This method is intended as a rapid approximation for Soil Resistivity. Where high accuracy results are required, direct measurement of Soil Resistivity by the Wenner Four-Electrode Method (ASTM G57) is recommended.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH/EC	EP108 ALS Environmental - Waterloo	Soil/Solid	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.
Leach 1:2 Soil : 0.01CaCl2 - As Received for pH	EP108A ALS Environmental - Waterloo	Soil/Solid	MOEE E3137A	A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil by centrifuging, settling or decanting and then analyzed using a pH meter and electrode.
Soluble ion Sulfate in soil or concrete preparation.	EP246.S ALS Environmental - Calgary	Soil/Solid	CSA-A23.2B	The dried solid is mixed with water then heated. After filtration the liquid is ready for analysis.

Page	:	7 of 7
Work Order	:	WP2404448
Client	:	AECOM Canada Ltd.
Project	:	

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total ion Sulfate in soil or concrete	EP246.T	Soil/Solid	CSA-A23.2B	The dried solid is mixed with water and acid then heated. After filtration the liquid is
preparation				ready for analysis.
	ALS Environmental -			
	Calgary			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order	WP2404448	Page	: 1 of 5
Client	: AECOM Canada Ltd.	Laboratory	: ALS Environmental - Winnipeg
Contact	Colton Wooster	Account Manager	: Craig Riddell
Address	: 99 Commerce Drive	Address	: 1329 Niakwa Road East, Unit 12
	Winnipeg MB Canada R3P 0Y7		Winnipeg, Manitoba Canada R2J 3T4
Telephone	:	Telephone	:+1 204 255 9720
Project	:	Date Samples Received	:23-Feb-2024 11:48
PO	: 12473	Date Analysis Commenced	:04-Mar-2024
C-O-C number	:	Issue Date	:08-Mar-2024 15:39
Sampler	:		
Site	:		
Quote number	: 2024 - AECOM , ph, Cond, Resist, Tot & Sol Sulphate CSA		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario
Katarzyna Glinka	Analyst	Calgary Inorganics, Calgary, Alberta
Nik Perkio	Inorganics Analyst	Waterloo Inorganics, Waterloo, Ontario

Page :	2 of 5
Work Order :	WP2404448
Client :	AECOM Canada Ltd.
Project :	

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page :	3 of 5
Work Order :	WP2404448
Client :	AECOM Canada Ltd.
Project :	

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 1353700)										
WT2404536-004	Anonymous	Conductivity (1:2 leachate)		E100-L	5.00	μS/cm	0.773 mS/cm	764	1.17%	20%	
Physical Tests (QC	Lot: 1355128)										
WP2404448-001	TH24-8 G3	pH (1:2 soil:CaCl2-aq)		E108A	0.10	pH units	7.97	7.98	0.125%	5%	
Physical Tests (QC	Lot: 1355343)										
WP2404448-003	TH24-11 G11	pH (1:2 soil:CaCl2-aq)		E108A	0.10	pH units	8.25	8.32	0.845%	5%	
Physical Tests (QC	Lot: 1356731)										
WT2404680-012	Anonymous	Conductivity (1:2 leachate)		E100-L	5.00	μS/cm	0.552 mS/cm	575	4.08%	20%	
Inorganics (QC Lot	: 1353166)										
CG2402259-001	Anonymous	Sulfate, total, ion content	14808-79-8	E246.SO4	500	mg/kg	<0.050 %	<500	0	Diff <2x LOR	
Inorganics (QC Lot	: 1355400)										
SK2400820-001	Anonymous	Sulfate, soluble ion content	14808-79-8	E246A.SO4	500	mg/kg	0.722 %	6840	5.39%	30%	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number	<i>Nethod</i>	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1353700)						
Conductivity (1:2 leachate)	E	E100-L	5	μS/cm	<5.00	
Physical Tests (QCLot: 1356731)						
Conductivity (1:2 leachate)	E	E100-L	5	μS/cm	<5.00	
Inorganics (QCLot: 1353166)						
Sulfate, total, ion content	14808-79-8 E	246.SO4	500	mg/kg	<500	
Inorganics (QCLot: 1354956)						
Sulfate, soluble ion content	14808-79-8 E	246A.SO4	500	mg/kg	NR	
Inorganics (QCLot: 1355400)						
Sulfate, soluble ion content	14808-79-8 E	246A.SO4	500	mg/kg	<500	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

ub-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report				
					Spike Recovery (%) Recovery Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 1353700)									
Conductivity (1:2 leachate)		E100-L	5	µS/cm	1409 µS/cm	100	90.0	110	
Physical Tests (QCLot: 1355128)									
pH (1:2 soil:CaCl2-aq)		E108A		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 1355343)									
pH (1:2 soil:CaCl2-aq)		E108A		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 1356731)									
Conductivity (1:2 leachate)		E100-L	5	μS/cm	1409 µS/cm	97.7	90.0	110	
Inorganics (QCLot: 1353166)									
Sulfate, total, ion content	14808-79-8	E246.SO4	500	mg/kg	10000 mg/kg	104	90.0	110	
Inorganics (QCLot: 1355400)									
Sulfate, soluble ion content	14808-79-8	E246A.SO4	500	mg/kg	200 mg/kg	95.6	60.0	140	

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix:	Sub-Matrix:				Reference Material (RM) Report				
					RM Target	Recovery (%)	Recovery I	Limits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Physical Tests (QCLot: 1353700)								
	RM	Conductivity (1:2 leachate)		E100-L	1384 µS/cm	98.3	70.0	130	
Physical Tests (QCLot: 1356731)								
	RM	Conductivity (1:2 leachate)		E100-L	1384 µS/cm	94.1	70.0	130	
Inorganics (QCL	ot: 1353166)								
	RM	Sulfate, total, ion content	14808-79-8	E246.SO4	33400 mg/kg	97.2	80.0	120	
Inorganics (QCL	ot: 1355400)								
	RM	Sulfate, soluble ion content	14808-79-8	E246A.SO4	2600 mg/kg	110	80.0	120	

Page	:	5 of 5
Work Order	:	WP2404448
Client	:	AECOM Canada Ltd.
Project	:	

	12 - 1329 Niakwa Rd. E. Winnipeg, Manitoba R2J 3T4 Tel: (204) 255-9720 Fax: (204) 255-9721		Chain of (Custody / Analyti	cal Request Form
	Toll Free: 1 800 607 7555		WOR	K ORDER NO:	
FOR LABO	RATORY USE ONLY (SHADED ARE)	AS)	n na men na na men n La caracterizza de la caracterizza d	AB NO.:	in an
Sample Cor	ndition Upon Receipt: ACCEPTABL	E NON	ACCEPTABLE	ATE RECEIVED:	FEB 2 3 2024
Frozen	Cold Ambient Broken Leak	kage 🗍 Incorr	ect Sample Container T	IME RECEIVED;	11:48
COMMENT			* B	Y:	TEMP: 17-3
Date Sampled	M JAN 29-FEB9 Time:A. 2024	M. 🔲 P.M. 📺	Date Required:		· ····
Location:	2024		Submitter's Name Printed:		
	ommunity. City)		Sample Submitted By:	•	
Community Code Number:			Rural Municipality/LGC/UVD:		
SAMPLE TYP DRINKING W Untreated Wel Treated Well Treated Munic Non-Treated N Water-Surface PURPOSE OI Private	NON-DRINK III Sewage/Was ILake/River cipal Swimming Program Municipal Whirl Pool e-Raw Other:	Sing WATER Ste Water ool	& PRESS FIRMLY NOTES & CONDITIONS 1. Quote number <u>MUST</u> 2. Failure to properly cor 3. ALS's liability limited to E REQUESTED GULAR PRIORITY (50% SURCHARGE)	BE provided to insure nplete all portions of th	s form may delay analysis.
LAB NUM	BER SAMPLE IDENTIFIC	ATION	ALS CUSTOMER #:	ຊຸບດ	TE #:
			REP	ORT TO BE SENT TO	n
	TH24-08 G3		NAME: COLTON WOOS	1ER	
L	TH24-10 G8		COMPANY: AECOM OF	HORDA LTD	
	TH24-11 GI	۰	ADDRESS: 99 COMME	LE PR.	
			CITY/TOWN: WNNILES	/ PRC	W. MANYTOBA
			POSTAL CODE: 23P	OV7	
			PHONE: 204 - 477 BY: MAIL FAX	<u>-5381/204</u>	583-8797
			E-MAIL I COLT	ON. WOOSTER (AECOM.COM RESS)
			cc		
			NAME:		
			ADDRESS:		
			CITY/TOWN:	/ PRC	>₩.:
			POSTAL CODE:	······	
			PHONE:		
Į			BY: MAIL 🗌 FAX	<u> </u>	(FAX NUMBER)
			E-MAIL		(TPA NUMBER)
				(EMAIL ADD	RESS)
Analyses rec	quired pH, COND, RESIST, Tot	12 SOL	BILLING ADDRESS		
SUCPHA	TE CSA		NAME:		
	Environmental Divis	sion	ADDRESS:		
	Winnipeg Work Order Reference	~ <u>}</u>		/ PRC	
- <u> </u>	WP24044	48	POSTAL CODE:		
SAMDI II			PAYMENT PARTICULA	RS (CASH NOT	ACCEPTED)
JANIFLI			INVOICE NEEDED / CLIE	NT'S P.O. NO.	
	9 Niakwa Rd. E				
Phone: +1 20	4 255 9720 Fax A Campbell B			Subtotal	Б
				G.S.T.	Б Т
	Telephone : +1 204 265 9720	1		Total	* 1
	SUBMITT			10 Idi	×

senie make versionatifs in

Sample Intake	n da an	1	-			
Client: AECOM						
Cheque Enclosed with CoC			Yes	1	No	
Priority/Emergency Required (circle or	ne)		Yes		No	
Time Sensitive Hold Time (circle one)			Yes		No	
Matrix (circle one)		Water	Soil/solid	Air	Biota	Other
# of Bottles received: 3	· · · · · · · · · · · · · · · · · · ·		\sim			
Green/White		Yellow/Bla	ck			
Purple/White		Light blue/	White		•	
Narm red/White		Orange/Bla	ack			
Dark Green/White		Dark Blue/	White			-
Grey/black		Black/whit	e.			
)ther:	3×1	rag				
dditional Comments:		0		<u> </u>		*

Login Check	Check yes if you have verifi	ad the follow	vie
Login Check	Yes /	N/A	7
Received date/time			1
Project/PO/LSD			1
Quote/Office match CoC]
Sample IDs/Description		T	1
Sample Date/time		•	1
Sales Items as per CoC	Ľ]
Express Due Dates			
Client due date matches			
ALS Due date			
Client recipient emails			ŀ
Guidelines/thresholds			
added	•		ŀ
Billing/payment recorded			
Field data entered			
Sub-contracting Forms			_
Printed			
SUBCO/Chromatograph			
added to client contacts for required analysis			
Are sub-samples required?			,
Has a SIF been submitted			
for this WO?	ana ing dalam mengerakan mengerakan kana pangkan kana pangkan kana pangkan kana pangkan kana pangkan kana pang		
Has the SIF been resolved?		-	

WP-FM-0609a v01 Sample Intake Verification Form 20 Nov 2023 AQN/SQK Page 1 of 1

Seismic Hazard Calculation

Prepared for: City of WInnipeg 520-2023 RPT-Final-2025-01-28-City of Winnipeg North Transit Garage-Geotechnical Report-60721079 - GA.docx

A

Government of Canada

<u>Canada.ca</u> > <u>Natural Resources Canada</u> > <u>Earthquakes Canada</u>

2020 National Building Code of Canada Seismic Hazard Tool

This application provides seismic values for the design of buildings in Canada under Part 4 of the National Building Code of Canada (NBC) 2020 as prescribed in Article 1.1.3.1. of Division B of the NBC 2020.

Seismic Hazard Values

User requested values

Code edition	NBC 2020
Site designation X _S	X _E
Latitude (°)	49.931
Longitude (°)	-97.215

Please select one of the tabs below.

NBC 2020 Additional Values Plots API

Background Information

The 5%-damped <u>spectral acceleration</u> ($S_a(T,X)$, where T is the period, in s, and X is the site designation) and <u>peak ground acceleration</u> (PGA(X)) values are given in units of acceleration due to gravity (g, 9.81 m/s²). <u>Peak</u>

<u>ground velocity</u> (PGV(X)) values are given in m/s. Probability is expressed in terms of percent exceedance in 50 years. Further information on the calculation of seismic hazard is provided under the *Background Information* tab.

The 2%-in-50-year seismic hazard values are provided in accordance with Article 4.1.8.4. of the NBC 2020. The 5%- and 10%-in-50-year values are provided for additional performance checks in accordance with Article 4.1.8.23. of the NBC 2020.

See the *Additional Values* tab for additional seismic hazard values, including values for other site designations, periods, and probabilities not defined in the NBC 2020.

NBC 2020 - 2%/50 years (0.000404 per annum) probability

S _a (0.2, X _E)	S _a (0.5, X _E)	S _a (1.0, X _E)	S _a (2.0, X _E)	S _a (5.0, X _E)	S _a (10.0, X _E)	PGA(X _E)	PGV(X _E)
0.113	0.106	0.0548	0.0216	0.00433	0.00126	0.0677	0.0542

	NBC 2	020 - 5%/5	0 years (0.	001 per ann	um) proba	bility	
S _a (0.2, X _E)	S _a (0.5, X _E)	S _a (1.0, X _E)	S _a (2.0, X _E)	S _a (5.0, X _E)	S _a (10.0, X _E)	PGA(X _E)	PGV(X _E)
0.0589	0.0563	0.0279	0.0104	0.00192	0.00055	0.0338	0.0269
he log-	log interp	polated 5	%/50 yea	ar S _a (4.0, X	(_E) value	is : 0.002	29
he log-			2	ar S _a (4.0,) 0021 per an			29

The log-log interpolated 2%/50 year S_a(4.0, X_E) value is : **0.0064**

S _a (0.2 X _E)	, S _a (0.5 X _E)	, S _a (1.0, X _E)	S _a (2.0, X _E)	S _a (5.0, X _E)	S _a (10.0, X _E)	PGA(X _E)	PGV(X _E)
0.0332	0.0315	0.0148	0.00515	0.000877	0.000241	0.0183	0.0142
The lo	g-log inte	erpolated	10%/50 y	year S _a (4.0), X _E) value	e is : 0.0()13
Downloa	d CSV						

← Go back to the <u>seismic hazard calculator form</u>

Date modified: 2021-04-06

Appendix F

TREK Geotechnical Factual Report 2023

Dillion Consulting Ltd.

City of Winnipeg North Transit Garage Geotechnical Factual Report

Prepared for:

Taran Peters, P.Eng Dillion Consulting Ltd. 1558 Willson Place Winnipeg, MB R3T 0Y4

Project Number: 0022-186-00

Date: November 14, 2023

Quality Engineering | Valued Relationships

November 14, 2023

Our File No. 0022-186-00

Taran Peters, P.Eng Dillion Consulting Ltd. 1558 Willson Place Winnipeg, MB R3T 0Y4

RE: City of Winnipeg North Transit Garage Geotechnical Factual Report

TREK Geotechnical Inc. is pleased to submit our final report for the geotechnical investigation for the above noted project.

Please contact the undersigned should you have any questions.

Sincerely,

TREK Geotechnical Inc. Per:

Muse

Michael Van Helden, Ph.D., P.Eng. Senior Geotechnical Engineer

Encl.

Revision History

Revision No.	Author	Issue Date	Description
0	TC	November 14, 2023	Final Report

Authorization Signatures

Prepared By:

1 a Tyler Chapko, El

Geotechnical Engineering Intern

Michael Van Helden, Ph.D., P.Eng. Senior Geotechnical Engineer

Reviewed By:

Kent Bannister, M.Sc., P.Eng. Senior Geotechnical Engineer

Table of Contents

Letter of Transmittal

Revision History and Authorization Signatures

1.0	Introduction			
2.0	Field	Program	4	
	2.1	Sub-surface Investigation	4	
	2.2	Soil Stratigraphy	5	
	2.3	Power Auger Refusal	6	
	2.4	Groundwater and Sloughing Conditions	6	
3.0	Closu	ıre	7	

Figures

Sub-Surface Logs

Appendices

List of Tables

Table 1. Summary of Probe Hole Depths	5
Table 2. Summary of Test Hole Depths	6
Table 3. Summary of Seepage and Sloughing	6
Table 4. Summary Manual Standpipe Water Readings	7

List of Figures

Figure 01 Test Hole Location Plan

List of Appendices

- Appendix A Site Pictures
- Appendix B Laboratory Testing Results
- Appendix C Water Level Monitoring Results

I.0 Introduction

This factual report summarizes the results of the geotechnical exploration completed by TREK Geotechnical Inc. (TREK) for the proposed City of Winnipeg North Transit Garage in Winnipeg, Manitoba. The terms of reference for the investigation are included in our proposal to Dillion Consulting Ltd. dated August 3, 2023. The scope of work includes a sub-surface investigation, laboratory testing, test hole logs, and this factual report.

2.0 Field Program

2.1 Sub-surface Investigation

The sub-surface investigation was completed between October 11 to 13, 2023, under the supervision of TREK personnel to determine the soil stratigraphy and groundwater conditions at the site. Three shallow test holes were drilled and sampled along Oak Point Highway including two in the southbound curb lane and one in the median just outside the northbound median lane. Six deep test holes were drilled and sampled within the Transit Garage site. Prior to the completion of TH23-07 and TH23-08, several locations (probe holes) were attempted for test holes and abandoned due to early power auger refusal. This refusal is suspected to have occurred on buried concrete rubble as concrete dust was observed on the auger bit and surficial concrete pieces were observed across the site. Pictures of the rubble found across the site are shown in Appendix A. Test hole locations are shown on Figure 01.

The test holes were drilled by Paddock Drilling Ltd. with a track-mounted Mobile B48 geotechnical drill rig equipped with 125 mm solid stem augers. TH23-09 was advanced using casing and HQ coring equipment. Test holes were backfilled with auger cuttings and bentonite to surface except in TH23-05 which was backfilled with only bentonite, and TH23-09 where bedrock was cored, and the hole was backfilled with grout to surface. Where standpipe piezometers were installed, holes were backfilled with bentonite chips, as well as silica sand around the piezometer tip. Sub-surface soils encountered during drilling were visually classified based on the Unified Soil Classification System (USCS). Disturbed (auger cutting and split spoon) samples were taken at regular intervals and relatively undisturbed (Shelby Tube) samples were collected at select depths. Standard Penetration Tests (SPTs) were completed at depths where split spoon samples were taken.

All samples retrieved during drilling were transported to TREK's testing laboratory in Winnipeg, Manitoba. Laboratory testing consisted of moisture content determination on all disturbed samples. Bulk unit weight measurements and unconfined compression tests were also completed on Shelby tube and core samples. Atterberg limits and grain size analysis (hydrometer method) tests were also completed on select samples. Laboratory testing results are included in Appendix B.

Test hole coordinates and elevations were recorded using an RTK GPS. The test hole logs include a description of the soil units encountered and other pertinent information such as groundwater, sloughing conditions, and a summary of the laboratory testing results.

2.2 Soil Stratigraphy

A brief description of the soil units encountered during drilling is provided below. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed information provided on the attached test hole logs.

The soil stratigraphy encountered in the shallow test holes along Oak Point Highway consists of 350 mm thick concrete pavement overlying sand and gravel fill (TH's 23-01 and 23-02), and clay fill (TH23-01). In TH23-03 clay fill was encountered at ground surface. The sand and gravel fill contains some clay, trace to some silt, is loose and poorly graded. The clay fill is silty and contains trace to some sand, trace to some gravel, is stiff to very stiff and low to intermediate plastic (TH23-01) or high plastic (TH23-03).

The soil stratigraphy within the Transit Garage site (TH's 23-04 to 23-09) generally consists of variable near-surface layers of topsoil, organics and fill to depths ranging from 1.0 and 3.5 m. Fill soils ranged from loose to compact sand fill or firm to stiff, low to intermediate plastic clay fill. TH's 23-07 and 23-08 required several attempts to advance through debris; probe holes PR23-08A, PR23-07A to 07C were drilled without sampling to the depths provided in Table 1. The fill is underlain by thin layers of clay, organic clay or silt to a depth ranging from 3.0 to 3.8 m (TH's 23-04, 07 and 08). The silt contains trace clay, trace sand, is dry to wet, soft or compact, and non plastic to low plastic. Clay extends below the fill or silt to silt till or the depth of exploration in all test holes. The clay is silty, contains trace sand, is high plastic, and is stiff becoming very soft to soft with depth. Silt till was encountered at depths of 10.0 to 12.3 m in TH's 23-04 to 07, and 09. The silt till is sandy to containing some sand, contains trace to some gravel, trace to some clay, is dry to moist, dense and non to low plastic. In TH23-07, the silt till contains some clay, is stiff and low plastic below 12.6 m depth. The silt till extends to the depth of exploration in TH's 23-04 to 06, and is underlain by sand (TH23-07) or clay mudstone (TH23-09). The sand is silty and contains some clay, is moist to wet, dense, fine grained and poorly graded. The clay mudstone is of the Gunn Member and is medium to coarse grained, grey to pink, moderately laminated with discontinuous wavy non-parallel bedding, platey, has some carbonation inclusions, and extends to a depth of 14.3 m in TH23-09. The mudstone is underlain by dolomite bedrock of the Lower Fort Garry Member, and is cream to beige to red in colour, massive, has fracturing on argillaceous layers perpendicular to the drill axis, is hard (R3), vuggy at 21.0 m, and extends to the depth of exploration in TH23-09 (21.6 m).

Probe Hole	Refusal Depth (m)	Notes
PR23-07A	1.5	Refused on concrete debris
PR23-07B	1.5	Refused on concrete debris
PR23-07C	1.4	Refused on concrete debris
PR23-08A	1.4	Refused on concrete debris

Table 1. Summary of Probe Hole Depths

2.3 Power Auger Refusal

Table 2 summarizes the depth and elevation of power auger refusal in the test holes.

Test Hole	Power Auger Refusal Depth (m)	Power Auger Refusal Elevation (m)
TH23-01 to 03	Not observed	Not observed
TH23-04	11.7	224.8
TH23-05	12.3	224.9
TH23-06	12.6	225.7
TH23-07	18.0	218.9
TH23-08	Not observed	Not observed
TH23-09	11.2	224.4

2.4 Groundwater and Sloughing Conditions

Groundwater seepage, sloughing and squeezing was observed at the time of the subsurface investigation and is outlined in Table 3 below.

Taatilala	Depth (m)							
Test Hole	Observed Seepage	Observed Seepage Water Level After Drilling Observed Sloughing		Test Hole Open to After Drilling				
TH23-01 to 03		N/A		3.0				
TH23-04	Below 11.0	dry	Between 2.7 to 3.4	3.4				
TH23-05	Between 1.5 to 3.5	9.3	Between 1.5 to 3.5	12.2				
TH23-06	4.6	4.9	N/A	12.6				
TH23-07	3.5	10.7	Between 2.7 to 3.8 & below 13.4	11.0				
TH23-08	Between 2.4 to 3.0	3.4	Between 2.4 to 3.0	3.4				
TH23-09	Not available due to drilling method used							

Table 3. Summary of Seepage and Sloughing

Standpipes installed into till (deep) in TH23-05 to TH23-07 and into silt layers (shallow) were monitored between October 13 to November 9, 2023, using a water level meter and ongoing using a level logger. Manual readings are shown below in Table 4. A graph of the recorded water level results is also included in Appendix C.

<u>Standning</u>	Water Level Elevation (m)								
Standpipe	Stratum / Tip El.	Oct. 12, 2023	Oct. 13, 2023	Oct. 18, 2023	Nov. 6, 2023	Nov. 9, 2023			
SP23-05	Silt Till / 224.84	225.93	225.99	226.29	227.30	227.43			
SP23-06	Silt Till / 225.33	226.99	227.42	228.66	230.02	230.26			
SP23-07A	Silt Till / 223.80	223.04	223.28	224.23	227.12	227.48			
SP23-07B	Silt / 233.81	dry	dry	234.00	234.08	dry			
SP23-08	Silt / 232.82	dry	233.64	233.77	233.72	233.68			

Table 4.	Summarv	Manual	Standpipe	Water	Readings
	Gammary	manaai	otaniapipo	Trato.	nouungo

These observations are short-term and should not be considered reflective of (static) groundwater levels at the site which would require monitoring over an extended period of time to determine. It is important to recognize that groundwater conditions may vary seasonally, annually, or as a result of construction activities.

3.0 Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation and laboratory testing). Soil conditions are natural deposits that can be highly variable across a site. If subsurface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work or standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of Dillion Consulting Ltd. and the City of Winnipeg (the Clients) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figures

0022 186 00 **Dillon Consulting** City of Winnipeg Transit Garage

GEOTEC	EK		City of Winnipeg North Transit Garage Bedrock Core Photograph TH23-09 – C98 & C99			
Top @ 52'0" (15.8 m)		*Some Mudstone taken for t	esting	Bt	m @ 57'0" (17.4 m)	
MI MA I DEO		San the for sat super. Cas I			57'0'	
Top @ 57'0" (17.4 m)		Limestone Bedrock @ 59'6" (18.1	m)	Bt	m @ 62'0" (18.9 m)	
Project Number:	Date:	Local Coordinates: UTM	Depth relative to	Created By:	Reviewed By:	
0022 186 00	October 13, 2023	N-5532407.259, E-628235.579	•	TC	MVH	

GEOTECH	REK Inical		Bed	nnipeg North Trar rock Core Photog 23-09 – C100 & C2	raph
Top @ 62'0" (18.9 m)			Btm @	9 71'0" (21.6 m)	n @ 67'0" (20.4 m)
Project Number: 0022 186 00	Date: October 13, 2023	Local Coordinates: UTM N-5532407.259, E-628235.579	Depth relative to Existing ground		Reviewed By: MVH

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	ajor Div	isions	USCS Classi- fication	Symbols	Typical Names	Laboratory Classification Criteria		riteria		ş					
	raction	gravel no fines)	GW		Well-graded gravels, gravel-sand mixtures, little or no fines	$C_{U} = \frac{D_{60}}{D_{10}} \text{ greater}$		^{n 4;} C _c = <u> </u>	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		ieve sizes	#10 to #4	#40 to #10	#200 to #40 / #200	< #200
sieve size)	Gravels than half of coarse fraction alarder than 4.75 mm)	Clean (Little or	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	grain size curve, er than No. 200 sieve) ng dual symbols*	Not meeting all gradatio	on requiren	nents for GW	ە	ASTM Sieve	#10	#401	#500	¥
ained soils larger than No. 200 sieve	Gra than half o	Gravel with fines (Appreciable amount of fines)	GM		Silty gravels, gravel-sand-silt mixtures	r than No. g dual syn	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	Particle Size	٩			+	
ained soils larger than	lore	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	niri o nalla	Atterberg limits above "A line or P.I. greater than 7	'A"	line cases requiring use of dual symbols	Par		Ľ	, g	25	
Coarse-Grained (More than half the material is larger	e fraction mm)	sands no fines)	SW	***** *****	Well-graded sands, gravelly sands, little or no fines	Determine percentages of sand and gravel from grain size curve. depending on percentage of fines (fraction smaller than No. 200 s coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP Less than 12 percent GW, GC, SM, SC 6 to 12 percent Borderline case4s requiring dual symbols*	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 6;} C _c =	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		шш	2 00 to 4 75	0.425 to 2.00	0.075 to 0.425	c/0.0 >
n half the r	Sands alf of coarse fi r than 4 75 mi		SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sa entage of 1 s are class cent srcent	Not meeting all gradatio	on requiren	nents for SW				. 0	0	
(More thai	Sands than half of coarse smaller than 4 75 n	Sands with fines (Appreciable amount of fines)	SM		Silty sands, sand-silt mixtures	lemine percentages of s, pending on percentage of arse-grained solls are cla: arse than 5 percent More than 12 percent 6 to 12 percentBord	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	lai		m E			Clay
	(More t	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determir dependir coarse-g Less More 6 to 1	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols	Material	ואומר	Sand	Medium	Fine Silt or	SIIT OF CIAY
e size)	, As		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticity	Pleadicity chart for solid fraction with particles smaller than 0.425 mm 60				e Sizes		-	i i i	
Fine-Grained soils (More than half the material is smaller than No. 200 sieve size)	Silts and Cla	(Liquid limit less than 50)	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 -				e	S	> 12 in. 3 in to 12 in	2	3/4 in. to 3 in. #4 to 3/4 in	15 2 14
soils er than No	Si		OL	==	Organic silts and organic silty clays of low plasticity	- 00 (%)				Particle Size	ASTM:	+	_		_
e-Grained al is small	ski	t 50)	MH		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts	- 1 40 - L 40 - L 40 - S30 -				Pa	mm	> 300 75 to 300	222	19 to 75 4 75 to 19	P 10
Fine the materi	ts and Cla	(Liquid limit greater than 50)	CH Inorganic clays of high plasticity, fat clays				MH OR OH			L	75 1	· ·	191 4 75) F	
than half	N		OH		Organic clays of medium to high plasticity, organic silts		ML or OL 16 20 30 40 50 LIQUID LI	60 70 _IMIT (%)	80 90 100 110		5	ers	3_		-
(More	Highly	Organic Soils	Pt	<u>6 76 76</u> <u>70 77 7</u>	Peat and other highly organic soils	Von Post Classification Limit Strong colour or odour, and often fibrous texture				Material	ואומוכ	Boulders	Gravel	Coarse Fine	

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	63	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength

- VW Vibrating Wire Piezometer
 - SI Slope Inclinometer
 - $\ensuremath{\boxtimes}$ Water Level at Time of Drilling
 - ▼ Water Level at End of Drilling
 - ✓ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent
with *	with silt, with sand	> 35 percent

* Used when the material is classified based on behaviour as a cohesive material

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

Descriptive Terms	<u>SPT (N) (Blows/300 mm)</u>
Very loose	< 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very dense	> 50

The Standard Penetration Test blow count (N) of a cohesive soil can be related to its consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

EXPLANATION OF ROCK CLASSIFICATION

(Canadian Foundation Engineering Manual, 4th Edition, 2006)

Grade*	Term	Uniaxial Comp. Strength (MPa)	Point Load Index (MPa)	Field Estimate of Strength	Examples
R6	Extremely strong	>250	>10	Specimen can only be chipped with a geological hammer	Fresh basalt, chert, diabase, gneiss, granite, quartzite
R5	Very strong	100-250	4-10	Specimen requires many blows of a geological hammer to fracture it	Amphibolite, sandstone, basalt, gabbro, gneiss, granodiorite, peridotite, rhyolite, tuff
R4	Strong	50-100	2-4	Specimen requires more than one blow of a geological hammer to fracture it	Limestone, marble, sandstone, schist
R3	Medium Strong	25-50	1-2	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with a single blow from a geological hammer	Concrete, phyllite, schist, siltstone
R2	Weak	5-25	***	Can be peeled with a pocket knife with difficulty, shallow indentation made by a firm blow with the point of a geological hammer	Chalk, claystone, potash, marl, siltstone, shale, rocksalt
R1	Very weak	1-5	***	Crumbles under firm blows with point of a geological hammer, can be peeled with a pocket knife	Highly weathered or altered rock, shale
R0	Extremely weak	0.25-1	***	Indented by thumbnail	Stiff fault gouge

* Grade according to ISRM (1981).

** All rock types exhibit a broad range of uniaxial comprehensive strengths reflecting heterogeneity in composition and anisotropy in structure. Strong rocks are characterized by well-interlocked crystal fabric and few voids.

*** Rocks with a uniaxial compressive strength below 25 MPa are likely to yield highly ambiguous results under point load testing.

Test	Hole	TH23	-01
------	------	-------------	-----

Client			HID Consu				Project Number:		0022-	186-0	20						
				peg Transit Gara	ne		Location:					31 361	E-6281	99 774			
-	actor:		ddock Dril		<u>yo</u>		Ground Elevatio						<u>L 0201</u>	00.111			
Metho				tem Auger, Mobile B4	8 Track Mount		Date Drilled:		Octob								
:	Sampl			Grab (G)		Shelby Tube (T)	Split Spoon	(S	S) / SF	т 🕨		Split Ba	arrel (SE	5) / LPT	· []	Cor	e (C)
	Particl	e Size	Legend:	Fines	Clay	Silt	Sand	-		Gra	vel	62	Cobb	les	В	oulde	rs
Elevation (m) 234.0	Depth (m)	Soil Symbol		TE - 350 mm thic				Sample Type	Sample Number	SPT (N)		(k) 17 18 Particle 20 40	Size (%) 60 8 // //C LL	0 100	Stre ∆ Pro OF	⊠ Qu [ield Va	<u>kPa)</u> pe ne ∆ Pen. Ф ⊠
233.6			CLAY (FII moist, ver CLAY - si - gre - moi - higi	ID GRAVEL (FILL orly graded LL) - silty, trace sa y stiff, high plastic lty, trace sand, tra y and brown ist, stiff h plasticity ecipitates (<5 mm	and, trace grave city ce silt inclusion	l, mottled brown s (<10 mm dia.)	ey and brown, dry, and grey, dry to		G01 G02 G03 G04 G05 G06		•	•				•	
231.3	3		Notes: 1) No see 2) Test ho 3) Test ho surface.	TEST HOLE AT 3 page or sloughing ble open and dry t ble backfilled with ble located 1.7 m	g observed. o 3.0 m one mir bentonite, gran	ular fill, and asph							•		•		

Test	Hole	TH23	-02
------	------	-------------	-----

	Dillion	Consulting Ltd.			Project Number:	0022	2-186-00		
Project Name	: City of	Winnipeg Transit Ga	rage		Location:	UTM	I N-55324	181.435, E-628333.59	8
Contractor:	Paddoo	ck Drilling Ltd.			Ground Elevation	n: <u>233.</u>	88 m (geo	odetic)	
Method:	125 mm	Solid Stem Auger, Mobile	B48 Track Mount		Date Drilled:	Octo	ber 11, 20)23	
Sample	Туре:	Grab (G)	Shelby Tube (T)	Split Spoon	(SS) / S		Split Barrel (SB) / LF	PT Core (C)
Particle	Size Lege	end: Fines	Clay	/ []]] Silt	Sand		Gravel	Cobbles	Boulders
Elevation (m) Depth (m)	Ioquuks lios	VCRETE - 350 mm tl ID AND GRAVEL (Fl ie, poorly graded Y - silty, trace sand, - grey and brown - moist, stiff - high plasticity ce precipitates (<5 m D OF TEST HOLE AT es: lo seepage or slough est hole open and dr est hole backfilled wi	MATERIAL DE hick LL) - some clay trace silt inclusi trace silt inclusi and dia.) below 1 - 3.0 m IN CLAY ing observed. y to 3.0 m one in th bentonite, gr	SCRIPTION , trace to some silt, ons (<5 mm dia.) .8 m depth .8 m depth f minute after drilling.	grey, dry to moist,	Sample Type Sample Number	(X) LdS 0 0	Cobbles	Undrained Shear Strength (kPa) <u>Test Type</u> ∆ Torvane ∆ Pocket Pen. Ф ⊠Qu ⊠ O Field Vane O

Client	:	Di	lion Cons	ulting Ltd.			Project Number:	00	022-18	6-00					
Projec	t Nam	e: _Ci	y of Winn	ipeg Transit Gar	age		Location:	U	TM N-	553244	42.25, E-	628419.77	4		
Contra	actor:	Pa	ddock Dri	lling Ltd.			Ground Elevatio	n: _23	34.52 n	n (geoc	detic)				
Vletho	d:	_125	5 mm Solid S	Stem Auger, Mobile I	348 Track Mount		Date Drilled:	0	ctober	11, 202	23				
S	Sample	е Туре	:	Grab (0	G)	Shelby Tube (T)	Split Spoon	(SS)	/ SPT		Split Bar	rel (SB) / Ll	эт 🚺	Core (C)
F	Particle	e Size	Legend:	Fines	Clay	Silt	Sand Sand	•	G	Gravel	57	Cobbles	Вс	oulders	
Elevation (m)	Depth (m)	Soil Symbol			MATERIAL DES(Sample Type	Sample Number	- 5	Bulk (kN/ 17 18 Particle \$ 20 40 PL M 20 40	m ³) 19 20 21 Size (%) 60 80 100 C LL	Stre	ained Shea ngth (kPa) orvane ∆ cket Pen. I Qu ⊠ eld Vane C 00 150 2) • •
233.8	- 1 - - 2 - - 3 -		- bro - mo - low CLAY - si (<5 mm d - gre - mo - hig	wn and dark gre ist, stiff ' to intermediate Ity, trace sand, t ia.) y and brown ist, stiff h plasticity	plasticity	el ıs (<5 mm dia.), tr	ace precipitates		515 516 517 518 519 520 521						
			3) Test ho	ble backfilled will ble located 0.3 n	/ to 3.0 m one mi h bentonite and a n offset south-we	auger cuttings to s st of northbound r	surface nedian curb								
			Chapko		Poviovo	d By: _Kent Banr	victor		Pro	iect En	nineer:	Michael V	an Helder		

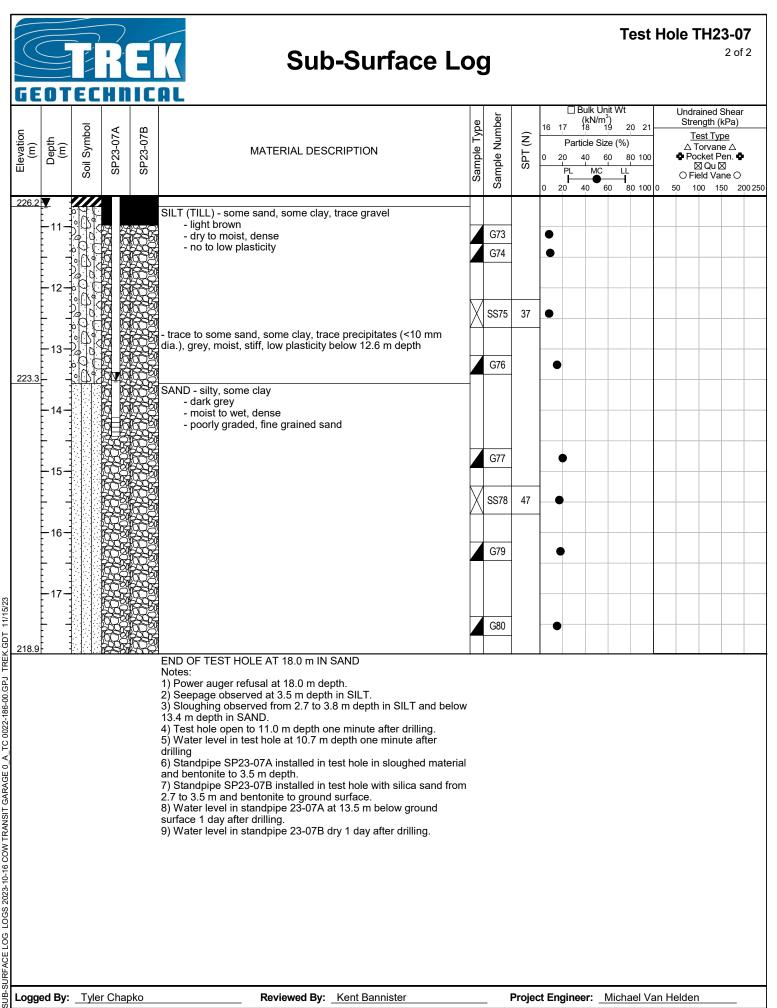
Test	Hole	TH23-	-04
------	------	-------	-----

UE	UI	EL	HNI		-															
Client			lion Cons					Pi	roject Number		0022									
Proje	ct Nam		ty of Winn			age			ocation:						E-628	344.99	2			
Contr	ractor:	Pa	ddock Dri	lling Lto	d.			G	round Elevatio	on:	236.5	52 m (geod	letic)						
Metho	od:	_12	5 mm Solid S	Stem Aug	er, Mobile B	48 Track Mount		Da	ate Drilled:		Octo	per 11	, 202	23						
	Sampl	е Туре	:		Grab (G)	Shelby Tub	e (T) 📐	Split Spoon	า (S	S) / SI	т 🕨		Split E	Barrel ((SB) / L	рт [Core (<u>(C)</u>
	Particl	e Size	Legend:		Fines	Cla	у 🛄	Silt	Sand			Gra	vel	5		bbles			lders	
Elevation (m)	Depth (m)	Soil Symbol			Ν	<i>I</i> ATERIAL DI	ESCRIPTION			Sample Type	Sample Number	SPT (N)		17 1 Partic 20 4 PL	$\frac{11 \text{k Unit}}{\text{kN/m}^3)} = \frac{19}{19}$ $\frac{19}{\text{kle Size}} = \frac{100 \text{ km}^2}{100 \text{ km}^2}$	20 21		Strenc <u>Tes</u> △ Tor Pock ⊠ 0 ○ Field	ned She gth (kPa t Type tvane ∠ tet Pen Qu ⊠ d Vane 150	a) ∆ ●
236.1		<u>\</u>	TOPSOIL intermedi			some sand, s	some organics	s, grey, dry	to moist, stiff,		G22			•						
200.1	+ -		<u></u>			gravel, trace o	clay, brown, m	oist, loose		1_										+
235.4											G23		•							
	ļ':		CLAY (FI - bro		lty, trace t	o some sand					G24			•						
			- mo	ist, stiff																-
234.4	2 -		- ng	h plasti	icity						G25			•			•			
204.4		<u> </u>		RGANI	C) - silty, t	race to some	sand, black, r	noist, stiff,	intermediate		G26			•			•			
233.8			plasticity																-	-
	- 3 -		SILT - tra	ce clay	, trace sai	nd, light brow	n, moist, soft, l	low plastic	ity		G27			•						
233.2																				
			CLAY - si (<5 mm d		ce sand, tr	ace silt inclus	ions (<10 mm	dia.), trac	e precipitates										-	-
	4 -) - bro - mo	wn ist, stiff																
	Ē		- hig	h plasti		onth					G28								2	
	= =		groy, m	II Delev		5941														-
	5 -										T29]	•		⊠⁄4	•		
	6 -										G30				•		•A			_
	= =																			
	- 7 -																			
	1 3										G31						ΦΔ			
	= =																			
	8 -										T32			•			×			
	=																			
	= =																			1
	- 9 -										G33				•					_
	E :																			
	= =																			
226.3	-10-																		+	+
	=		SILT - tra	ce to se	ome sand	, trace clay, g	rey, moist, der	nse, no to	low plasticity											
ogg	ed By:	Tyle	r Chapko			Revie	wed By: Ker	nt Banniste	r _			Projec	t En	ginee	r: Mi	chael V	an He	den		

		REK Sub-Surface		Hole TH23-04 2 of 2
c	Soil Symbol	MATERIAL DESCRIPTION	S S S S S S S S S S S S S S S S S S S	Undrained Shear Strength (kPa) <u>Test Type</u> ∆ Torvane ∆ ♥ Pocket Pen. ♥ ⊠ Qu ⊠ ○ Field Vane ○ 0 50 100 150 2002
225.8 		SILT (TILL) - sandy, trace to some gravel, trace clay - grey - dry to moist, dense - no to low plasticity END OF TEST HOLE AT 11.7 m IN SILT TILL Notes: 1) Power auger refusal at 11.7 m depth. 2) Seepage observed below 11.0 m depth IN SILT TILL. 2) Seepage observed below 12.0 m depth IN SILT TILL.	G34 G36 SS37 50 / 46mm	
		 Seepage observed below 11.0 m depth IN SILT TILL. Sloughing observed between 2.7 to 3.4 m depth in SILT. Test hole open and dry to 3.4 m depth one minute after drilling. Test hole backfilled with bentonite to surface. 		

GEOT	<u>rechn</u>	ICAL					
Client:	Dillion Co	onsulting Ltd.		Project Number:	0022-1	86-00	
Project Na	me: _City of W	/innipeg Transit Garage		Location:	UTM I	N-5532277.873, E-6282	06.773
Contractor	: Paddock	Drilling Ltd.		Ground Elevation	n: <u>237.25</u>	5 m (geodetic)	
Method:	125 mm Sc	olid Stem Auger, Mobile B48 Track Moun	t	Date Drilled:	Octobe	er 12, 2023	
Samp	ole Type:	Grab (G)	Shelby Tube (T)	Split Spoon	(SS) / SP ⁻	T Split Barrel (SE	B) / LPT Core (C)
Partio	cle Size Legen	id: Fines Cla	ay 🛄 Silt	Sand Sand		Gravel 6 Cobb	les Boulders
Back	fill Legend:	Bentonite	Cement	Drill Cuttings	Filter Pao Sand	^{ck} Grout	Slough
Elevation (m) Depth (m)	S S		L DESCRIPTION		Sample Type Sample Number	Z Particle Size (%) 0 20 40 60 8 PL MC LL	\square Totvalle \square 30 100 \square Pocket Pen. \square
		SAND AND GRAVEL (FILL) - so - brown and black - dry to moist, compact	me ciay, some siit		G38	•	
- 1 -					G39	•	
235.7							
- 2 -		ORGANICS (FILL) - wood debris - black - moist	s, some clay, trace sa	nd, trace silt	G40	•	
- 3 -					G41	•	
233.7		CLAY - silty, trace sand, trace si precipitates (<5 mm dia.) - brown	It inclusions (<10 mm	dia.), trace			
- 4		- moist, stiff - high plasticity			G42	•	
- 5 -		- grey, firm below 4.9 m depth					
6 -					G43		
					T44		
- 7 -		- trace gravel below 7.6 m depth			G45	•	
- 8 -		- uace graver below 7.0 m depth	I				
- 9 -					G46	•	
					T47	•	•
- 10-							
Logged By	:Tyler Chap	ko Revi	ewed By: Kent Banr	nister	Pi	roject Engineer: Micha	ael Van Helden

GE	OT	EC	Ŕ	Sub-Surface L	.0	9	I		k Unit Wt	t Hole 1	2 of
Elevation (m)	Depth (m)	Soil Symbol	SP23-05	MATERIAL DESCRIPTION	Sample Type	Sample Number	SPT (N)	16 17 18 Particle 0 20 40 PL	N/m ³) 19 20 2 Size (%)	1 Stre △ T 0 ● Po ○ Fie	ained Shear ngth (kPa) orvane ∆ cket Pen. Ф I Qu ⊠ eld Vane O 00 150 20
226.0	- 12-			SILT (TILL) - some sand, some gravel, trace clay - light brown - moist, dense - no to low plasticity END OF TEST HOLE AT 12.3 m IN SILT TILL Notes: 1) Power auger refusal at 12.3 m depth. 2) Seepage and sloughing observed between 1.5 to 3.5 m depth in ORAGANICS (FILL). 3) Test hole open to 12.2 m depth one minute after drilling. 4) Water level in test hole at 9.3 m depth one minute after drilling 5) Standpipe SP23-05 installed in test hole with silica sand from 10.7 12.2 m and bentonite to ground surface. 7) Water level in standpipe at 11.3 m below ground surface 2 days after drilling.		G48 G49 SS50	50 / 114mn				
	ed By:			ko Reviewed By : <u>Kent Bannister</u>					: _Michael \	,	


1 of 2

	ECHN														
Client:		nsulting Ltd.			Project Number			-186-00							
Project Name:		innipeg Transit Garage	;		Location:						628121.8	32			
Contractor:		Drilling Ltd.			Ground Elevation	on:				c)					
Method:	125 mm Sol	id Stem Auger, Mobile B48	Track Mount		Date Drilled:			per 12,							
Sample ⁻	Туре:	Grab (G)	Sł	helby Tube (T)	Split Spoon	ı (S	-	2	Spl	it Barre	el (SB) / I	_PT [Core	(C)
Particle S	Size Legeno	d: Fines	Clay	Silt	Sand				el	52	Cobbles	•	Во	ulder	s
Backfill L	_egend:	Bentonite	Ceme	ent	Drill Cuttings		Filter P Sand	ack		Grou		لتخليطه	Slou		
Elevation (m) Depth (m)	Soil Symbol SP23-06		MATERIAL DES			Sample Type	Sample Number	(N) LdS	6 17 Pa 20 PL	Bulk Ur (kN/m) 18 rticle Siz 40 40 40	³) 19 20 2 2e (%) 50 80 10 LL	00	Stren <u>Te</u> \triangle To Poc \square O Fie	ined S igth (kl orvane ket Pe Qu X Id Van 0 150	Pa) <u>e</u> ⇔∆ en. Ф
		CLAY (FILL) - sandy, s - dark grey - dry to moist, stiff - low plasticity	-	jravel			G51		•						
		silty, some sand, moi	st, intermediate	to high plastici	ty below 1.5 m		G52	_	•				٥		_
236.1 2 -		depth					G53	_	•					•	
3		CLAY - silty, trace sand precipitates (<5 mm dia - dark grey and br - moist, stiff - high plasticity	a.)	isions (<5 mm o	dia.), trace		G54			•			4		
4		firm below 3.7 m dep	th												
5							G55					• •			
		- grey, stiff below 5.2 n	า depth				G56	_		•			• 4	2	
							T57			•			<u>0</u>		
		· trace gravel, some sil	t inclusions (<1	0 mm dia.) trac	e to some sand		G58					●			
		nclusions (<10 mm dia					500	=							
-10-							T59			•)		
Logged By:	Tyler Chap	(0	Reviewed	By: Kent Ban	nister			Project	Engin	eer.	Michael \	Van He	lden		

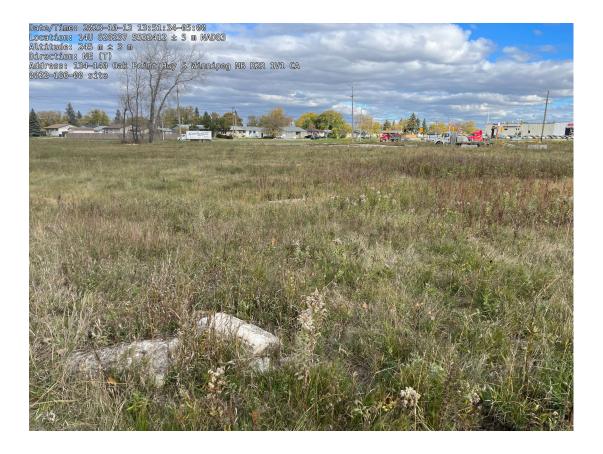
		R	Sub-Surface Lo	DÕ	9				Т	est H	lole	TH23	2 of 2
iEO	TEC	H	ICAL										
Depth	(m) Soil Symbol	SP23-06	MATERIAL DESCRIPTION	Sample Type	Sample Number	SPT (N)	16 17 1 0 20	Particle S	m ³) 19 2 Size (%) 60 8 C LL	0 21 0 100 0 100 0	Str	rained Sl ength (kf <u>Fest Type</u> Torvane ocket Pe Sl Qu Sl ield Van 100 150	Pa) ≙ ∆ n. Ф ⊜ ⊖
-11			- soft to firm below 10.4 m depth SILT (TILL) - some sand to sandy, trace gravel, trace clay, light brown, dry to moist, dense, no to low plasticity END OF TEST HOLE AT 12.6 m IN SILT TILL Notes: 1) Power auger refusal at 12.6 m depth. 2) Seepage observed at 4.6 m depth. No sloughing observed. 3) Test hole open to 12.6 m depth one minute after drilling. 4) Water level in test hole at 4.9 m depth one minute after drilling 5) Standpipe SP23-06 installed in test hole with silica sand from 11.0 to 12.6 m and bentonite to ground surface. 6) Water level in standpipe at 10.9 m below ground surface 1.5 days after drilling.		5 G60 G61 G62 SS63	50 / 0mm					50		

GEDTE	<u>CHNIC</u>	<u>AL</u>		
Client:	Dillion Consul	Iting Ltd.	Project Number:	0022-186-00
Project Name:	City of Winnip	beg Transit Garage	Location:	UTM N-5532501.961, E-628161.341
Contractor:	Paddock Drilli	ing Ltd.	Ground Elevation:	n: _236.83 m (geodetic)
Method:	125 mm Solid Ste	em Auger, Mobile B48 Track Mount	Date Drilled:	October 12, 2023
Sample T	vpe:	Grab (G) Shelby Tube (T)	Split Spoon (S	(SS) / SPT Split Barrel (SB) / LPT Core (C)
	Size Legend:	Fines Clay Silt	Sand	Savel Cobbles Boulders
Backfill L		Bentonite Cement	Drill Cuttings	Filter Pack
Elevation (m) (m)	Soll Symbol SP23-07A SP23-07B	MATERIAL DESCRIPTION	Sample Tvpe	
		CLAY (FILL) - sandy, some silt, trace gravel - dark grey - dry to moist, stiff - low to intermediate plasticity		G64
234.4		- silty, trace sand, trace silt inclusions (<5 mm of high plasticity below 1.8 m depth	dia.), brown, moist,	G65 • 49
		ORGANIC CLAY - silty, trace to some sand, tra (<10 mm dia.), trace oxidation, blackish grey, m intermediate plasticity	ace precipitates hoist, stiff,	G66
233.0		SILT - trace sand, trace clay, brown, moist to w plasticity	ret, soft, low	G67 •
		CLAY - silty, trace sand, trace silt inclusions (< precipitates (<5 mm dia.) - brown - moist, stiff - high plasticity - grey, firm below 5.2 m depth	5 mm dia.), trace	G68
		- soft to firm below 7.0 m depth		G69
				G70 • •
- 8 -				
9 -				G71
				G72 • •
Logged By: _]	Tyler Chapko	Reviewed By: Kent Ban	nister	Project Engineer: Michael Van Helden

GEOTECHNICAL		
Client: Dillion Consulting Ltd.	Project Number:	0022-186-00
Project Name: City of Winnipeg Transit Garage	Location:	UTM N-5532407.69, E-628230.756
Contractor: Paddock Drilling Ltd.	Ground Elevation	n: _236.17 m (geodetic)
Method:125 mm Solid Stem Auger, Mobile B48 Track M	Dunt Date Drilled:	October 12, 2023
Sample Type: Grab (G)		(SS) / SPT Split Barrel (SB) / LPT Core (C)
Particle Size Legend: Fines	Clay 🛄 Silt 🔅 Sand	Gravel 🚰 Cobbles 🔛 Boulders
Backfill Legend: Bentonite	Cement Drill Cuttings	Filter Pack Grout Slough
MATER MATER MATER MATER MATER MATER MATER		a a
- low to intermediate pla - low to intermediate pla	sticity e gravel, brown, moist, stiff, high plasticity ace clay, brown, dry to moist, compact, no	G82 G83 G83
to low plasticity	sand, trace to some organics, black,	G83 ●
SILT - trace sand, trace clay,	light brown, moist to wet, soft, low	G85
precipitates (<5 mm dia.) - grey and brown - moist, stiff - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	e silt inclusions (<5 mm dia.), trace	G86
 2) Test hole open to 3.4 m de 3) Water level in test hole at 4) Standpipe SP23-08 install 3.3 m and bentonite to groun 	pserved from 2.4 to 3.0 m depth in SILT. opth one minute after drilling. 3.4 m depth one minute after drilling ed in test hole with silica sand from 2.1 to	
Logged By: Tyler Chapko R	eviewed By: Kent Bannister	Project Engineer: Michael Van Helden

FRFK	
GEOTECHNICAL	

Cor		Dillion Cons	ultina I td														
Cor	ioct Namo		anting Etai			Project Num	ber:	002	2-186-	00							
	jeet Name.	City of Winn	ipeg Transit Gara	ge		Location:		UTN	1 N-5	5324(07.259,	E-628	3235.57	9			
Met	ntractor:	Paddock Dri	illing Ltd.			Ground Elev	ation	: 236	.08 m	(geod	detic)						
1	hod:	125 mm Solid S	Stem Auger / HQ Corin	g, Mobile B48 Track	Mount	Date Drilled:		Oct	ber 1	3, 202	23						
	Sample T	Гуре:	Grab (G)	S	helby Tube (T)	Split Sp	oon (SS) / S	SPT		Split Ba	arrel (S	SB) / LF	т 🗌	Co	re (C	;)
	Particle S	Size Legend:	Fines	Clay	Silt	Sa	nd		Gra	avel	57	Cot	obles		Bould	ərs	
Elevation	Depth (m)	og ແມ່ ໂອດ - Not logg		ATERIAL DESC	RIPTION		Construction of the second sec	Sample Number	SPT (N)		Particle	I/m ³) 19 Size (9 60 MC	20 21	 • •	drained trength <u>Test T</u> ∆ Torva Pocket ⊠ Qu Field V 100	(kPa) <u>ype</u> ine ∆ Pen. ∙ ⊠ ′ane () •)
231			ilty, trace sand, tra	ace silt inclusions	(<5 mm dia)												
		- bro - mo	bist, firm to stiff h plasticity		(-0 mm did.)			T88	_			<u> </u>					
I 		- grey, firi	m below 6.1 m de _l	pth			Z	SS89)								
	8							Т90	_		•						
			ft below 9.1 m dep L) - sandy, trace t nt brown	o some gravel, ti	ace clay	·		SS9 [,]			• gineer:						



Elevation (m)	Depth (m)	Soil Symbol	MATERIAL DESCRIPTION	Sample Type	Sample Number	SPT (N)	16 0 0	17 Part 20 PL	MC	³) 19 ze (%	20 21) 80 100		Strer <u>Te</u> △ Te ● Poo ⊠ ○ Fie	ained S ngth (k est Typ orvane cket Pe Q Qu eld Var 00 15	Pa) ≘ a ∆ en. ●] ie ⊖	1
	-11-		- moist, dense - no to low plasticity	X	SS92	24	•									
	- 12-		- trace to some cobbles below 11.6 m depth	X	<u>(SS93</u> C94	50 / 0mm	•									
	-13-				SS95	50 / 140mr										
004.0	14 -				C96											
<u>221.8</u>	- 15-		CLAY MUDSTONE (Gunn Member) - some corbonate inclusions - medium to oarse grained - grey to pink - moderately laminated with discontinuous wavy non-parallel bedding - platey		C97		•									
			- unconfined compressive strength of 1221 kPa at 16.0 m depth		C98		•									
<u>217.9</u>	- 18-		- unconfined compressive strength of 5055 kPa at 17.5 m depth DOLOMITE (Red River Formation, Lower Fort Gary Member) - argillaceous dolomite	_	C99	-										
	- 19-		 cream to beige to red colour hard, R3 massive fracturing on argillaceous layers perpendicular to drill axis unconfined compressive strength of 35.2 MPa at 19.7 m depth 		C100			_								
	-20- -21-		- vuggy at 21.0 m depth		C101											
214.4	<u> </u>		END OF TEST HOLE AT 21.6 m IN LIMESTONE BEDROCK Notes: 1) Seepage and sloughing not observed due to use of coring methods. 2) Water level unavailable due to use of coring methods. 3) Test hole backfilled with grout and bentonite to surface.													
	ed Bv:	Tyler	Chapko Reviewed By: Kent Bannister			Proie	ct Er	naine	er:	Mich	ael Va	an He	elden			

Appendix A

Site Pictures

Appendix B

Laboratory Testing

GEOTECHNICAL Quality Engineering | Valued Relationships

Date	November 13, 2023
То	Tyler Chapko, TREK Geotechnical
From	Angela Fidler-Kliewer, TREK Geotechnical
Project No.	0022-186-02
Project	City of Winnipeg Transit Garage
Subject	Laboratory Testing Results – Lab Req. R23-530
Distribution	Michael Van Helden

Attached are the laboratory testing results for the above noted project. The testing included moisture content determinations, Atterberg Limits, particle size distribution (Hydrometer method), Standard Proctor, CBR and unconfined compressive strength and related testing on Shelby tube sample.

Regards,

Angela Fidler-Kliewer, C.Tech.

Attach.

Review Control:

Prepared By: AFK Reviewed By: KF	Checked By: NJF
----------------------------------	-----------------

LABORATORY REQUISITION

E.

CLIENT PROJECT	_	Dillion Consul City of Winnip		t Gara	ge					ROJE			0022-186-00 Tyler Chapko
TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE (ft)	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS			Soil Description/Comments
TH23-01	G01	1.5 - 2.0		\mathbf{X}							_		Sand + Gravel
TH23-01	G02	3.0 - 3.5	10° a. -	\mathbf{X}					-				clay (fill)
TH23-01	G03	4.0 - 4.5		\mathbf{X}									Clay
TH23-01	G04	5.0 - 5.5		\mathbf{X}	[2					
TH23-01	G05	6.5 - 7.0		\mathbf{X}									
TH23-01	G06	7.5 - 8.0		\mathbf{X}		1							
TH23-01	G07	9.0 - 9.5		$\mathbf{\overline{X}}$									V
TH23-02	G08	1.5 - 2.0		\mathbf{X}									Send + Gravel
TH23-02	G09	3.0 - 3.5		$\mathbf{\tilde{\mathbf{X}}}$									Clay
TH23-02	G10	4.0 - 4.5		\mathbf{X}		\boxtimes	$\boldsymbol{\succ}$						
TH23-02	G11	5.0 - 5.5		Ň							2		
TH23-02	G12	6.5 - 7.0		\mathbf{X}		1							·
TH23-02	G13	7.5 - 8.0		X						1			
TH23-02	G14	9.0 - 9.5		$\overline{\mathbf{X}}$									
TH23-03	G15	0.5 - 1:0		\mathbf{X}									cluy (L'11)
TH23-03	G16	1.8 - 2.3		$\mathbf{\overline{X}}$							-		
TH23-03	G17	2.8 - 3.3		$\mathbf{\nabla}$			<i>A</i>						Clay
TH23-03	G18	3.8 - 4.3		\bigtriangledown		1							
TH23-03	G19	5.5 - 6.0		\bigtriangledown		1			-				
TH23-03	G20	6.5 - 7.0		\triangleright	:	1						-	
TH23-03	G21	8.0 - 8.5	in the	\bigtriangledown	1	†		t				~ ,	V
TH23-04	G22	0.5 - 1.0		\bigcirc									Topspil
TH23-04	G23	2.0 - 3.0		X					-				Sund (BY/)
TH23-04	G24	4.0 - 4.5		Ń					<u> </u>		· · .		Clay
TH23-04	G25	5.5 - 6.0		$\mathbf{\mathbf{x}}$	-				<u> </u>				- V
TH23-04	G26	7.0 - 8.0		$\mathbf{\nabla}$		<u> </u>							(14 y (amain)
TH23-04	G27	9.0 - 10.0		$\left \right\rangle$	┣	+	†	<u> </u>		+			Clay (orgniz) Silt
TH23-04	G28	13.0 - 14.0		$\overline{\mathbf{x}}$	-								Clay
TH23-04	T29	15.0 - 17.0		\Leftrightarrow					<u> </u>				
TH23-04	G30	19.0 - 20.0		\Diamond			<u> </u>					-+	
TH23-04	G31	23.0 - 24.0		\triangleleft	1	+			1	+			
TH23-04	T32	25.0 - 27.0		\triangleleft		+			1 -	×			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TH23-04	G33	29.0 - 30.0	·	\Rightarrow		<u> </u>			-		\vdash		
TH23-04	G34	34.0 - 35.0	· .	\mathbf{i}	1	-							Silt
TH23-04		35.0 - 36.5		$\overline{\mathbf{x}}$				1					Silt fill
		L			<u>+</u>		1		1	NVH		1	REQUISITION NO.
REQUEST REQUISITI COMMENT	ION DATE	Tyler Chap					'O: UIRE						- <u>R.23-530</u>
		need				2.5							PAGE 1 OF 3

AD

LABORATORY REQUISITION

	CLIENT PROJECT I	_	Dillion Consult City of Winnip		Garag	ge						CT NO: TECHNICIAN:	0022-186-00
	TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE (ft)	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS		Soil Description/Comments
ľ	TH23-04	G36	37.0 - 38.0		\mathbf{X}			\times					silt hill
Ī	TH23-04	SS37	38.0 - 38.5		\mathbf{i}								V
Ī	TH23-05	G38	1.0 - 2.0		\succ								Sand + Gravel
	TH23-05	G39	3.0 - 4.0		\mathbf{X}								
	TH23-05	G40	5.0 - 6.0		\succ								orginics
	TH23-05	G41	9.0 - 10.0		\mathbf{X}					ļ			orguics V Clay
	TH23-05	G42	13.0 - 14.0		\mathbf{X}	·	ļ						Clay
	TH23-05	G43	18.0 - 19.0		\mathbf{X}					ļ			
ļ	TH23-05	T44	20.0 - 22.0				- <u>-</u>	<u> </u>			X		
	TH23-05	G45	24.0 - 25.0		$\left \right>$						_−		
ន	TH23-05	G46	28.0 - 29.0		\bigotimes					-	\leftarrow		LINABLE TO PO BULK/QU MOSTLY, SLOUGH
0/16/	TH23-05	T47	30.0 - 32.0		X		+	<u> </u>			X		MOSTLY SLOUGH
LQ.	TH23-05	G48	35.0 - 36.0		ĸ		+						<u>sit +11</u>
A TC 0022-186-00.GPJ TREK GEOTECHNICAL GDT 10/16/23	TH23-05	G49	38.0 - 39.0 40.0 - 40.4		Ю				+				
CHNIC	TH23-05	SS50 G51	1.0 - 2.0		\bigcirc						+		Cluy (RII)
EOTE(TH23-06 TH23-06	G52	4.0 - 5.0		\Diamond	-				٥	-		
N G	TH23-00	G53	6.0 - 7.0	<u> </u>	\bigtriangledown		+	<u>,</u>		+			
J TRI	TH23-06	G54	8.0 - 9.0		\triangleright				1-	1			Clay
0.GP	TH23-06	G55	13.0 - 14.0		$\mathbf{\hat{\mathbf{x}}}$				+-		1		8
186-0	TH23-06	G56	17.0 - 18.0		\bowtie		+			+	1		
0022-	TH23-06	T57	20.0 - 22.0		1					1	$\mathbf{\mathbf{\times}}$		
TC	TH23-06	G58	25.0 - 26.0		Ň								
0		T59	30.0 - 32.0		/								
ARAG	TH23-06	G60	35.0 - 36.0		X								,
SITG	TH23-06	G61	39.0 - 40.0		X								V College Coll
RAN	TH23-06	G62	41.0 - 41.5		\times						_		5714 451
L NO	TH23-06	SS63	41.5 - 41.5						-		-		J A No FCCOVUY
-16 C	TH23-07	G64	2.0 - 3.0		\times				_				Clay (fill) Clay
10-10	TH23-07	G65	6.5 - 7.5		\mathbf{X}								Clay
LOGS 2023-10-16 COW TRANSIT GARAGE	TH23-07	G66	8.0 - 9.0			_						+	organic Clary
N FO	TH23-07	G67	10.0 - 11.0		K					-		+ + +	Silt Clay
UTIO 1	TH23-07	G68	13.0 - 14.0		\leftarrow	-		+		-			
REQUISITION	TH23-07	G69	18.0 - 19.0		\Rightarrow					-			
2V RF	TH23-07	G70	24.0 - 25.0			-							REQUISITION NO.
	REQUES	TED BY: TION DAT	Tyler Cha	pko /23							MI		
10171:	COMMEN	ITS:								-			
0												1.	PAGE 2 OF 3

LABORATORY REQUISITION

CLIENT PROJECT	_	Dillion Consul City of Winnip		it Gara	ge				PROJECT NO: FIELD TECHNICIAN:					2-186-00 r Chapko
TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE (ft)	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	* HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS	Qu			Soil Description/Comments
TH23-07	G71	29.0 - 30.0		\times										Clary
TH23-07	G72	33.0 - 34.0		$\mathbf{\mathbf{X}}$										L'
TH23-07	G73	36.0 - 37.0		\times										5:17 +11
TH23-07	G74	37.0 - 38.0		Х										eutit
TH23-07	SS75	40.0 - 41.5		\times										
TH23-07	G76	43.0 - 44.0		\mathbf{X}										
TH23-07	G77	48.0 - 49.0		\times										Sond
TH23-07	SS78	50.0 - 51.5		\times										
TH23-07	G79	53.0 - 54.0		\times										
TH23-07	G80	57.0 - 58.0		\succ										
TH23-08	G81	1.0 - 2.0		\times										Clay (fill)
TH23-08	G82	4.0 - 5.0		\times										Clay
TH23-08	G83	5.0 - 6.0		\times										Silt
TH23-08	G84	6.5 - 7.5		\times										
TH23-08	G85	8.0 - 9.0		X										orgenic Clay Sitt u
TH23-08	G86	11.0 - 12.0		X										Clay,
TH23-08	G87	14.0 - 15.0	·	\times						1				
TH23-09	T88	15.0 - 17.0			*	\mathbf{X}				X				
TH23-09	SS89	20.0 - 21.5		$\mathbf{\tilde{\mathbf{x}}}$										
TH23-09	T90	25.0 - 27.0		$\mathbf{\dot{>}}$			1.15							
TH23-09	SS91	30.0 - 31.5	Ą	$\mathbf{\mathbf{x}}$										V
TH23-09	SS92	34.5 - 36.0		\triangleright			,							Git kil
TH23-09	SS93	38.0 - 38.5		$\mathbf{\overline{\mathbf{X}}}$							· · ·			
TH23-09	C94	38.2 - 42.0		$\mathbf{\dot{\succ}}$						<u> </u>				
TH23-09	SS95	42.0 - 43.0		$\mathbf{\mathbf{S}}$									-	1
TH23-09	C96	42.0 - 47.0		\triangleright										missing
TH23-09	C97	47.0 - 52.0		$\mathbf{\tilde{\mathbf{X}}}$										Shale
TH23-09	C98	52.0 - 57.0		\checkmark						1				
TH23-09	C99	57.0 - 62.0			¢	-							+	Shale /Bedrock
TH23-09	C100	62.0 - 67.0		1										Bedrock
TH23-09	C101	67.0 - 71.0		1		-							-	Vedrock
		52.5-53												Shale
		53-535							-		$f \not A$		-	Shale
1423-09	CA9A	57.5-58				1							-	Shala
				10 - 503							4	take	- an	e (Sest) of Hese three, field
REQUEST		Tyler Chap : Oct. (ko	2	REPO):	TC	, /	UVI			-	REQUISITION NO.
COMMEN	TS:	<u> </u>											-	,
- writting t													-	PAGE 3 OF 3

00

Project No.	0022-186-00				
Client	Dillon Consulting Ltd.				
Project	COW Transit Garage				

Sample Date 11-Oct-23 **Test Date** 01-Nov-23 Technician LL

Test Hole	TH23-01	TH23-01	TH23-01	TH23-01	TH23-01	TH23-01
Depth (m)	0.5 - 0.6	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	2.0 - 2.1	2.3 - 2.4
Sample #	G01	G02	G03	G04	G05	G06
Tare ID	M70	M49	L14	E32	E64	M56
Mass of tare	6.9	6.8	6.8	6.8	6.8	6.8
Mass wet + tare	212.2	215.8	211.7	213.3	213.1	211.7
Mass dry + tare	198.4	174.4	159.6	155.7	149.9	144.4
Mass water	13.8	41.4	52.1	57.6	63.2	67.3
Mass dry soil	191.5	167.6	152.8	148.9	143.1	137.6
Moisture %	7.2%	24.7%	34.1%	38.7%	44.2%	48.9%

Test Hole	TH23-01	TH23-02	TH23-02	TH23-02	TH23-02	TH23-02
Depth (m)	2.7 - 2.9	0.5 - 0.6	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	2.0 - 2.1
Sample #	G07	G08	G09	G10	G11	G12
Tare ID	E57	E02	M59	Q68	Q69	E16
Mass of tare	6.9	6.7	6.8	6.9	6.8	6.7
Mass wet + tare	214.1	227.5	211.5	414.9	209.2	213.7
Mass dry + tare	137.7	204.2	159.7	299.7	146.3	142.3
Mass water	76.4	23.3	51.8	115.2	62.9	71.4
Mass dry soil	130.8	197.5	152.9	292.8	139.5	135.6
Moisture %	58.4%	11.8%	33.9%	39.3%	45.1%	52.7%

Test Hole	TH23-02	TH23-02	TH23-03	TH23-03	TH23-03	TH23-03
Depth (m)	2.3 - 2.4	2.7 - 2.9	0.1 - 0.3	0.5 - 0.7	0.9 - 1.0	1.2 - 1.3
Sample #	G13	G14	G15	G16	G17	G18
Tare ID	J94	M14	M33	M28	N53	M36
Mass of tare	6.8	6.8	6.8	7.0	6.9	6.7
Mass wet + tare	211.6	211.2	213.3	214.7	212.0	219.0
Mass dry + tare	136.5	138.5	175.0	182.6	167.5	160.7
Mass water	75.1	72.7	38.3	32.1	44.5	58.3
Mass dry soil	129.7	131.7	168.2	175.6	160.6	154.0
Moisture %	57.9%	55.2%	22.8%	18.3%	27.7%	37.9%

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage
Sample Date	11 Oct 22

Sample Date	11-Oct-23
Test Date	01-Nov-23
Technician	LL

Test Hole	TH23-03	TH23-03	TH23-03	TH23-04	TH23-04	TH23-04
Depth (m)	1.7 - 2.0	2.0 - 2.1	2.4 - 2.6	0.2 - 0.3	0.6 - 0.9	1.2 - 1.4
Sample #	G19	G20	G21	G22	G23	G24
Tare ID	E85	M13	K16	M85	M54	M82
Mass of tare	6.8	6.9	6.7	6.8	6.9	6.7
Mass wet + tare	215.2	211.8	211.2	213.3	211.9	213.0
Mass dry + tare	158.5	145.3	138.3	180.6	192.8	168.0
Mass water	56.7	66.5	72.9	32.7	19.1	45.0
Mass dry soil	151.7	138.4	131.6	173.8	185.9	161.3
Moisture %	37.4%	48.0%	55.4%	18.8%	10.3%	27.9%

Test Hole	TH23-04	TH23-04	TH23-04	TH23-04	TH23-04	TH23-04
Depth (m)	1.7 - 1.8	2.1 - 2.4	2.7 - 3.0	4.0 - 4.3	5.8 - 6.1	7.0 - 7.3
Sample #	G25	G26	G27	G28	G30	G31
Tare ID	E84	M92	H20	M89	E01	M57
Mass of tare	6.7	6.9	6.7	6.9	6.8	6.7
Mass wet + tare	211.9	214.4	213.6	213.6	214.2	213.2
Mass dry + tare	160.4	163.5	181.5	165.4	138.8	155.3
Mass water	51.5	50.9	32.1	48.2	75.4	57.9
Mass dry soil	153.7	156.6	174.8	158.5	132.0	148.6
Moisture %	33.5%	32.5%	18.4%	30.4%	57.1%	39.0%

Test Hole	TH23-04	TH23-04	TH23-04	TH23-04	TH23-04	TH23-05
Depth (m)	8.8 - 9.1	10.4 - 10.7	10.7 - 11.1	11.3 - 11.6	11.6 - 11.7	0.3 - 0.6
Sample #	G33	G34	SS35	G36	SS37	G38
Tare ID	H72	M66	P05	E89	M39	M21
Mass of tare	6.8	6.8	6.8	6.8	6.8	6.8
Mass wet + tare	211.9	217.8	211.5	207.3	207.4	234.3
Mass dry + tare	139.6	185.9	196.3	190.3	193.9	208.4
Mass water	72.3	31.9	15.2	17.0	13.5	25.9
Mass dry soil	132.8	179.1	189.5	183.5	187.1	201.6
Moisture %	54.4%	17.8%	8.0%	9.3%	7.2%	12.8%

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage
Sample Date	11-Oct-23

Sample Date	11-Oct-23
Test Date	01-Nov-23
Technician	LL

Test Hole	TH23-05	TH23-05	TH23-05	TH23-05	TH23-05	TH23-05
Depth (m)	0.9 - 1.2	1.5 - 1.8	2.7 - 3.0	4.0 - 4.3	5.5 - 5.8	7.3 - 7.6
Sample #	G39	G40	G41	G42	G43	G45
Tare ID	M62	M22	E56	M63	M35	E80
Mass of tare	6.9	6.7	6.8	6.9	6.9	6.8
Mass wet + tare	230.0	208.4	209.5	208.0	214.4	211.1
Mass dry + tare	213.5	164.9	152.4	151.6	143.8	149.0
Mass water	16.5	43.5	57.1	56.4	70.6	62.1
Mass dry soil	206.6	158.2	145.6	144.7	136.9	142.2
Moisture %	8.0%	27.5%	39.2%	39.0%	51.6%	43.7%

Test Hole	TH23-05	TH23-05	TH23-05	TH23-05	TH23-06	TH23-06
Depth (m)	8.5 - 8.8	10.7 - 11.0	11.6 - 11.9	12.2 - 12.3	0.3 - 0.6	1.2 - 1.5
Sample #	G46	G48	G49	SS50	G51	G52
Tare ID	H69	F13	E48	M37	M08	N09
Mass of tare	6.8	6.8	6.7	6.8	6.8	8.6
Mass wet + tare	227.3	214.6	218.0	178.2	206.1	206.8
Mass dry + tare	177.6	165.0	199.0	163.8	180.1	178.5
Mass water	49.7	49.6	19.0	14.4	26.0	28.3
Mass dry soil	170.8	158.2	192.3	157.0	173.3	169.9
Moisture %	29.1%	31.4%	9.9%	9.2%	15.0%	16.7%

Test Hole	TH23-06	TH23-06	TH23-06	TH23-06	TH23-06	TH23-06
Depth (m)	1.8 - 2.1	2.4 - 2.7	4.0 - 4.3	5.2 - 5.5	7.6 - 7.9	10.7 - 11.0
Sample #	G53	G54	G55	G56	G58	G60
Tare ID	F91	C14	F97	Z28	N44	H114
Mass of tare	8.4	8.4	8.5	8.5	8.6	8.6
Mass wet + tare	224.6	210.6	210.9	218.4	219.6	220.7
Mass dry + tare	188.6	157.4	148.9	155.9	174.5	162.3
Mass water	36.0	53.2	62.0	62.5	45.1	58.4
Mass dry soil	180.2	149.0	140.4	147.4	165.9	153.7
Moisture %	20.0%	35.7%	44.2%	42.4%	27.2%	38.0%

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage
Sample Date	11-Oct-23

Sample Date 11-Oct-23 **Test Date** 01-Nov-23 Technician LL

Test Hole	TH23-06	TH23-06	TH23-07	TH23-07	TH23-07	TH23-07
Depth (m)	11.9 - 12.2	12.5 - 12.6	0.6 - 0.9	2.0 - 2.3	2.4 - 2.7	3.0 - 3.4
Sample #	G61	G62	G64	G65	G66	G67
Tare ID	AB95	D37	AB64	AC26	C10	E31
Mass of tare	6.8	8.5	6.9	6.8	6.8	6.6
Mass wet + tare	219.4	156.7	210.3	207.4	213.9	214.0
Mass dry + tare	171.2	143.9	184.2	166.8	163.3	177.4
Mass water	48.2	12.8	26.1	40.6	50.6	36.6
Mass dry soil	164.4	135.4	177.3	160.0	156.5	170.8
Moisture %	29.3%	9.5%	14.7%	25.4%	32.3%	21.4%

Test Hole	TH23-07	TH23-07	TH23-07	TH23-07	TH23-07	TH23-07
Depth (m)	4.0 - 4.3	5.5 - 5.8	7.3 - 7.6	8.8 - 9.1	10.1 - 10.4	11.0 - 11.3
Sample #	G68	G69	G70	G71	G72	G73
Tare ID	Z94	M88	F89	Z37	AB12	C27
Mass of tare	8.5	6.9	8.5	8.3	6.9	8.6
Mass wet + tare	214.2	210.4	212.4	214.1	206.8	225.1
Mass dry + tare	160.1	139.3	156.0	152.9	149.1	209.8
Mass water	54.1	71.1	56.4	61.2	57.7	15.3
Mass dry soil	151.6	132.4	147.5	144.6	142.2	201.2
Moisture %	35.7%	53.7%	38.2%	42.3%	40.6%	7.6%

Test Hole	TH23-07	TH23-07	TH23-07	TH23-07	TH23-07	TH23-07
Depth (m)	11.3 - 11.6	12.2 - 12.6	13.1 - 13.4	14.6 - 14.9	15.2 - 15.7	16.2 - 16.5
Sample #	G74	SS75	G76	G77	SS78	G79
Tare ID	E102	P31	E19	H65	Z118	P04
Mass of tare	8.7	8.5	8.5	8.5	8.4	8.6
Mass wet + tare	223.8	216.5	220.1	217.9	212.5	212.2
Mass dry + tare	205.7	201.7	192.0	182.8	182.1	180.8
Mass water	18.1	14.8	28.1	35.1	30.4	31.4
Mass dry soil	197.0	193.2	183.5	174.3	173.7	172.2
Moisture %	9.2%	7.7%	15.3%	20.1%	17.5%	18.2%

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage
Sample Date	11 Oct 22

Sample Date 11-Oct-23 **Test Date** 01-Nov-23 Technician LL

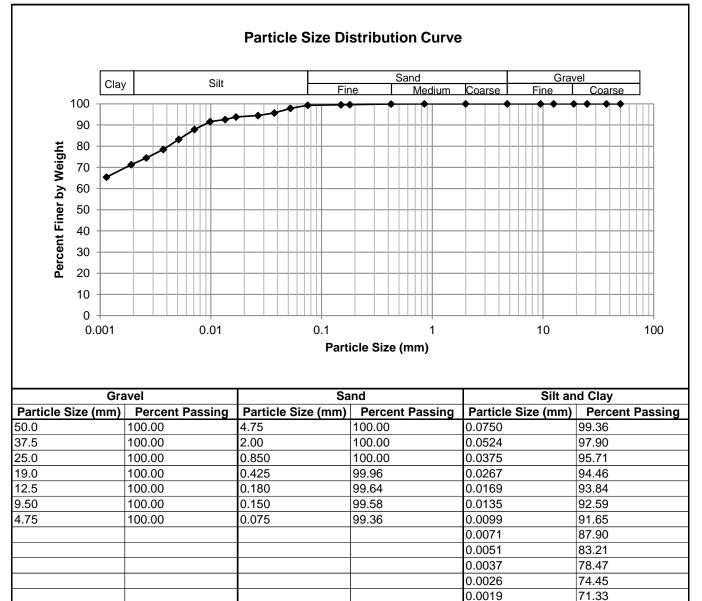
Test Hole	TH23-07	TH23-08	TH23-08	TH23-08	TH23-08	TH23-08
Depth (m)	17.4 - 17.7	0.3 - 0.6	1.2 - 1.5	1.5 - 1.8	2.0 - 2.3	2.4 - 2.7
Sample #	G80	G81	G82	G83	G84	G85
Tare ID	W53	E29	N15	A23	F14	H3
Mass of tare	8.5	6.8	8.6	88.6	9.0	8.6
Mass wet + tare	214.3	225.1	215.1	211.3	210.1	224.4
Mass dry + tare	187.5	202.9	164.6	178.1	166.4	179.9
Mass water	26.8	22.2	50.5	33.2	43.7	44.5
Mass dry soil	179.0	196.1	156.0	89.5	157.4	171.3
Moisture %	15.0%	11.3%	32.4%	37.1%	27.8%	26.0%

Test Hole	TH23-08	TH23-08	TH23-09	TH23-09	TH23-09	TH23-09
Depth (m)	3.4 - 3.7	4.3 - 4.6	6.1 - 6.6	9.1 - 9.6	10.5 - 11.0	11.6 - 11.7
Sample #	G86	G87	SS89	SS91	SS92	SS93
Tare ID	AB74	P09	W32	N04	E115	N80
Mass of tare	6.8	8.6	8.5	8.6	8.7	8.6
Mass wet + tare	211.3	208.9	223.7	210.1	210.8	128.7
Mass dry + tare	149.2	144.4	161.5	159.1	194.7	126.3
Mass water	62.1	64.5	62.2	51.0	16.1	2.4
Mass dry soil	142.4	135.8	153.0	150.5	186.0	117.7
Moisture %	43.6%	47.5%	40.7%	33.9%	8.7%	2.0%

Test Hole	TH23-09	TH23-09	TH23-09	TH23-09	
Depth (m)	12.8 - 13.1				
Sample #	SS95			C98	
Tare ID	F153	W44	F37	Z102	
Mass of tare	8.5	8.6	8.3	8.7	
Mass wet + tare	209.6	224.8	674.3	254.9	
Mass dry + tare	195.6	214.3	636.6	232.5	
Mass water	14.0	10.5	37.7	22.4	
Mass dry soil	187.1	205.7	628.3	223.8	
Moisture %	7.5%	5.1%	6.0%	10.0%	

Project No.	0022-186-00				CERTIFIED BY	
Client	Dillon Consulting	g Ltd.				
Project	City of Winnipeg	g Transit Garage			Canadian Council of	Independent Laboratories
Fest Hole	TH23-02				For specific tests a	s listed on www.ccil.co
Sample #	G10					
Depth (m)	1.2 - 1.4					
Sample Date	11-Oct-23				Liquid Limit	80
Test Date	08-Nov-23				Plastic Limit	21
Technician	DS				Plasticity Index	58
<u>_iquid Limit</u> Frial #		1	2	3		
Number of Bl	ows (N)	18	24	35		
Mass Tare (g)		14.097	14.045	14.202		
Mass Wet So		22.575	22.027	22.394		
Mass Dry Soi	I + Tare (g)	18.744	18.467	18.826		
Mass Water (3.831	3.560	3.568		
Mass Dry Soi		4.647	4.422	4.624		
Moisture Con	tent (%)	82.440	80.507	77.163		
Plasticity Index (%) Plasticity Index (%)	Plasticity Chart smaller than 0.4	for solid fraction w	vith particles	СН	"Line "A" Line	
³⁰ 20			0	MH or (ОН	
10		- CL ML				

Plastic Limit


Trial #	1	2	3	4	5
Mass Tare (g)	13.959	13.919			
Mass Wet Soil + Tare (g)	23.006	22.815			
Mass Dry Soil + Tare (g)	21.426	21.226			
Mass Water (g)	1.580	1.589			
Mass Dry Soil (g)	7.467	7.307			
Moisture Content (%)	21.160	21.746			

Liquid Limit (%)

Note: Additional information recorded/measured for this test is available upon request.

Project No. Client Project	0022-186-00 Dillon Consulting Ltd. COW Transit Garage		CERTIFIED BY
Test Hole	TH23-02		
Sample #	G10		
Depth (m)	1.2 - 1.4	Gravel	0.0%
Sample Date	02-Oct-23	Sand	0.6%
Test Date	07-Nov-23	Silt	27.6%
Technician	DS	Clay	71.7%

65.39

0.0011

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage
Test Hole	TH23-04
Sample #	T29
Depth (m)	4.6 - 5.2
Sample Date	11-Oct-23
Test Date	02-Nov-23
Technician	PC

Tube Extrac							
Recovery (mn	n) 530						_
Bottom		4.04				4.05	Тор
5.10 m 5.07 m	า	4.91 m		4.75	o m	4.65 m	4.57 m
Toss	Кеер		Bulk Qu		Moisture Cont PP/TV Visual	ent	Toss
30 mm	160 mm		160 mm	· · · · · · · · · · · · · · · · · · ·	100 mm	· · ·	80 mm
Visual Class	sification			Moisture Co	ontent		
Material	CLAY			Tare ID			E13
Composition	silty			Mass tare (g)			6.8
	sions (<5 mm diam.)			Mass wet + ta			231.2
-	tes (sulphate <5 mm dia	m.)		Mass dry + ta			153.8
trace oxidation		/		Moisture %			52.7%
-				Unit Weigh	t		
				Bulk Weight			1047.6
Color	grey						
Moisture	moist			Length (mm)	1		150.02
Consistency	stiff				2		149.60
Plasticity	high plasticity				3		150.42
Structure	-				4		149.65
Gradation	-			Average Leng	gth (m)		0.150
Torvane				Diam. (mm)	1		72.12
Reading		0.50			2		72.34
Vane Size (s,r	n,l)	m			3		72.29
• •	ear Strength (kPa)	49.0			4		72.18
				Average Dian	neter (m)		0.072
Pocket Pen							
Reading	1	1.20		Volume (m ³)	-		6.14E-04
	2	1.20		Bulk Unit We			16.7
	3	1.10		Bulk Unit We	• /		106.5
	Average	1.17		Dry Unit Weig			11.0
Undrained Sh	ear Strength (kPa)	57.2		Dry Unit Weig	ght (pcf)		69.7

Project No. Client	0022-186-00 Dillon Consulting Ltd.			
Project	COW Transit Garage			
Test Hole	TH23-04			
Sample #	T29			
Depth (m)	4.6 - 5.2	Unconfine	d Strength	
Sample Date	11-Oct-23		kPa	ksf
Test Date	02-Nov-23	Max q _u	61.6	1.3
Technician	PC	Max S _u	30.8	0.6

Specimen Data

Description CLAY - silty, trace silt inclusions (<5 mm diam.), trace precipitates (sulphate <5 mm diam.), trace oxidation, grey, moist, stiff, high plasticity

Length	149.9	(mm)	Moisture %	53%	
Diameter	72.2	(mm)	Bulk Unit Wt.	16.7	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	11.0	(kN/m ³)
Initial Area	0.00410	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane Pocket Penetrometer							
Reading	Undrained SI	hear Strength	Re	ading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	-	kPa	ksf	
0.50	49.0	1.02		1.20	58.9	1.23	
Vane Size				1.20	58.9	1.23	
m				1.10	54.0	1.13	
			Average	1.17	57.2	1.20	

Failure Geometry

Sketch:

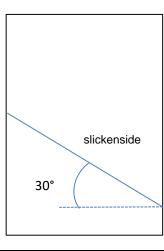
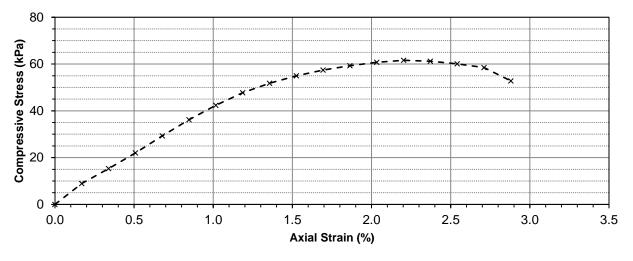


Photo:

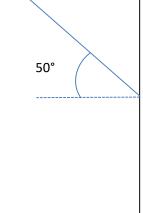


Unconfined Compressive Strength ASTM D2166

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage

Unconfined Compression Test Graph

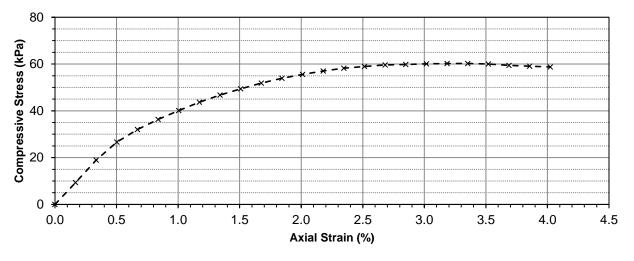
Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	,
0	0.71	0.0000	0.00	0.004098	0.0	0.00	0.00
10	1.44	0.2540	0.17	0.004105	36.8	8.96	4.48
20	1.96	0.5080	0.34	0.004112	63.0	15.32	7.66
30	2.51	0.7620	0.51	0.004119	90.7	22.03	11.01
40	3.11	1.0160	0.68	0.004126	121.0	29.32	14.66
50	3.68	1.2700	0.85	0.004133	149.7	36.22	18.11
60	4.19	1.5240	1.02	0.004140	175.4	42.37	21.18
70	4.64	1.7780	1.19	0.004147	198.1	47.77	23.88
80	4.98	2.0320	1.36	0.004154	215.2	51.81	25.90
90	5.25	2.2860	1.52	0.004161	228.8	54.99	27.50
100	5.46	2.5400	1.69	0.004168	239.4	57.43	28.72
110	5.62	2.7940	1.86	0.004176	247.5	59.27	29.63
120	5.75	3.0480	2.03	0.004183	254.0	60.73	30.37
130	5.83	3.3020	2.20	0.004190	258.1	61.59	30.79
140	5.81	3.5560	2.37	0.004197	257.1	61.24	30.62
150	5.72	3.8100	2.54	0.004205	252.5	60.06	30.03
160	5.60	4.0640	2.71	0.004212	246.5	58.52	29.26
170	5.13	4.3180	2.88	0.004219	222.8	52.80	26.40


Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage
Test Hole	TH23-04
Sample #	T32
Depth (m)	7.6 - 8.2
Sample Date	11-Oct-23
Test Date	03-Nov-23
Technician	PC

Tube Extraction

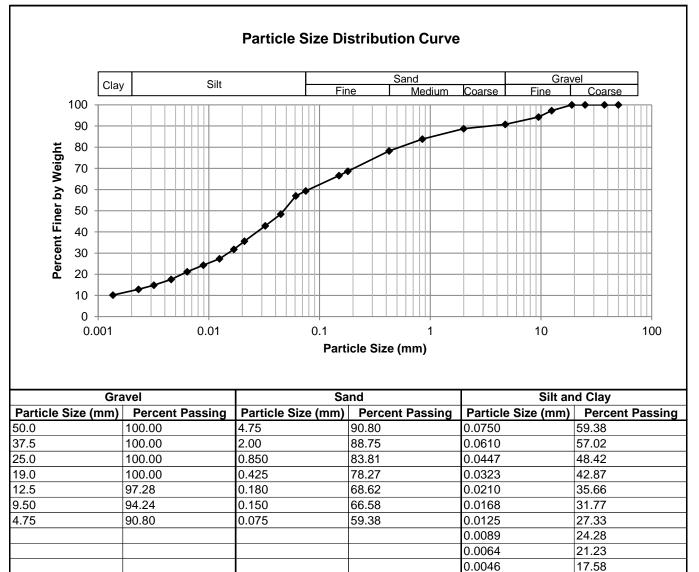
Tube Extrac							
Recovery (mm)600						
Bottom							Тор
8.22 m 8.19 m		8.01 m		7.85	m 7	.75 m	7.62 m
Toss	Кеер		Bulk Qu		Moisture Content PP/TV Visual		Toss
30 mm	180 mm		160 mm		100 mm		130 mm
Visual Class				Moisture (Content		
Material	CLAY			Tare ID			H49
Composition	silty			Mass tare (8.6
trace sand				Mass wet +			242.2
trace gravel (<	30 mm diam.)			Mass dry +			175.4
trace rootlets	(()			Moisture %			40.0%
	ons (<10 mm diam.)				b 4		
trace precipitate	es (sulphate <10 mm di	am.)		Unit Weig			1194.8
Color	brown			Bulk Weigh	t (g)		1194.0
Moisture	moist			Length (mn	n) 1		151.64
Consistency	stiff			Length (init	2		151.32
Plasticity	high plasticity				3		151.68
Structure	-				4		151.48
Gradation	-			Average Le	-		0.152
Tamiana							70.00
Torvane Reading		0.45		Diam. (mm)			73.00
Reading		0.45			2 3		72.60
Vane Size (s,m	ear Strength (kPa)				3 4		72.46
Shuranieu She		44.1		Average Dia	-		0.073
Pocket Pene	etrometer			Average Di			0.073
Reading	1	0.90		Volume (m ³	3)		6.27E-04
-	2	0.90		•	, /eight (kN/m ³)		18.7
	3	0.80		Bulk Unit W	• • •		118.9
	Average	0.87			eight (kN/m ³)		13.3
Undrained She	ear Strength (kPa)	42.5		Dry Unit We			84.9

Project No. Client Project	0022-186-00 Dillon Consu COW Transi	Iting Ltd.					
Test Hole Sample # Depth (m)	TH23-04 T32 7.6 - 8.2				Unconfine	d Strength	
Sample Date	11-Oct-23					kPa	ksf
Test Date	03-Nov-23				Max q _u	60.2	1.3
Technician	PC				Max S _u	30.1	0.6
Specimen [trace sand trace	pravel (<30 mr	m diam) trace ro	otlets trace s	ilt inclusions (<10 mn	diam) trace
Description		(sulphate <10 mm					
		х I	,,		. ,		
Length	151.5	(mm)		Moisture %	40%		
Diameter	72.6	(mm)		Bulk Unit Wt.	18.7	(kN/m^3)	
L/D Ratio	2.1			Dry Unit Wt.	13.3	(kN/m ³)	
Initial Area	0.00414	(m ²)		Liquid Limit	-		
Load Rate	1.00	(%/min)		Plastic Limit	-		
				Plasticity Index	-		
Undrained S	Shear Stren	gth Tests					
Torvane				Pocket Penet	rometer		
Reading		Shear Strength		Reading		d Shear Strength	
tsf	kPa	ksf		tsf	kPa	ksf	
0.45	44.1	0.92		0.90	44.1	0.92	
Vane Size				0.90	44.1	0.92	
m			Average	0.80 0.87	39.2 42.5	0.82 0.89	
			Average	0.07	42.5	0.09	
Failure Geo	ometry						
Sketch:				Photo:			



Unconfined Compressive Strength ASTM D2166

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage


Unconfined Compression Test Graph

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	,
0	0.72	0.0000	0.00	0.004140	0.0	0.00	0.00
10	1.49	0.2540	0.17	0.004147	38.8	9.36	4.68
20	2.28	0.5080	0.34	0.004154	78.6	18.93	9.46
30	2.92	0.7620	0.50	0.004161	110.9	26.65	13.32
40	3.37	1.0160	0.67	0.004168	133.6	32.04	16.02
50	3.73	1.2700	0.84	0.004175	151.7	36.34	18.17
60	4.05	1.5240	1.01	0.004182	167.8	40.13	20.07
70	4.35	1.7780	1.17	0.004189	183.0	43.67	21.84
80	4.61	2.0320	1.34	0.004196	196.1	46.72	23.36
90	4.84	2.2860	1.51	0.004204	207.7	49.40	24.70
100	5.05	2.5400	1.68	0.004211	218.2	51.83	25.91
110	5.23	2.7940	1.84	0.004218	227.3	53.89	26.95
120	5.38	3.0480	2.01	0.004225	234.9	55.59	27.79
130	5.51	3.3020	2.18	0.004232	241.4	57.04	28.52
140	5.62	3.5560	2.35	0.004240	247.0	58.25	29.13
150	5.69	3.8100	2.51	0.004247	250.5	58.98	29.49
160	5.75	4.0640	2.68	0.004254	253.5	59.59	29.80
170	5.78	4.3180	2.85	0.004262	255.0	59.85	29.92

Project No. Client Project	0022-186-00 Dillon Consulting Ltd. COW Transit Garage		CERTIFIED BY
Test Hole	TH23-04		
Sample #	G36		
Depth (m)	8.2 - 8.5	Gravel	9.2%
Sample Date	02-Oct-23	Sand	31.4%
Test Date	07-Nov-23	Silt	47.4%
Technician	DS	Clay	12.0%
rechnician	50	Clay	12.070

14.85

12.90

10.17

0.0032

0.0023

0.0014

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage
Test Hole	TH23-05
Sample #	T44
Depth (m)	6.1 - 6.7
Sample Date	11-Oct-23
Test Date	09-Nov-23
Technician	AD

Recovery (mm)	400			
Bottom				Тор
6.50 m 6.47 m		6.35 m		6.18 m 6.10 m
Moisture Content PP/TV Visual	Кеер		Bulk Qu	Toss Slough
30 mm	120 mm		170 mm	80 mm
Visual Classif	ication		Moisture Content	
Material	CLAY		Tare ID	W101
Composition	silty		Mass tare (g)	8.4
trace silt inclusion	ns (<10 mm diam.)		Mass wet + tare (g)	340.6
trace rootlets			Mass dry + tare (g)	237.2
			Moisture %	45.2%
			Unit Weight	
			Bulk Weight (g)	1070.8
Color	grey			
Moisture	moist		Length (mm) 1	149.28
Consistency	firm		2	149.99
Plasticity	high plasticity		3	149.55
Structure	-		4	149.54
Gradation	-		Average Length (m)	0.150
Torvane			Diam. (mm) 1	72.99
Reading		0.45	2	71.87
Vane Size (s,m,I)	m	3	72.99
Undrained Shea		44.1	4	73.01
			Average Diameter (m)	0.073
Pocket Penet	rometer 1	1.10	Valuma (m ³)	6.21E-04
Reduing	2	0.90	Volume (m ³) Bulk Unit Weight (kN/m ³)	<u> </u>
	2 3	1.10	Bulk Unit Weight (kN/m ³) Bulk Unit Weight (pcf)	10.9
	3 Average	1.03		107.6
Undrained Shea	· · _	50.7	Dry Unit Weight (kN/m ³) Dry Unit Weight (pcf)	74.1
Unuranieu Silea		30.7		74.1

Project No. Client Project	0022-186-00 Dillon Consulting Ltd. COW Transit Garage			
Test Hole	TH23-05			
Sample #	T44			
Depth (m)	6.1 - 6.7	Unconfined	Strength	
Sample Date	11-Oct-23		kPa	ksf
Test Date	09-Nov-23	Max q _u	72.2	1.5
Technician	AD	Max S _u	36.1	0.8

Specimen Data

Description CLAY - silty, trace silt inclusions (<10 mm diam.), trace rootlets, grey, moist, firm, high plasticity

Length	149.6	(mm)	Moisture %	45%	
Diameter	72.7	(mm)	Bulk Unit Wt.	16.9	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	11.6	(kN/m ³)
Initial Area	0.00415	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

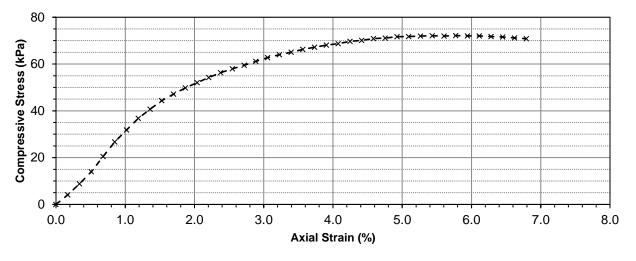
Undrained Shear Strength Tests

Torvane			Po	Pocket Penetrometer			
Reading	Undrained SI	hear Strength	Re	ading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf		kPa	ksf	
0.45	44.1	0.92		1.10	54.0	1.13	
Vane Size				0.90	44.1	0.92	
m				1.10	54.0	1.13	
			Average	1.03	50.7	1.06	

Failure Geometry

Sketch:

Photo:



Unconfined Compressive Strength ASTM D2166

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage

Unconfined Compression Test Graph

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	
0	0.81	0.0000	0.00	0.004153	0.0	0.00	0.00
10	1.15	0.2540	0.17	0.004160	17.1	4.12	2.06
20	1.54	0.5080	0.34	0.004167	36.8	8.83	4.42
30	1.97	0.7620	0.51	0.004174	58.5	14.01	7.00
40	2.51	1.0160	0.68	0.004181	85.7	20.49	10.25
50	3.03	1.2700	0.85	0.004188	111.9	26.72	13.36
60	3.46	1.5240	1.02	0.004196	133.6	31.84	15.92
70	3.88	1.7780	1.19	0.004203	154.7	36.82	18.41
80	4.21	2.0320	1.36	0.004210	171.4	40.71	20.35
90	4.52	2.2860	1.53	0.004217	187.0	44.34	22.17
100	4.76	2.5400	1.70	0.004225	199.1	47.13	23.56
110	4.99	2.7940	1.87	0.004232	210.7	49.79	24.89
120	5.19	3.0480	2.04	0.004239	220.8	52.08	26.04
130	5.38	3.3020	2.21	0.004247	230.3	54.24	27.12
140	5.56	3.5560	2.38	0.004254	239.4	56.28	28.14
150	5.71	3.8100	2.55	0.004261	247.0	57.96	28.98
160	5.85	4.0640	2.72	0.004269	254.0	59.51	29.75
170	6.00	4.3180	2.89	0.004276	261.6	61.17	30.59
180	6.14	4.5720	3.06	0.004284	268.6	62.71	31.36
190	6.26	4.8260	3.23	0.004291	274.7	64.01	32.01
200	6.36	5.0800	3.40	0.004299	279.7	65.07	32.54
210	6.47	5.3340	3.57	0.004306	285.3	66.25	33.12
220	6.56	5.5880	3.74	0.004314	289.8	67.18	33.59
230	6.65	5.8420	3.91	0.004322	294.4	68.11	34.06

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	6.71	6.0960	4.08	0.004329	297.4	68.69	34.35
250	6.81	6.3500	4.24	0.004337	302.4	69.73	34.87
260	6.85	6.6040	4.41	0.004345	304.4	70.07	35.04
270	6.93	6.8580	4.58	0.004352	308.5	70.87	35.44
280	6.96	7.1120	4.75	0.004360	310.0	71.09	35.55
290	7.02	7.3660	4.92	0.004368	313.0	71.66	35.83
300	7.04	7.6200	5.09	0.004376	314.0	71.76	35.88
310	7.07	7.8740	5.26	0.004384	315.5	71.98	35.99
320	7.09	8.1280	5.43	0.004391	316.5	72.08	36.04
330	7.09	8.3820	5.60	0.004399	316.5	71.95	35.98
340	7.12	8.6360	5.77	0.004407	318.0	72.16	36.08
350	7.12	8.8900	5.94	0.004415	318.0	72.03	36.02
360	7.13	9.1440	6.11	0.004423	318.5	72.02	36.01
370	7.12	9.3980	6.28	0.004431	318.0	71.77	35.89
380	7.11	9.6520	6.45	0.004439	317.5	71.53	35.77
390	7.09	9.9060	6.62	0.004447	316.5	71.17	35.59
400	7.07	10.1600	6.79	0.004455	315.5	70.82	35.41

Project No. Client Project	0022-186-00 Dillon Consulting Ltd. COW Transit Garage
Test Hole	TH23-05
Sample #	T47
Depth (m)	9.1 - 9.8
Sample Date	11-Oct-23
Test Date	09-Nov-23
Technician	AD

Recovery (mm)	270					
Bottom						Тор
9.41 m		9.2	29 m 9.2	27 m		9.14 m
	Кеер		Moisture Content PP/TV Visual		Toss	
	120 mm		20 mm		130 mm	
Visual Classif	fication			Moisture Conte	ent	
Material	CLAY		-	Tare ID		A104
Composition	silty		_	Mass tare (g)	-	8.4
•	ns (<10 mm diam.)		_	Mass wet + tare	(g)	228.6
			_	Mass dry + tare (160.2
			-	Moisture %	-	45.1%
			_	Unit Weight		
			_	Bulk Weight (g)	_	-
Color	grey					
Moisture	moist		_	Length (mm)	1	-
Consistency	firm				2	-
Plasticity	high plasticity				3	-
Structure	-				4	-
Gradation	-		_	Average Length	(m)	-
Torvane			_	Diam. (mm)	1	-
Reading		0.30	_		2	-
Vane Size (s,m,	I)	m	_		3	-
	ar Strength (kPa)	29.4	_		4	-
Pocket Penet	romotor			Average Diamete	er (m)	-
Reading		0.60	-	Volume (m ³)		-
Neaung	2	0.80	_	Bulk Unit Weight	+ (kN/m ³)	
	3	0.60	_	Bulk Unit Weight		
	S Average	0.63	-	Dry Unit Weight		
Undrained She	ar Strength (kPa)	31.1	_	Dry Unit Weight		
Unuraineu Shea		31.1	_	Dry Unit weight	(pci) _	-

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage
Test Hole	TH23-06
Sample #	T57
Depth (m)	6.1 - 6.7
Sample Date	12-Oct-23
Test Date	09-Nov-23
Technician	AD

Recovery (mm)	620			
Bottom				Тор
6.72 m	6.60 m	6.43 m	6.26 m	6.1 m
Moisture Co PP/TV Visual	ntent	Bulk Qu	Кеер	Toss
120 mm		170 mm	170 mm	160 mm
Visual Classi	fication		Moisture Content	
Material	CLAY		Tare ID	E86
Composition	silty		Mass tare (g)	6.8
trace silt inclusion	ons (<10 mm diam.)		Mass wet + tare (g)	360.2
			Mass dry + tare (g)	252.6
			Moisture %	43.8%
			Unit Weight	
			Bulk Weight (g)	1093.6
Color	grey			
Moisture	moist		Length (mm) 1	152.94
Consistency	firm		2	152.98
Plasticity	high plasticity		3	152.84
Structure	-		4	152.94
Gradation	-		Average Length (m)	0.153
Torvane			Diam. (mm) 1	72.22
Reading		0.55	2	72.65
Vane Size (s,m	,I)	m	- 3	72.10
• •	ar Strength (kPa)	53.9	4	72.59
			Average Diameter (m)	0.072
Pocket Pene	trometer			
Reading	1	1.20	Volume (m ³)	6.29E-04
	2	1.30	Bulk Unit Weight (kN/m ³)	17.0
	3	1.30	Bulk Unit Weight (pcf)	108.5
	Average	1.27	Dry Unit Weight (kN/m ³)	11.9
Undrained She	ar Strength (kPa)	62.1	Dry Unit Weight (pcf)	75.4

Project No. Client Project	0022-186-00 Dillon Consulting Ltd. COW Transit Garage			
Test Hole	TH23-06			
Sample #	T57			
Depth (m)	6.1 - 6.7	Unconfined	Strength	
Sample Date	12-Oct-23		kPa	ksf
Test Date	09-Nov-23	Max q _u	56.0	1.2
Technician	AD	Max S _u	28.0	0.6

Specimen Data

Description CLAY - silty, trace silt inclusions (<10 mm diam.), grey, moist, firm, high plasticity

Length	152.9	(mm)	Moisture %	44%	
Diameter	72.4	(mm)	Bulk Unit Wt.	17.0	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	11.9	(kN/m ³)
Initial Area	0.00412	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

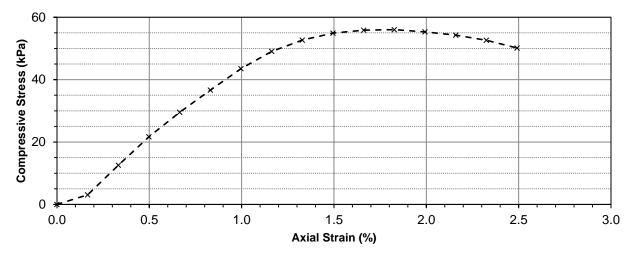
Undrained Shear Strength Tests

Torvane			Po	Pocket Penetrometer			
Reading	Undrained SI	hear Strength	Re	ading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf		kPa	ksf	
0.55	53.9	1.13		1.20	58.9	1.23	
Vane Size				1.30	63.8	1.33	
m				1.30	63.8	1.33	
			Average	1.27	62.1	1.30	

Failure Geometry

Sketch:

slickensides 45° Photo:



Unconfined Compressive Strength ASTM D2166

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage

Unconfined Compression Test Graph

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0.71	0.0000	0.00	0.004116	0.0	0.00	0.00
10	0.96	0.2540	0.17	0.004123	12.6	3.06	1.53
20	1.74	0.5080	0.33	0.004129	51.9	12.57	6.29
30	2.49	0.7620	0.50	0.004136	89.7	21.69	10.85
40	3.14	1.0160	0.66	0.004143	122.5	29.56	14.78
50	3.73	1.2700	0.83	0.004150	152.2	36.68	18.34
60	4.30	1.5240	1.00	0.004157	180.9	43.53	21.76
70	4.76	1.7780	1.16	0.004164	204.1	49.02	24.51
80	5.07	2.0320	1.33	0.004171	219.8	52.68	26.34
90	5.26	2.2860	1.49	0.004178	229.3	54.89	27.44
100	5.35	2.5400	1.66	0.004185	233.9	55.88	27.94
110	5.37	2.7940	1.83	0.004192	234.9	56.03	28.01
120	5.32	3.0480	1.99	0.004199	232.4	55.33	27.67
130	5.24	3.3020	2.16	0.004207	228.3	54.28	27.14
140	5.11	3.5560	2.33	0.004214	221.8	52.63	26.32
150	4.91	3.8100	2.49	0.004221	211.7	50.15	25.08

Project No. Client Project	0022-186-00 Dillon Consulting Ltd. COW Transit Garage
Test Hole	TH23-06
Sample #	T59
Depth (m)	9.1 - 9.8
Sample Date	12-Oct-23
Test Date	09-Nov-23
Technician	AD

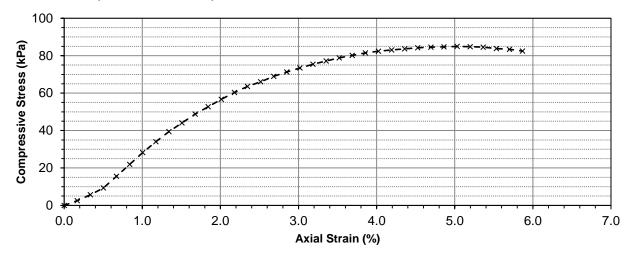
Recovery (mm	b) 660					
Bottom						Тор
9.8 m	9.70 m	9.53 m	9.3	36 m		9.14 m
Moisture Content PP/TV Visual	Bulk Qu		Кеер		Toss	
100 mm	, 170 mm		170 mm		220 mm	
Visual Class	sification		Moisture Co	ntent		
Material	CLAY		Tare ID	ment		AB69
Composition	silty		Mass tare (g)			6.8
trace sand	Silty		Mass wet + ta	ure (a)		262.2
trace gravel (<	20 mm diam)		Mass dry + ta			175.8
	ions (<5 mm diam.)		Moisture %	(9)		51.1%
			Unit Weight			
			Bulk Weight (1261.4
Color	grey					
Moisture	moist		Length (mm)	1		151.61
Consistency	firm			2		151.16
Plasticity	high plasticity			3		151.54
Structure	varved (clay and clay	with silt inclusions, 15 m	m thickness)	4		151.64
Gradation			Average Leng	ıth (m)		0.151
Torvane			Diam. (mm)	1		72.47
Reading		0.45	()	2		72.78
Vane Size (s,n	n,l)	m		3		72.13
• •	ear Strength (kPa)	44.1		4		72.33
	• • • <u> </u>		Average Diam	eter (m)		0.072
Pocket Pene	etrometer		-			
Reading	1	1.10	Volume (m ³)		6	6.24E-04
-	2	1.00	Bulk Unit Wei	ght (kN/m ³)		19.8
	3	1.10	Bulk Unit Wei			126.2
	Average	1.07	Dry Unit Weig			13.1

Project No. Client Project	0022-186-00 Dillon Consult COW Transit	•					
- Test Hole	TH23-06	0					
Sample #	T59						
Depth (m)	9.1 - 9.8				Unconfine	d Strength	
Sample Date						kPa	ksf
Test Date	09-Nov-23				Max q _u	84.9	1.8
Technician	AD				Max S _u	42.5	0.9
Specimen I	Data						
<u> </u>							
Description		race sand, trace gra , varved (clay and c				5 mm diam.), grey, n	noist, firm,
				CIUSIONS. TO MIM	(IIICKIIESS)		
	nigh plasticity,	, valveu (clay allu c	ay with one m	,	,		
			-				
Length	151.5	(mm)	I	Moisture %	51%	3	
Diameter	151.5 72.4			Moisture % Bulk Unit Wt.	51% 19.8	(kN/m ³)	
Diameter L/D Ratio	151.5 72.4 2.1	(mm) (mm)		Moisture % Bulk Unit Wt. Dry Unit Wt.	51%	(kN/m ³) (kN/m ³)	
Diameter L/D Ratio Initial Area	151.5 72.4 2.1 0.00412	(mm) (mm) (m ²)		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit	51% 19.8	· ·	
Diameter L/D Ratio	151.5 72.4 2.1	(mm) (mm)		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit	51% 19.8 13.1 -	· ·	
Diameter L/D Ratio Initial Area	151.5 72.4 2.1 0.00412	(mm) (mm) (m ²)		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit	51% 19.8 13.1 -	· ·	
Diameter L/D Ratio Initial Area Load Rate	151.5 72.4 2.1 0.00412 1.00	(mm) (mm) (m ²) (%/min)		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit	51% 19.8 13.1 -	· ·	
Diameter L/D Ratio Initial Area Load Rate	151.5 72.4 2.1 0.00412	(mm) (mm) (m ²) (%/min)		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit	51% 19.8 13.1 - -	· ·	
Diameter L/D Ratio Initial Area Load Rate Undrained Torvane	151.5 72.4 2.1 0.00412 1.00 Shear Streng	(mm) (mm) (m ²) (%/min) th Tests		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit Plasticity Index Pocket Penet	51% 19.8 13.1 - - - rometer	(kN/m ³)	
Diameter L/D Ratio Initial Area Load Rate Undrained	151.5 72.4 2.1 0.00412 1.00 Shear Streng	(mm) (mm) (m ²) (%/min)		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit Plasticity Index	51% 19.8 13.1 - - - rometer	· ·	
Diameter L/D Ratio Initial Area Load Rate Undrained Torvane Reading	151.5 72.4 2.1 0.00412 1.00 Shear Streng Undrained S	(mm) (mm) (m ²) (%/min) th Tests		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit Plasticity Index Pocket Penet Reading	51% 19.8 13.1 - - Tometer Undraine	(kN/m ³)	
Diameter L/D Ratio Initial Area Load Rate Undrained Torvane Reading tsf	151.5 72.4 2.1 0.00412 1.00 Shear Streng Undrained S kPa	(mm) (mm) (m ²) (%/min) th Tests Shear Strength ksf		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit Plasticity Index Pocket Penet Reading tsf	51% 19.8 13.1 - - - rometer Undraine kPa	(kN/m ³) d Shear Strength ksf	
Diameter L/D Ratio Initial Area Load Rate Undrained Torvane Reading tsf 0.45	151.5 72.4 2.1 0.00412 1.00 Shear Streng Undrained S kPa	(mm) (mm) (m ²) (%/min) th Tests Shear Strength ksf		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit Plasticity Index Pocket Penet Reading tsf 1.10	51% 19.8 13.1 - - - rometer Undrainee kPa 54.0	(kN/m ³) d Shear Strength ksf 1.13	

Failure Geometry

Sketch:

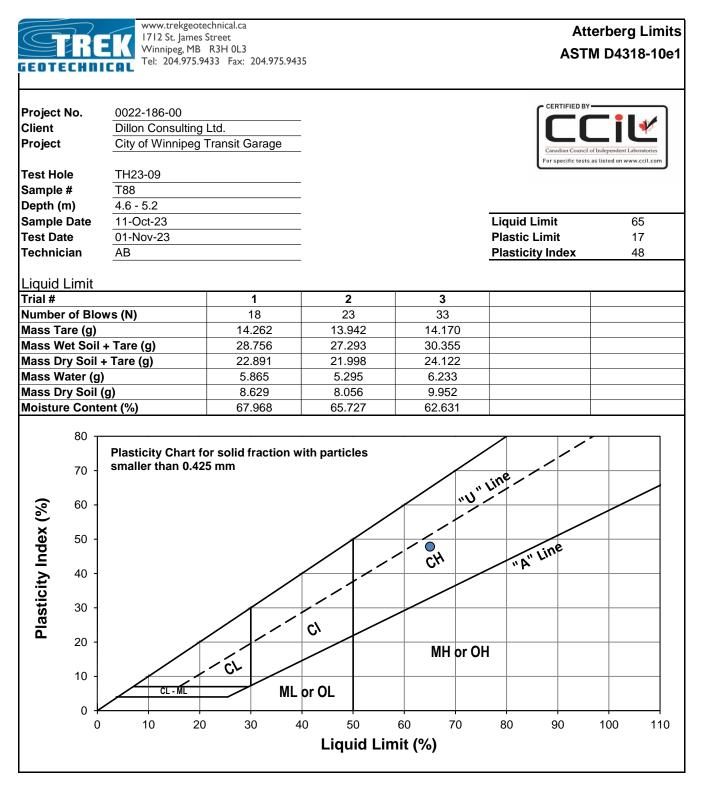
Photo:



Unconfined Compressive Strength ASTM D2166

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage

Unconfined Compression Test Graph


Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	
0	0.72	0.0000	0.00	0.004120	0.0	0.00	0.00
10	0.93	0.2540	0.17	0.004127	10.6	2.56	1.28
20	1.19	0.5080	0.34	0.004134	23.7	5.73	2.87
30	1.49	0.7620	0.50	0.004141	38.8	9.37	4.69
40	2.00	1.0160	0.67	0.004148	64.5	15.55	7.78
50	2.53	1.2700	0.84	0.004155	91.2	21.96	10.98
60	3.05	1.5240	1.01	0.004162	117.4	28.22	14.11
70	3.54	1.7780	1.17	0.004169	142.1	34.09	17.05
80	3.99	2.0320	1.34	0.004176	164.8	39.47	19.73
90	4.38	2.2860	1.51	0.004183	184.5	44.10	22.05
100	4.78	2.5400	1.68	0.004190	204.6	48.84	24.42
110	5.11	2.7940	1.84	0.004197	221.3	52.72	26.36
120	5.45	3.0480	2.01	0.004205	238.4	56.70	28.35
130	5.76	3.3020	2.18	0.004212	254.0	60.31	30.16
140	6.04	3.5560	2.35	0.004219	268.1	63.56	31.78
150	6.26	3.8100	2.52	0.004226	279.2	66.07	33.04
160	6.51	4.0640	2.68	0.004234	291.8	68.93	34.47
170	6.72	4.3180	2.85	0.004241	302.4	71.31	35.66
180	6.91	4.5720	3.02	0.004248	312.0	73.44	36.72
190	7.09	4.8260	3.19	0.004256	321.1	75.45	37.72
200	7.25	5.0800	3.35	0.004263	329.1	77.21	38.60
210	7.40	5.3340	3.52	0.004270	336.7	78.84	39.42
220	7.52	5.5880	3.69	0.004278	342.7	80.12	40.06
230	7.65	5.8420	3.86	0.004285	349.3	81.51	40.76

Project No.0022-186-00ClientDillon Consulting Ltd.ProjectCOW Transit Garage

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	7.74	6.0960	4.02	0.004293	353.8	82.42	41.21
250	7.81	6.3500	4.19	0.004300	357.4	83.10	41.55
260	7.87	6.6040	4.36	0.004308	360.4	83.66	41.83
270	7.93	6.8580	4.53	0.004315	363.4	84.21	42.11
280	7.97	7.1120	4.69	0.004323	365.4	84.53	42.27
290	8.00	7.3660	4.86	0.004331	366.9	84.73	42.37
300	8.03	7.6200	5.03	0.004338	368.4	84.93	42.47
310	8.03	7.8740	5.20	0.004346	368.4	84.78	42.39
320	8.02	8.1280	5.37	0.004354	367.9	84.51	42.26
330	7.97	8.3820	5.53	0.004361	365.4	83.79	41.89
340	7.95	8.6360	5.70	0.004369	364.4	83.41	41.70
350	7.88	8.8900	5.87	0.004377	360.9	82.45	41.23

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	14.038	13.998			
Mass Wet Soil + Tare (g)	21.935	23.237			
Mass Dry Soil + Tare (g)	20.748	21.907			
Mass Water (g)	1.187	1.330			
Mass Dry Soil (g)	6.710	7.909			
Moisture Content (%)	17.690	16.816			

Note: Additional information recorded/measured for this test is available upon request.

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage
Test Hole	TH23-09
Sample #	T88
Depth (m)	4.6 - 5.2
Sample Date	13-Oct-23
Test Date	02-Nov-23
Technician	PC

Recovery (mm	620			
Bottom				Тор
5.19 m 5.01 m		4.85 m	4.77 m	4.57 m
Toss	Кеер	Bulk Qu	Moisture Content PP/TV Visual	Toss
20 mm	160 mm	160 mm	80 mm	200 mm
Visual Class	ification		Moisture Content	
Material	CLAY		Tare ID	G1
Composition	silty		Mass tare (g)	82.2
•	ons (<15 mm diam.)		Mass wet + tare (g)	542.7
trace precipitate	es (sulphates <15 mm diam	າ.)	Mass dry + tare (g)	402.5
trace rootlets		· · · · · · · · · · · · · · · · · · ·	Moisture %	43.8%
			Unit Weight	
			Bulk Weight (g)	1055.6
Color	brown			
Moisture	moist		Length (mm) 1	150.03
Consistency	firm		2	150.38
Plasticity	high plasticity		3	149.76
Structure	stratified silt and clay (<	10 mm thick)	4	150.05
Gradation	-		Average Length (m)	0.150
Torvane			Diam. (mm) 1	72.55
Reading		0.45	2	72.71
Vane Size (s,m	n,l)	m	3	72.54
•	ear Strength (kPa)	44.1	4	72.62
Dookot Door			Average Diameter (m)	0.073
Pocket Pene Reading	1	0.90	Volume (m ³)	6.21E-04
Reauting	2	0.80	Bulk Unit Weight (kN/m ³)	16.7
	3	0.80	Bulk Unit Weight (kN/m) Bulk Unit Weight (pcf)	106.1
	S Average	0.90	Dry Unit Weight (kN/m ³)	11.6
Undrained Sh	ear Strength (kPa)	42.5	Dry Unit Weight (kN/m [*]) Dry Unit Weight (pcf)	73.8
Shurameu She		42.0		73.0

Project No. Client Project	0022-186-00 Dillon Consul COW Transit	lting Ltd.					
Test Hole	TH23-09						
Sample #	T88						
Depth (m)	4.6 - 5.2				Linconfino	d Strength	
Sample Date				-	Uncomme	kPa	ksf
Test Date	02-Nov-23				Max q _u	40.9	0.9
Technician	PC				Max Qu Max Su	20.5	0.9
rechnician	10			-		20.5	0.4
Specimen [Data						
-				\	te e <i>l</i> e che bete	4 5	
Description	CLAT - Silly,	lace sill inclusions i	(<15 mm ulam.), trace precipita	ites (suiphate	es <15 mm diam.), tr	ace roollets,
	brown moist		stratified silt a	nd day (<10 mm	a thick)		
	brown, moist,	, firm, high plasticity,	, stratified silt a	nd clay (<10 mm	n thick)		
		, firm, high plasticity,			·		
-	150.1	, firm, high plasticity, (mm)	Μ	loisture %	44%	2	
Diameter	150.1 72.6	, firm, high plasticity,	M	loisture % Sulk Unit Wt.	44% 16.7	(kN/m ³)	
Diameter L/D Ratio	150.1 72.6 2.1	, firm, high plasticity, (mm) (mm)	M B D	loisture % Bulk Unit Wt. Pry Unit Wt.	44% 16.7 11.6	(kN/m ³) (kN/m ³)	
Diameter L/D Ratio Initial Area	150.1 72.6 2.1 0.00414	, firm, high plasticity, (mm) (mm) (m ²)	M B D L	loisture % Bulk Unit Wt. Dry Unit Wt. iquid Limit	44% 16.7 11.6 65	· ·	
L/D Ratio	150.1 72.6 2.1	, firm, high plasticity, (mm) (mm)	M B D L P	loisture % Bulk Unit Wt. Dry Unit Wt. iquid Limit Plastic Limit	44% 16.7 11.6 65 14	· ·	
Diameter L/D Ratio Initial Area	150.1 72.6 2.1 0.00414	, firm, high plasticity, (mm) (mm) (m ²)	M B D L P	loisture % Bulk Unit Wt. Dry Unit Wt. iquid Limit	44% 16.7 11.6 65	· ·	
Diameter L/D Ratio Initial Area Load Rate	150.1 72.6 2.1 0.00414 1.00	, firm, high plasticity, (mm) (mm) (m ²) (%/min)	M B D L P	loisture % Bulk Unit Wt. Dry Unit Wt. iquid Limit Plastic Limit	44% 16.7 11.6 65 14	· ·	
Diameter L/D Ratio Initial Area Load Rate Undrained S	150.1 72.6 2.1 0.00414	, firm, high plasticity, (mm) (mm) (m ²) (%/min)	M B D L P P	loisture % Bulk Unit Wt. Dry Unit Wt. iquid Limit Plastic Limit Plasticity Index	44% 16.7 11.6 65 14 48	· ·	
Diameter L/D Ratio Initial Area Load Rate Undrained S Torvane	150.1 72.6 2.1 0.00414 1.00 Shear Streng	, firm, high plasticity, (mm) (mm) (m²) (%/min) gth Tests	M B D L P P	loisture % Bulk Unit Wt. Dry Unit Wt. iquid Limit Pastic Limit Pasticity Index	44% 16.7 11.6 65 14 48 ometer	(kN/m ³)	
Diameter L/D Ratio Initial Area Load Rate Undrained S Torvane Reading	150.1 72.6 2.1 0.00414 1.00 Shear Streng	, firm, high plasticity, (mm) (mm) (m ²) (%/min) gth Tests Shear Strength	M B D P P P R	loisture % sulk Unit Wt. iquid Limit lastic Limit lasticity Index Pocket Penetro	44% 16.7 11.6 65 14 48 ometer	(kN/m ³)	
Diameter L/D Ratio Initial Area Load Rate Undrained S Torvane Reading tsf	150.1 72.6 2.1 0.00414 1.00 Shear Streng Undrained S kPa	, firm, high plasticity, (mm) (mm) (m ²) (%/min) gth Tests Shear Strength ksf	M B D P P P R	loisture % Bulk Unit Wt. Iguid Limit Pastic Limit Pasticity Index Pocket Penetre Reading	44% 16.7 11.6 65 14 48 ometer Undrainee kPa	(kN/m ³) d Shear Strength ksf	
Diameter L/D Ratio Initial Area Load Rate Undrained S Torvane Reading tsf 0.45	150.1 72.6 2.1 0.00414 1.00 Shear Streng	, firm, high plasticity, (mm) (mm) (m ²) (%/min) gth Tests Shear Strength	M B D P P P R	loisture % Bulk Unit Wt. iquid Limit Plastic Limit Plasticity Index Pocket Penetro reading sf 0.90	44% 16.7 11.6 65 14 48 ometer Undrainee kPa 44.1	(kN/m ³) d Shear Strength ksf 0.92	
Diameter L/D Ratio Initial Area Load Rate Undrained S Torvane Reading tsf	150.1 72.6 2.1 0.00414 1.00 Shear Streng Undrained S kPa	, firm, high plasticity, (mm) (mm) (m ²) (%/min) gth Tests Shear Strength ksf	M B D P P P R	loisture % Bulk Unit Wt. iquid Limit Pastic Limit Pasticity Index Pocket Penetro Reading Sf 0.90 0.80	44% 16.7 11.6 65 14 48 ometer Undrainee kPa 44.1 39.2	(kN/m ³) d Shear Strength ksf 0.92 0.82	
Diameter L/D Ratio Initial Area Load Rate Undrained S Torvane Reading tsf 0.45	150.1 72.6 2.1 0.00414 1.00 Shear Streng Undrained S kPa	, firm, high plasticity, (mm) (mm) (m ²) (%/min) gth Tests Shear Strength ksf	M B D P P P R	loisture % Bulk Unit Wt. iquid Limit Plastic Limit Plasticity Index Pocket Penetro reading sf 0.90	44% 16.7 11.6 65 14 48 ometer Undrainee kPa 44.1	(kN/m ³) d Shear Strength ksf 0.92	

Failure Geometry

Sketch:

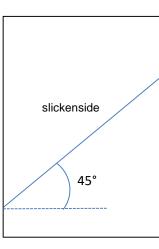
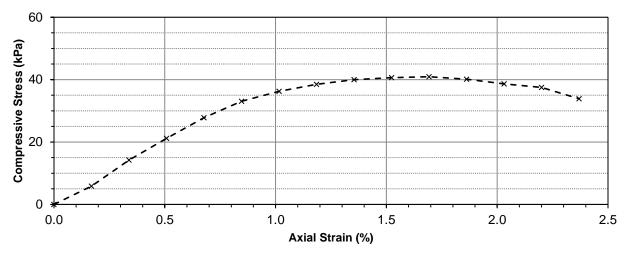


Photo:



Unconfined Compressive Strength ASTM D2166

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage

Unconfined Compression Test Graph

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0.78	0.0000	0.00	0.004140	0.0	0.00	0.00
10	1.26	0.2540	0.17	0.004147	24.2	5.83	2.92
20	1.95	0.5080	0.34	0.004154	59.0	14.20	7.10
30	2.53	0.7620	0.51	0.004161	88.2	21.20	10.60
40	3.08	1.0160	0.68	0.004168	115.9	27.81	13.91
50	3.52	1.2700	0.85	0.004176	138.1	33.07	16.54
60	3.79	1.5240	1.02	0.004183	151.7	36.27	18.14
70	3.98	1.7780	1.18	0.004190	161.3	38.50	19.25
80	4.11	2.0320	1.35	0.004197	167.8	39.99	20.00
90	4.17	2.2860	1.52	0.004204	170.9	40.64	20.32
100	4.20	2.5400	1.69	0.004212	172.4	40.93	20.47
110	4.14	2.7940	1.86	0.004219	169.4	40.14	20.07
120	4.02	3.0480	2.03	0.004226	163.3	38.64	19.32
130	3.93	3.3020	2.20	0.004233	158.8	37.50	18.75
140	3.63	3.5560	2.37	0.004241	143.6	33.87	16.94

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage
Test Hole	TH23-09
Sample #	T90
Depth (m)	7.6 - 8.2
Sample Date	13-Oct-23
Test Date	09-Nov-23
Technician	DS

Recove	ery (mm)	610					
Botton							Тор
8.23 m	8.20 m		7.	94 m	7.78 m	7.62	62 m
Toss		Moisture Content PP/TV Visual		Kee	q	Bulk Qu	
30 mm		265 mm		160 n	nm	155 mm	
	l Classifi	cation		Moistu	re Content		
Materia	al	CLAY		Tare ID		[D42
Compo		silty		Mass ta			8.6
some s					/et + tare (g)	28	89.8
some g	gravel (<20) mm diam.)			ry + tare (g)	22	23.4
		s (<15 mm diam.)		Moistu		30.).9%
				Unit W	/eight		
					eight (g)	118	87.2
Color		brown		Duik			01.2
Moistu	ire	moist		Length	(mm) 1	145	5.30
Consis		firm		Longin	2		5.79
Plastic	-	high plasticity			3		5.05
Structi	-	stratified silt and clay (<	10 mm thick)		4		5.16
Gradat		-		Average	e Length (m)		.145
Torva	ne			Diam. (mm) 1	71	1.98
Readin			0.45		2	72	2.66
Vane S	Size (s,m,l)		m		3	72	2.90
Undrai	ned Shear	Strength (kPa)	44.1		4	72	2.10
Dooks	et Penetr	omotor		Average	e Diameter (m)	0.0	.072
Readin		1	0.80	Volume	(m^{3})	5.98E	E-∪⁄
Cauli	9	2	0.90		e (m) nit Weight (kN/m ³)		19.5
		3	0.90		nit Weight (pcf)		23.8
		S Average	0.90		it Weight (kN/m ³)		23.8 14.9
Undrai	ned Shear	Strength (kPa)	42.5		it Weight (pcf)		94.6
Unural	neu Siledi		42.0				34.0

Project No. Client	0022-186-00 Dillon Consulting Ltd.				
Project	COW Transit Garage				
Test Hole	TH23-09				
Sample #	Т90				
Depth (m)	7.6 - 8.2	Unconfined	Strength		
Sample Date	13-Oct-23		kPa	ksf	
Test Date	09-Nov-23	Max q _u	73.3	1.5	
Technician	DS	Max S _u	36.6	0.8	
Specimen [Data				
Description	CLAY - silty, some sand, some gravel (<2	0 mm diam.), trace silt inclusions (<1	5 mm diam.), bro	wn, moist, firm,	

high plasticity, stratified silt and clay (<10 mm thick)

Length	145.3	(mm)	Moisture %	31%	
Diameter	72.4	(mm)	Bulk Unit Wt.	19.5	(kN/m ³)
L/D Ratio	2.0		Dry Unit Wt.	14.9	(kN/m ³)
Initial Area	0.00412	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Po	Pocket Penetrometer			
Reading	Undrained S	hear Strength	Re	ading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf		kPa	ksf	
0.45	44.1	0.92		0.80	39.2	0.82	
Vane Size				0.90	44.1	0.92	
m				0.90	44.1	0.92	
			Average	0.87	42.5	0.89	

Failure Geometry

Sketch:

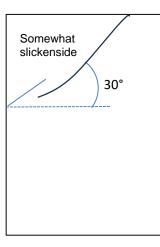
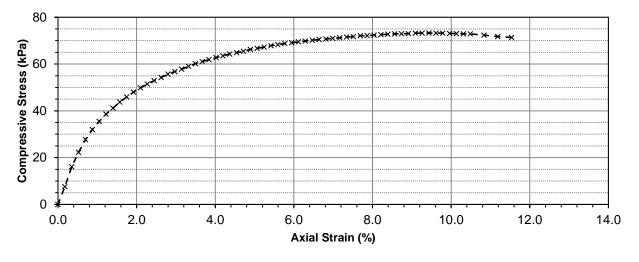


Photo:



Unconfined Compressive Strength ASTM D2166

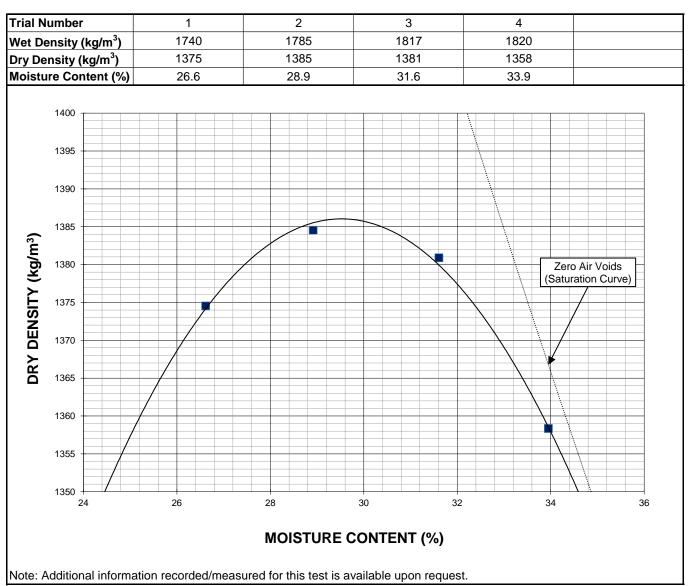
Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage

Unconfined Compression Test Graph

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	
0	0.74	0.0000	0.00	0.004118	0.0	0.00	0.00
10	1.36	0.2540	0.17	0.004125	31.2	7.58	3.79
20	2.06	0.5080	0.35	0.004132	66.5	16.10	8.05
30	2.57	0.7620	0.52	0.004140	92.2	22.28	11.14
40	3.02	1.0160	0.70	0.004147	114.9	27.71	13.86
50	3.38	1.2700	0.87	0.004154	133.1	32.03	16.02
60	3.67	1.5240	1.05	0.004162	147.7	35.49	17.74
70	3.93	1.7780	1.22	0.004169	160.8	38.57	19.28
80	4.15	2.0320	1.40	0.004176	171.9	41.15	20.58
90	4.37	2.2860	1.57	0.004184	183.0	43.73	21.87
100	4.56	2.5400	1.75	0.004191	192.5	45.94	22.97
110	4.74	2.7940	1.92	0.004199	201.6	48.02	24.01
120	4.90	3.0480	2.10	0.004206	209.7	49.85	24.92
130	5.04	3.3020	2.27	0.004214	216.7	51.43	25.72
140	5.17	3.5560	2.45	0.004221	223.3	52.89	26.45
150	5.29	3.8100	2.62	0.004229	229.3	54.23	27.12
160	5.42	4.0640	2.80	0.004236	235.9	55.68	27.84
170	5.52	4.3180	2.97	0.004244	240.9	56.77	28.38
180	5.62	4.5720	3.15	0.004252	246.0	57.85	28.93
190	5.73	4.8260	3.32	0.004259	251.5	59.05	29.52
200	5.83	5.0800	3.50	0.004267	256.6	60.12	30.06
210	5.92	5.3340	3.67	0.004275	261.1	61.07	30.54
220	6.00	5.5880	3.85	0.004283	265.1	61.91	30.95
230	6.08	5.8420	4.02	0.004290	269.2	62.73	31.37

Project No.	0022-186-00
Client	Dillon Consulting Ltd.
Project	COW Transit Garage

Unconfined Compression Test Data (cont'd)


Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	
240	6.16	6.0960	4.19	0.004298	273.2	63.56	31.78
250	6.23	6.3500	4.37	0.004306	276.7	64.26	32.13
260	6.29	6.6040	4.54	0.004314	279.7	64.84	32.42
270	6.35	6.8580	4.72	0.004322	282.8	65.42	32.71
280	6.43	7.1120	4.89	0.004330	286.8	66.24	33.12
290	6.48	7.3660	5.07	0.004338	289.3	66.69	33.35
300	6.54	7.6200	5.24	0.004346	292.3	67.27	33.63
310	6.60	7.8740	5.42	0.004354	295.4	67.84	33.92
320	6.65	8.1280	5.59	0.004362	297.9	68.29	34.15
330	6.70	8.3820	5.77	0.004370	300.4	68.74	34.37
340	6.74	8.6360	5.94	0.004378	302.4	69.07	34.54
350	6.79	8.8900	6.12	0.004386	304.9	69.52	34.76
360	6.83	9.1440	6.29	0.004395	307.0	69.85	34.92
370	6.87	9.3980	6.47	0.004403	309.0	70.18	35.09
380	6.91	9.6520	6.64	0.004411	311.0	70.50	35.25
390	6.94	9.9060	6.82	0.004419	312.5	70.71	35.36
400	6.98	10.1600	6.99	0.004428	314.5	71.04	35.52
410	7.01	10.4140	7.17	0.004436	316.0	71.24	35.62
420	7.05	10.6680	7.34	0.004444	318.0	71.56	35.78
430	7.08	10.9220	7.52	0.004453	319.6	71.77	35.88
440	7.12	11.1760	7.69	0.004461	321.6	72.08	36.04
450	7.14	11.4300	7.87	0.004470	322.6	72.17	36.09
460	7.17	11.6840	8.04	0.004478	324.1	72.37	36.19
470	7.20	11.9380	8.21	0.004487	325.6	72.57	36.29
480	7.23	12.1920	8.39	0.004495	327.1	72.77	36.39
490	7.25	12.4460	8.56	0.004504	328.1	72.86	36.43
500	7.27	12.7000	8.74	0.004512	329.1	72.94	36.47
510	7.29	12.9540	8.91	0.004521	330.1	73.02	36.51
520	7.32	13.2080	9.09	0.004530	331.7	73.22	36.61
530	7.33	13.4620	9.26	0.004538	332.2	73.19	36.59
540	7.35	13.7160	9.44	0.004547	333.2	73.27	36.63
550	7.36	13.9700	9.61	0.004556	333.7	73.24	36.62
560	7.37	14.2240	9.79	0.004565	334.2	73.21	36.60
570	7.37	14.4780	9.96	0.004574	334.2	73.06	36.53
580	7.38	14.7320	10.14	0.004583	334.7	73.03	36.52
590	7.38	14.9860	10.31	0.004591	334.7	72.89	36.45
600	7.39	15.2400	10.49	0.004600	335.2	72.86	36.43
620	7.37	15.7480	10.84	0.004618	334.2	72.36	36.18
640	7.34	16.2560	11.19	0.004637	332.7	71.75	35.87
660	7.33	16.7640	11.54	0.004655	332.2	71.35	35.68

Project No. Client Project	0022-186-00 Dillon Consulting Ltd City of Winnipeg Transit Garage
Sample #	R23-530
Source	TH23-02 and TH23-01 (combined)
Material	Clay
Sample Date	11-Oct-23
Test Date	26-Oct-23
Technician	AD

1386
29.5

Project No. Client Project Sample #	0022-186-00 Dillon Consultin City of Winnipe Bulk Sample	ng eg Transit Garage	Source Material Sample Date Test Date Technician	TH23-01 and TH23-02 (Combined) Clay 2023-10-11 2023-10-31 AD
Proctor Results (AS	<u>STM D698)</u>		CBR Sample Compac	tion
Maximum Dry Densi	ty	1386 kg/m3	Dry Density	1322 kg/m3
Optimum Moisture C	Content	29.5 %	Initial Moisture Content	30.7 %
Material Retained or	n 19 mm Sieve	0.0 %	Relative Density	95.4 % SPMDD
Soaking Results			CBR Results	
Surcharge		4.54 kg	CBR at 2.54 mm	1.7 %
Swell		2.6 %	CBR at 5.08 mm	1.2 %
Moisture Content in	top 25 mm	50.6 %	Zero Correction	0 mm
Immersion Period		96 h		

	Test Data		Load/Penetration Curve
Penetration (mm)	Measured Pressure (MPa)	Corrected Pressure (MPa)	0.18
0.64	0.03	0.03	0.16
1.27	0.07	0.07	0.14 0.12 0.10
1.91	0.10	0.10	
2.54	0.12	0.12	
3.18	0.13	0.13	S 0.08
3.81	0.13	0.13	
4.45	0.13	0.13	
5.08	0.12	0.12	
7.62	0.13	0.13	0.00
10.16	0.14	0.14	0 2 4 6 8 10 12 14 16
12.70	0.15	0.15	Penetration (mm)

Comments:

CHNICAL Quality Engineering | Valued Relationships

Date	November 9, 2023
То	Michael Van Helden, TREK Geotechnical
From	Sepehr Chalajour, TREK Geotechnical
Project No.	0022-186-00
Project	City of Winnipeg Transit Garage
Subject	Laboratory Testing Results – Lab Req. R23-530
Distribution	Brent Hay

Attached are the Unconfined Compressive Strength (UCS) testing results for the above noted project. The testing included moisture content determinations, unit weight and unconfined compressive strength.

Regards,

Sepehr Chalajour M.Sc. EIT, PhD Candidate.

Attach.

Review Control:

Prepared By: SC Reviewed By: AF Checked By: NJF

Project No.	0022-186-00
Client	Dillom Consulting Ltd.
Project	City of Winnnipeg Transit Garage
Test Hole	TH23-09
Sample #	C98A
Depth (m)	16.0 - 16.2
Sample Date	Oct 13,2023
Test Date	Nov 8,2023
Technician	SC

Tube Extraction

Recovery (mm) 165

Bottom - 16.17 m

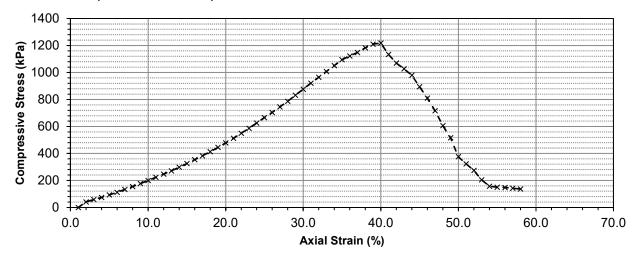
Top - 16 m

Visual Classification

Material	SHALE	
Composition		
Color	<u>-</u>	
Moisture	-	
Consistency	-	
Plasticity	-	
Structure	-	
Gradation	-	
Torvane		
Reading		max
Vane Size (s,m	,I)	S
Undrained She	ear Strength (kPa)	-
Pocket Pene	trometer	
Reading	1	max
	2	max
	3	max
	-	
	Average	-

Moisture Conten	t
Tare ID	D12
Mass tare (g)	8.4
Mass wet + tare (g)	180.8
Mass dry + tare (g)	164.6
Moisture %	10.4%
Unit Weight	
Bulk Weight (g)	975.4
Length (mm) 1	128.97
2	129.12
3	129.04
4	129.37
Average Length (m	0.129
Diam. (mm) 1	62.83
2	63.36
3	62.91
4	63.71
Average Diameter (m) 0.063
X 1 (3)	
Volume (m ³)	4.05E-04
Bulk Unit Weight (k	
Bulk Unit Weight (p	-
Dry Unit Weight (kN	
Dry Unit Weight (po	f) 136.2

Project No. Client Project	0022-186-00 Dillom Consu City of Winnn	lting Ltd. ipeg Transit Garag	je				
Test Hole Sample # Depth (m)	TH23-09 C98A 16.0 - 16.2				Unconfine	d Strength	
Sample Date Test Date Technician	Oct 13,2023 Nov 8,2023 SC				Max q _u Max S _u	kPa 1220.6 610.3	ksf 25.5 12.7
Specimen E	Data						
Description	Shale						
Length Diameter L/D Ratio Initial Area Load Rate	129.1 63.2 2.0 0.00314 1.00	(mm) (mm) (m ²) (%/min)		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit Plasticity Index	10% 23.6 21.4 - -	(kN/m ³) (kN/m ³)	
	Shear Streng	gth Tests					
Torvane				Pocket Penet			
Reading tsf	Undrained S kPa	Shear Strength ksf		Reading tsf	Undraine kPa	d Shear Strength ksf	
max Vane Size s	-	-	Average	max max max	- - -	- - -	
Failure Geo	ometry						
Sketch:		F	Photo:				



Unconfined Compressive Strength ASTM D2166

Project No.	0022-186-00
Client	Dillom Consulting Ltd.
Project	City of Winnnipeg Transit Garage

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	
0.00	-	0.00	0.00	0.00314	0	0.0	0.0
0.08	-	0.08	0.06	0.00314	127	40.5	20.2
0.17	-	0.17	0.13	0.00314	183	58.3	29.1
0.27	-	0.27	0.21	0.00314	235	74.7	37.4
0.37	-	0.37	0.28	0.00315	293	93.1	46.6
0.46	-	0.46	0.36	0.00315	354	112.4	56.2
0.56	-	0.56	0.43	0.00315	420	133.3	66.6
0.65	-	0.65	0.50	0.00315	488	154.8	77.4
0.75	-	0.75	0.58	0.00316	558	176.8	88.4
0.84	-	0.84	0.65	0.00316	630	199.5	99.8
0.93	-	0.93	0.72	0.00316	703	222.5	111.2
1.02	-	1.02	0.79	0.00316	780	246.7	123.3
1.11	-	1.11	0.86	0.00316	859	271.4	135.7
1.20	-	1.20	0.93	0.00317	943	297.8	148.9
1.29	-	1.29	1.00	0.00317	1030	325.0	162.5
1.38	-	1.38	1.07	0.00317	1121	353.5	176.8
1.47	-	1.47	1.14	0.00317	1214	382.5	191.3
1.56	-	1.56	1.21	0.00318	1312	413.1	206.6
1.65	-	1.65	1.28	0.00318	1414	444.9	222.5
1.74	-	1.74	1.35	0.00318	1522	478.6	239.3
1.83	-	1.83	1.42	0.00318	1633	513.1	256.6
1.92	-	1.92	1.49	0.00318	1749	549.2	274.6
2.01	-	2.01	1.56	0.00319	1870	586.8	293.4
2.10	-	2.10	1.63	0.00319	1995	625.5	312.8

ECHNICAL Quality Engineering | Valued Relationships

Date	October 23, 2023
То	Tyler Chapko, TREK Geotechnical
From	Angela Fidler-Kliewer, TREK Geotechnical
Project No.	0022-186-00
Project	City of Winnipeg Transit Garage
Subject	Laboratory Testing Results – Lab Req. R23-525
Distribution	Michael Van Helden

Attached are the laboratory testing results for the above noted project. The testing included unconfined compression test on a shale core sample.

Regards,

Angela Fidler-Kliewer, C.Tech.,

Attach.

Review Control:

Prepared By: AFK Reviewed By: AFK Checked By: NJF

Project No.	0022-186-00
Client	Dillon Consulting
Project	City of Winnipeg Transit Garage

 Test Hole
 TH23-09

 Sample #
 CC99A

 Depth (m)
 17.5 - 17.7

 Sample Date
 13-Oct-23

 Test Date
 18-Oct-23

 Technician
 SC

Tube Extraction

Recovery (mm) 200

Bottom - 17.73 m

Top - 17.53 m

Shale

200 mm

Visual Class	ification		Moisture Content	
Material	CLAY (SHALE)		Tare ID	W13
Composition	Cemented		Mass tare (g)	6.8
			Mass wet + tare (g)	103.0
			Mass dry + tare (g)	97.2
			Moisture %	6.4%
			Unit Weight	
			Bulk Weight (g)	1065.4
Color	Grey			
Moisture	Dry		Length (mm) 1	135.42
Consistency	Very Hard		2	135.51
Plasticity	-		3	135.29
Structure	-		4	135.53
Gradation	-		Average Length (m)	0.135
Torvane			Diam. (mm) 1	63.44
Reading		max	2	63.22
Vane Size (s,m	i,l)	S	3	63.81
	ar Strength (kPa)	-	4	63.57
			Average Diameter (m)	0.064
Pocket Pene	etrometer			
Reading	1	max	Volume (m ³)	4.29E-04
	2	max	Bulk Unit Weight (kN/m ³)	24.4
	3	max	Bulk Unit Weight (pcf)	155.0
	Average	-	Dry Unit Weight (kN/m ³)	22.9
Undrained She	ear Strength (kPa)	-	Dry Unit Weight (pcf)	145.7

Project No.	0022-186-00				
Client	Dillon Consulting				
Project	City of Winnipeg Transit Garage				
Test Hole	TH23-09				
Sample #	CC99A				
Depth (m)	17.5 - 17.7		Unconfine	d Strength	
Sample Date	-			kPa	ksf
Test Date	18-Oct-23		Max q _u	5054.5	105.6
Technician	SC		Max S _u	2527.2	52.8
			u		02.0
Specimen [Data				
Description	CLAY (SHALE) - Cemented, Grey,	Dry, Very Hard			
Longth	135.4 (mm)	Moisture %	6.4%		
Length Diameter		Bulk Unit Wt.	0.4 <i>%</i> 24.4	(1.1.1/3)	
L/D Ratio	63.5 (mm) 2.1	Dry Unit Wt.	24.4	(kN/m^3)	
Initial Area	0.00317 (m ²)	Liquid Limit	-	(kN/m ³)	
Load Rate	1.00 (%/min)	Plastic Limit	-		
Load Mate	1.00 (70/1111)	Plasticity Index	- د -		
		T lasticity much	`		
Undrained S	Shear Strength Tests				
Torvane		Pocket Pene	trometer		
Reading	Undrained Shear Strength	Reading	Undraine	d Shear Strength	
tsf	kPa ksf	tsf	kPa	ksf	
max		max	-	-	
Vane Size		max	-	-	
S		max	-	-	
		Average -	-	-	

Failure Geometry

Sketch:

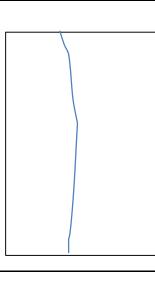
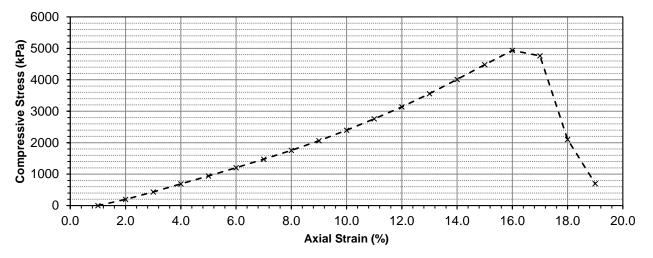


Photo:



Unconfined Compressive Strength ASTM D2166

Project No.	0022-186-00
Client	Dillon Consulting
Project	City of Winnipeg Transit Garage

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0.00	-	0.00	0.00	0.00317	0	0.0	0.0
0.21	-	0.21	0.15	0.00317	619	195.1	97.6
0.38	-	0.38	0.28	0.00318	1383	435.3	217.7
0.56	-	0.56	0.41	0.00318	2189	688.1	344.1
0.74	-	0.74	0.54	0.00319	3004	943.1	471.6
0.91	-	0.91	0.67	0.00319	3845	1205.6	602.8
1.08	-	1.08	0.80	0.00319	4706	1473.6	736.8
1.26	-	1.26	0.93	0.00320	5622	1758.1	879.1
1.43	-	1.43	1.06	0.00320	6601	2061.6	1030.8
1.61	-	1.61	1.19	0.00321	7686	2397.4	1198.7
1.78	-	1.78	1.32	0.00321	8852	2757.5	1378.7
1.96	-	1.96	1.45	0.00321	10085	3137.4	1568.7
2.14	-	2.14	1.58	0.00322	11449	3557.1	1778.5
2.31	-	2.31	1.71	0.00322	12922	4009.4	2004.7
2.48	-	2.48	1.83	0.00323	14462	4481.4	2240.7
2.66	-	2.66	1.96	0.00323	15944	4934.1	2467.0
2.85	-	2.85	2.11	0.00324	15410	4761.9	2381.0
2.99	-	2.99	2.20	0.00324	6801	2099.5	1049.8
3.20	-	3.20	2.36	0.00324	2271	699.9	350.0

GEOTECHNICAL Quality Engineering | Valued Relationships

Date	October 18, 2023
То	Tyler Chapko, TREK Geotechnical
From	Angela Fidler-Kliewer, TREK Geotechnical
Project No.	0022-186-00
Project	City of Winnipeg Transit Garage
Subject	Laboratory Testing Results – Lab Req. R23-525
Distribution	Michael Van Helden

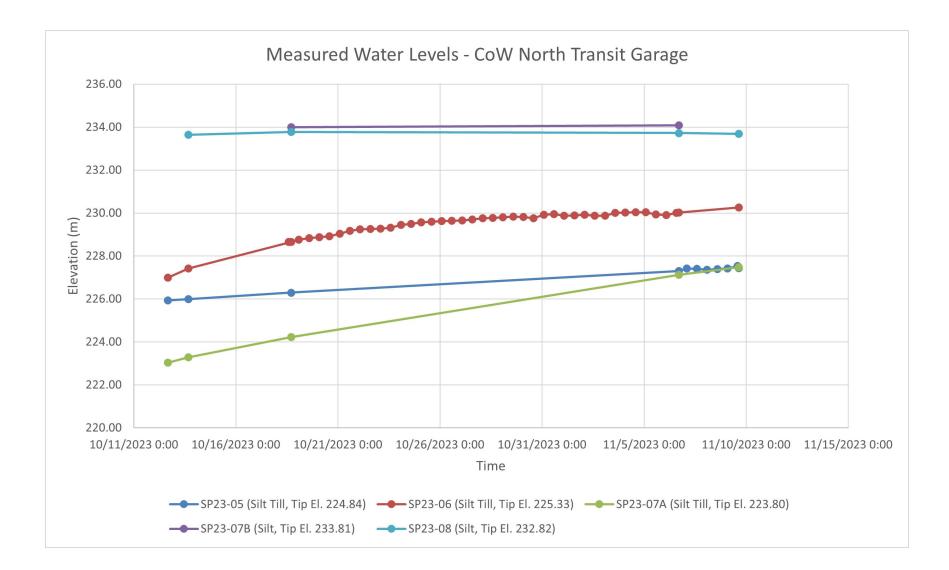
Attached are the laboratory testing results for the above noted project. The testing included unconfined compression test on rock core.

Regards,

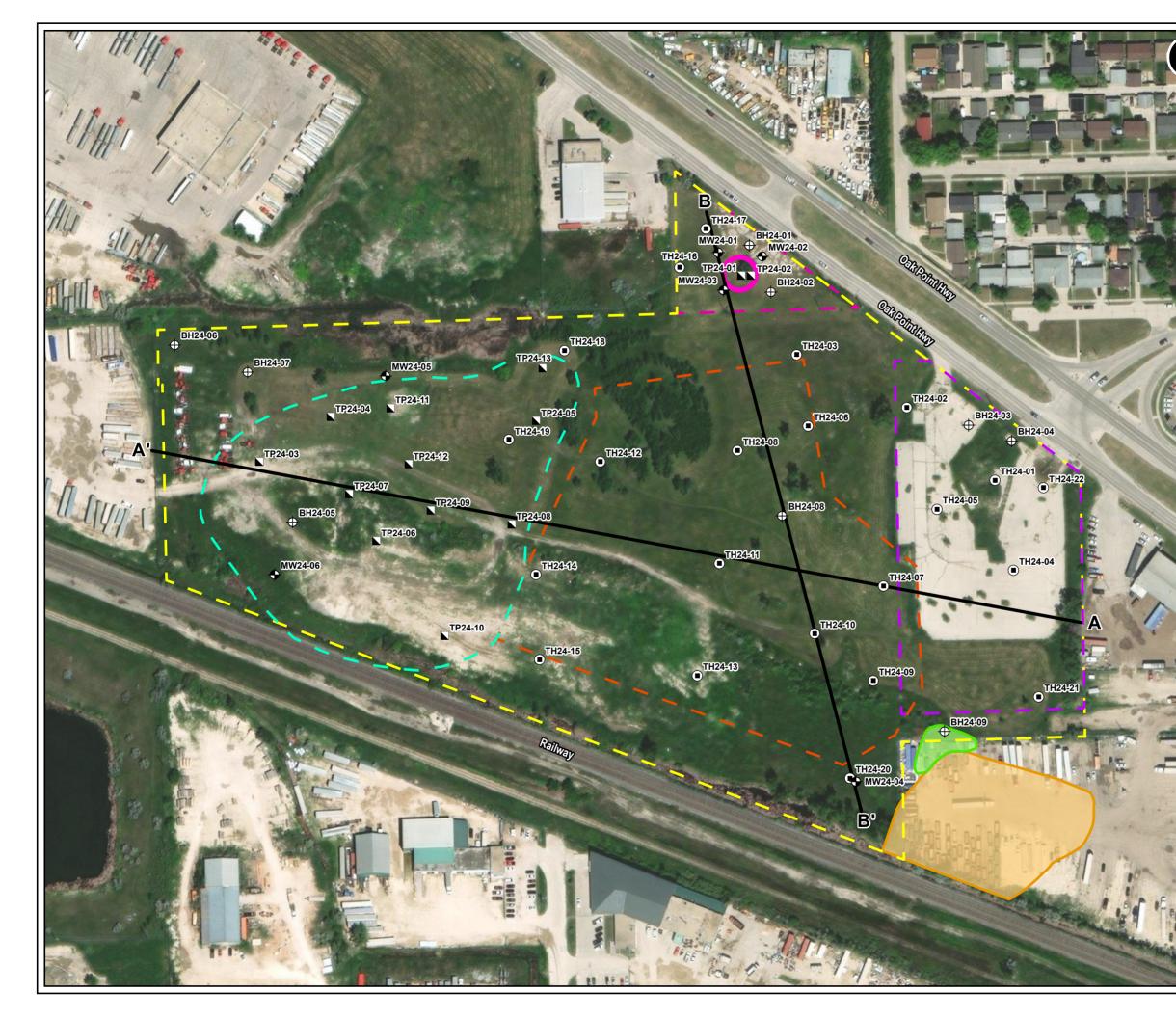
Angela Fidler-Kliewer, C.Tech.,

Attach.

Review Control:


	Prepared By: IA	Reviewed By: AFK	Checked By: NJF
--	-----------------	------------------	-----------------

NFINED COM ipeg Transit G ilting Ltd. Core Diameter (mm) 63.00	-	Date Rece Sampled & Requested Core Weight (g) 1101	ived by d by Density	ROCK COR 16-Oct-23 TC TC Area (sq.mm) 3117	E SPECIME Core Load (kN) 109.76	ENS (ASTM D Test Date Report No. Technician Core Strength (Mpa) 35.2	7012) 18-Oct-23 R23-525 I. Araquil Notes
ipeg Transit G Ilting Ltd. Core Diameter (mm)	Core Length (mm)	Sampled b Requested Core Weight (g)	by d by Density (g/mm ³)	TC TC Area (sq.mm)	(kN)	Report No. Technician Core Strength (Mpa)	R23-525 I. Araquil
Core Diameter (mm)	Core Length (mm)	Requested Core Weight (g)	d by Density (g/mm ³)	TC Area (sq.mm)	(kN)	Core Strength (Mpa)	I. Araquil
Core Diameter (mm)	Length (mm)	Core Weight (g)	Density (g/mm³)	Area (sq.mm)	(kN)	Core Strength (Mpa)	
Diameter (mm)	Length (mm)	Weight (g)	(g/mm ³)	(sq.mm)	(kN)	Strength (Mpa)	Notes
63.00	132.00	1101	2.585 X10 ⁻³	3117	109.76	35.2	
	NET.	4	1				
		Location Hole No. Depth	$\frac{1}{0022 - (86 - 00)}$ $\frac{0022 - (86 - 00)}{0177 0F WINNIEG}$ $\frac{TH23 - 09}{G4' G'' - G5'}$	33 Fax 204975.9435 WW.tregeotecnnical.ca TRANSIT GARAGE No. <u>C100</u> 1"	Balton		
			Location Hole No. Depth	Project 0222-186-00 Location CTTY OF WINNIFES Hole No. TH23-09 Sample N Depth G4'G' - G5'	Image: State Stat	Image: State Stat	Project 0022-186-00 Location 0177 OF WINNINGS Marindas R3+0.3 Project 0022-186-00 Location 0177 OF WINNINGS TRAKET GARGES Hole No. TH23-09_ Sample No. Depth 64'6'' - 65'1'


Appendix C

Water Level Monitoring Results

Environmental Map and Logs

	Oak Point Highway Woodsworth Park Omand's Creek Park North
-	
14	Omand's Creek
100	Legend
	Borehole Location
	Monitoring Well Location
te.	Test Pit Location
	 Testhole Location (Geotech)
all and the	Cross Section Lines
-	Possible Buried Tank (Dillon Phase II, 2023
-	(Magnetic Survey Results))
FI	Refuse (The City of Winnipeg (Brooklands Landfill Site Detail)
	Cinders and Ash (The City of Winnipeg (Brooklands Landfill Site Detail)
	APEC (Dillon Phase II, 2023 (Site Areas of Potential
CHI INI	Environmental Concern (APEC))
a fill	APEC 1 - Former Brooklands Landfill
	APEC 2 - Former Brooklands Speedway
	APEC 3 - Historical and Current Imported Fill Materials
	APEC 4 - Former Gas Station
	APEC 5 - Former Imperial Oil Retail Fuel Outlet
1	
35	
a -	
THE STATE	
1	
고 입어	WINNIPEG TRANSIT GARAGE SUPPLEMENTAL ENVIRONMENTAL INVESTIGATION
-	CITY OF WINNIPEG
	SITE PLAN
2 .	
1	
in .	Metres
a rad	Datum: NAD 1983 UTM Zone 14N
7	Mar, 2024 PN#: 60721079 1:2,000
-	Figure 2
	Data Sources: Esri Canada, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, US Census Bureau, USDA,
1. 1.	NRCan, Parks Canada, Maxar
and the second s	This drawing has been prepared for the use of AECOM's client and may not be used, reproduced or relied upon by third parties, except as agreed by AECOM and its client, as required by law or for use by governmental reviewing agencies. AECOM accepts no responsibility, and

		Winnipeg North Transit Garage	CLIENT: City of Wir	nipeg						HOLE NO: BH24-01	
		: 628201.9, 553256.9								ECT NO.: 60721079 ATION (m): 235.32	
	PLE TY	TOR: Paddock Drilling Ltd. /PE GRAB SHELE	METHOD: Solid Ste				Г				
SHIVIF	-LE IY										
DEPTH (m)	SOIL SYMBOL	SOIL DESC	CRIPTION		SAMPLE TYPE	SAMPLE #	⊗ Vapo 10	our Readii (ppm) 100	ng⊗ 1000	COMMENTS	
0		CONCRETE and ASPHALT				01 (
-1		SAND and GRAVEL - some silt, brown, moist, comp	act, fine to coarse sand, fine graned	gravel.		02 🔇	2				23
		SILT - some clay, trace sand, light brown, moist, firm	, medium plasticity, fine to coarse sa	and.		03 04		· · · · · · · · · · · · · · · · · · ·		Sample BH24-01-03 submitted for analysis of BTEX F1-F4, VOCs, PAHs Sample BH24-01-04	23
-2		CLAY and SILT - brown, moist, firm, medium plastici	ty.			05 🔇))	· · · · · · · · · · · · · · · · · · ·		submitted for analysis of BTEX F1-F4, VOCs, PAHs	23
-3		CLAY - trace of silt, brown, moist, firm, high plasticity	r.			06 🔇	<u>چ</u>				23
-4						07 🔇	 ≽			Sample BH24-01-07 submitted for analysis of	23
-5						08 🔇				BTEX F1-F4, VOCs, PAHs	2:
-6		END OF BOREHOLE @ 6.1 M BELOW GROUND S Notes:									22
·7		 Soil description is primarily based on visual observation. Borehole backfilled with excavated material and build build be according to the sample BH24-01-03. DUP-07 is associated with sample BH24-01-03. 	entonite upon completion.								22
8		A=COM								PLETION DEPTH: 6.10 m	
		AECOM		EVIEWED BY: ROJECT ENG				•.	COMP	PLETION DATE: 24-2-13 Page	

		Winnipeg North Transit Garage	CLIENT: City of W	linnipeg						OLE NO: BH24-02	
		628208.6, 5532537		tom Augor						CT NO.: 60721079 TION (m): 235.32	
	PLE TYP	ÖR: Paddock Drilling Ltd. ⊃E ■GRAB ∭SHELBY	METHOD: Solid S		IIK				ECOVE		
SAIVI							<u> </u>		LUUVL		
DEPTH (m)	SOIL SYMBOL	SOIL DESC	RIPTION		SAMPLE TYPE	SAMPLE #		pm)	1⊗	COMMENTS	
0	222222	CLAY and SAND - some gravel, brown, moist, firm, hig SAND and GRAVEL - dark brown, moist, compact, fine				01 (X) 02 (X)					23
-1		SILT and CLAY - grey, moist, firm, medium plasticity.				03	8			Sample BH24-02-03 submitted for analysis of BTEX F1-F4, PAHs, VOCs, metals, SAR, EC,	23
-2						04 🛞				VOCs, metals, SAR, EC, pH. Sample BH24-02-04 submitted for analysis of BTEX F1-F4, PAHs, VOCs, metals.	23
3		CLAY and SILT - light brown, moist, firm, medium plas CLAY - some silt, brown, moist, soft, high plasticity.	ticity.								2
-4						06 🛞)			Sample BH24-02-06 submitted for analysis of BTEX F1-F4, PAHs, VOCs, metals.	
						07 ⊗)				2
5						08 🛇)				2
-6		END OF BOREHOLE @ 6.1 M BELOW GROUND SU Notes: 1. Soil description is primarily based on visual observa			-						2
·7		 Sorehole backfilled with excavated material and ber DUP-06 is associated with BH24-02-03. 	itonite upon completion.								
8											2
		AECOM		LOGGED BY: REVIEWED BY						ETION DEPTH: 6.10 m ETION DATE: 24-2-13	
				PROJECT ENG						Page	1 ~

		AECOM	REVIEWED BY PROJECT ENG					IPLETION DATE: 24-2-13	1 0
U		A = 60.14	LOGGED BY:					IPLETION DEPTH: 6.10 m	1
8									
-1									22
7		 Soil description is primarily based on visual observation. Borehole backfilled with excavated material and bentonite upon con DUP-05 is associated with BH24-03-04. 	npletion.						
		Notes:							2
-6		END OF BOREHOLE @ 6.1 M BELOW GROUND SURFACE IN CLA	Y					· · · · ·	
					08 🛇	ð			
5									2
-5									
					07 🛇				2
-4									
					06			Sample BH24-03-06 submitted for analysis of BTEX F1-F4, PAHs.	2
J		- soft, high plasticity below 3 m.							
2									
					05				2
-2					04	×		Sample BH24-03-04 submitted for analysis of BTEX F1-F4, PAHs.	
		CLAY - some silt, brown, moist, firm, medium plasticity.		-					2
-1					03 🛇			BTEX F1-F4, PAHs.	
		SILT and CLAY - trace of sand, brown, moist, firm, medium plasticity.			02	×		Sample BH24-03-02 submitted for analysis of	
0		SAND and GRAVEL - light brown, moist, compact, fine to coarse sand (fill).	I, fine to coarse grained gravel		01 🛇				2
	so			SA	S	(p	Reading⊗ pm) 100 1000		i
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	l	SAMPLE TYPE	SAMPLE #			COMMENTS	
						<u> </u>	<u>.</u>		
	TRAC PLE TY		HOD: Solid Stem Auger	JLK			ELE NO RECO	VATION (m): 234.41	
		Winnipeg North Transit Garage CLIE 1: 0628319, 5532464	NT: City of Winnipeg					THOLE NO: BH24-03 JECT NO.: 60721079	

		Winnipeg North Transit Garage	CLIENT: City of Winni	peg					-		OLE NO: BH24-04	
		: 628344.1, 5532456		A					-		CT NO.: 60721079 FION (m): 234.51	
SAMP		TOR: Paddock Drilling Ltd. /PE GRAB ISHELBY TUBE	METHOD: Solid Stem		LK						()	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIP			Щ	SAMPLE #	⊗1	Vapour Re (ppm)	ading⊗		COMMENTS	ELEVATION (m)
- 0 - - - - -		SAND and GRAVEL, light brown, moist, loose, fine to coarse s	sand, fine to coarse grained g	ravel (fill).		01 02 (X		8			Sample BH24-04-01 submitted for analysis of BTEX F1-F4, PAHs	234 -
1 		CLAY - brown, moist, stiff, medium plasticity.				03 🛞 04 🔇					Sample BH24-04-03 submitted for analysis of BTEX F1-F4, PAHs	233 –
						05					Sample BH24-04-05 submitted for analysis of BTEX F1-F4, PAHs	232 -
						06 🔇	/ >					231 –
DT 24.3-15						07 🛞						230 -
DLE LOGS.GPJ UMA.G		END OF BOREHOLE @ 6.1 M BELOW GROUND SURFACE				08 🛠						229 -
ENVIRONMENTAL (VAPOUR ONLY) 60721079 BOREHOLE LOGS.GPJ UMA.GDT 243-15		Notes: 1. Soil description is primarily based on visual observation. 2. Borehole backfilled with excavated material and bentonite u										228 -
IENTAL (VAPOUR O												227 -
SONM		AECOM		GED BY: J IEWED BY:							ETION DEPTH: 6.10 m ETION DATE: 24-2-12	
INVIE				JECT ENG				Osiowy		VIIT LI		1 of 1
ш			1110			1					1 490	

		Winnipeg North Transit Garage	CLIENT: City of Winni	peg					HOLE NO: BH24-05	
		: 627947.2, 5532410 TOR: Paddock Drilling Ltd.	METHOD: Solid Stem	Auger					ECT NO.: 60721079 ATION (m): 238.19	
	PLE TY				IK					
DEPTH (m)	SOIL SYMBOL	SOIL DESC	RIPTION		SAMPLE TYPE	SAMPLE #	⊗ Vapour F (pp 10 1(m)	COMMENTS	
0		CLAY and SILT - some sand, brown, moist, firm, media	um plasticity, fine to coarse sand (fill)).		01				23
-1						02			Sample BH24-05-02 submitted for analysis of metals.	
						03				23
-2		-black and soft below 2 m				04				2
						05			Sample BH24-05-05 submitted for analysis of dioxins and furans, and metals.	
-3		CLAY - brown, moist, firm, medium plasticity.				06				2:
-4		-some sand and soft, fine to coarse sand below 4 m								2
						07			Sample BH24-05-07 submitted for analysis of metals.	
-5										2
-6						08				
		END OF BOREHOLE @ 6.1 BELOW GROUND SURF Notes: 1. Soil description is primarily based on visual observai 2. Borehole backfilled with excavated material and ben								2
-7										2
8										
				GED BY: J					LETION DEPTH: 6.10 m	
		AECOM		VIEWED BY:					LETION DATE: 24-2-12 Page	

		Winnipeg North Transit Garage	CLIENT: City of Winnip	beg					-		OLE NO: BH24-06 CT NO.: 60721079	
		I: 0627889, 5532507 TOR: Paddock Drilling Ltd.	METHOD: Solid Stem	Auger					+		TION (m):	
	PLE T				ĸ				_			
								<u>יי</u>		20VL		
DEPTH (m)	SOIL SYMBOL	SOIL DESCF	RIPTION		SAIMPLE I TPE	SAMPLE #	⊗ Va 10	pour Re (ppm) 100	ading (COMMENTS	
0		SILT and CLAY - some gravel, brown, moist, stiff, mediu	im plasticity, fine grained gravel.			01						
		CLAY and SILT - trace gravels, dark brown, some orang gravel, debris (metals).	e, moist, firm, non-plastic, fine grain	ed		02						
- - - -		CLAY - trace of sand, brown, moist, stiff, high plasticity,	fine to coarse sand.			03			· · · · · · · · · · · · · · · · · · ·		Sample BH24-06-03 submitted for analysis of dioxins and furans,	
-2						04					metals, SAR, EC, pH.	
						05					Sample BH24-06-05 submitted for analysis of metals.	
-3		CLAY and SAND - trace gravels, light brown, moist, soft grained gravel.	, medium plasticity, fine to coarse sa	and, fine		06					Sample BH24-06-06 submitted for analysis of metals.	
-4						07						
-5						08						
-6	83828 83355 835555 8355555 835555 8355555 8355555 8355555 8355555 83555555 8355555555	END OF BOREHOLE @ 6.1 M BELOW GROUND SUR Notes: 1. Soil description is primarily based on visual observation							••••••			
-7		 Son description is primarily based on visual observation Borehole backfilled with excavated material and bento 	nite upon completion.						· · · · · · · · · · · · · · · · · · ·			
8							÷	÷				
				GED BY: Jo							ETION DEPTH: 6.10 m	
		AECOM		EWED BY: JECT ENGIN					_	OMPL	ETION DATE: 24-2-12 Page	4

		Winnipeg North Transit Garage CLIENT: City of	Winnipeg					-		OLE NO: BH24-07	
		1: 627923.2, 5532491	Otomo Aurona					-		CT NO.: 60721079 TION (m): 237.12	
SAMF		TOR: Paddock Drilling Ltd. METHOD: Solid (PE GRAB MSHELBY TUBE SPLIT SPC		LK				_		()	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE #	⊗	Vapour Re (ppm	eading (COMMENTS	ELEVATION (m)
_ 0	NN	SILT and GRAVEL - light brown, moist, firm, medium plasticity, fine to coarse grained	d gravel (fill).		01		<u> </u>				237 -
- - - - - - - - - - - - - - - - -		SAND and GRAVEL - some silt, some clay, brown, moist, compact, fine to coarse sa coarse grained gravel.	nd, fine to		02					Sample BH24-07-02 submitted for analysis of metals.	236 -
-					03						200
- - - 2		CLAY and SILT - black, moist, firm, medium plasticity. SAND - some silt, light brown, moist, compact, fine.			04					Sample BH24-07-04 submitted for analysis of dioxins and furans, and	
		onite - some sit, light blown, moist, compact, inte			05		· · · · · · · · · · · · · · · · · · ·			metals.	235 -
-3		CLAY - some silt, trace of sand, brown, moist, stiff, high plasticity.									234 -
- - - - - - - - - 4					06					Sample BH24-07-06 submitted for analysis of metals.	233 -
		- some sand, fine to coarse below 4.5 m			07						232 -
LOGS.GPJ UMA.GD					08						202
0721079 BOREHOLE		END OF BOREHOLE @ 6.1 M BELOW GROUND SURFACE IN CLAY Notes: 1. Soil description is primarily based on visual observation. 2. Borehole backfilled with excavated material and bentonite upon completion. 3. DUP-03 is associated with BH24-07-04									231 -
ENVIRONMENTAL (VAPOUR ONLY) 60721079 BOREHOLE LOGS.GPJ UMA.GDT 243-15											230 -
NMEN NMEN			LOGGED BY: J				· 1	_		ETION DEPTH: 6.10 m	
NVIRC		AECOM	REVIEWED BY: PROJECT ENG			-	Ociowa	_	OMPL	ETION DATE: 24-2-12 Page	1 of 1
ш			LI NOULOT ENG	пNС	∟ı\. I	NUNG	COUV			гауе	

PRO	JECT:	Winnipeg North Transit Garage CLIENT:	City of Winnipeg					TI	ESTH	OLE NO: BH24-08	
		: 628217.1, 5532415								CT NO.: 60721079	
			: Solid Stem Auger						LEVA ECOVE	TION (m): 236.61 RY	
DEPTH (m)		SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE #		Vapour R				ELEVATION (m)
- 0 - - - - - - - - - - - - - - - - - -		SILT and CLAY - some gravel, brown, moist, stiff, medium plasticity, fine gr SAND and GRAVEL - some silt, moist, compact, brown, fine to coarse sand gravel.	-	S	01 02 03		(ppn 0 10	n) Ö	000	Sample BH24-08-03 submitted for analysis of	口
- - - - - - 2 - - - -		CLAY - trace of sand, trace gravels, brown, moist, firm, medium plasticity. - some silt, light brown below 2 m. - black, organic odour below 2.3 m.			04					dioxins and furans, and metals.	235
- - 		 - grey below 2.6 m. SILT - some sand, light brown, wet, soft, medium plasticity, fine to coarse so CLAY - some silt, brown, moist, firm, high plasticity. 	and.		06					submitted for analysis of metals.	234
11 24:3-15 1 24:3-15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					07					submitted for analysis of metals.	233 -
HOLE LOGS.GPJ UMA.G		END OF BOREHOLE @ 6.1 M BELOW GROUND SURFACE IN CLAY			08						231 –
ENVIRONMENTAL (VAPOUR ONLY) 60721079 BOREHOLE LOGS.GPJ UMA.GDT 24-3-15 α α α α α α α α α α α α α α α α α α α		Notes: 1. Soil description is primarily based on visual observation. 2. Borehole backfilled with excavation materials and bentonite upon comple	tion.								230
8 NWEN			LOGGED BY:							ETION DEPTH: 6.10 m	l
IVIRC		AECOM	REVIEWED BY			-	. 0 : '		OMPL	ETION DATE: 24-2-12	4 . 5 4
<u>б</u>			PROJECT ENG	INE	EK:	<pre>\Imbei</pre>	r Uslow	У		Page	1 of 1

		Winnipeg North Transit Garage	CLIENT: City of	Winnipeg					-		OLE NO: BH24-09	
		: 628305.5, 5532295		01 1							CT NO.: 60721079	
SAMP		TOR: Paddock Drilling Ltd. /PE GRAB IIISHELBY TUBE	METHOD: Solid		IK						TION (m): 236.88 RY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPT			SAMPLE TYPE	SAMPLE #	⊗	Vapour Rea (ppm)	ading &	þ	COMMENTS	ELEVATION (m)
_ 0 _		SILT and CLAY - some gravel, dark brown, moist, stiff, mediun	n plasticity, coarse gra	ined gravel.		01	:					-
- - - - - - - 1 -						02					Sample BH24-09-02 submitted for analysis of metals.	- - - 236 — -
		SILT - some clay, trace gravels, dark brown, moist, stiff, mediu	m plasticity.			03			· · · · · · · · · · · · · · · · · · ·			-
-2						04					Sample BH24-09-04 submitted for analysis of dioxins and furans, and metals.	235 —
- - - - - - - - - 3 - - - - - - - - - -		CLAY - some silt, brown, moist, firm, medium plasticity.				05						234
- - - - - - - - - - - - - -						06					Sample BH24-09-06 submitted for analysis of metals.	233 -
3 UMA.GDT 24-3-15						08						- 232 — - - - - - -
SOREHOLE LOGS.G		END OF BOREHOLE @ 6.1 M BELOW GROUND SURFACE Notes:	IN CLAY									231
ENVIRONMENTAL (VAPOUR ONLY) 60721079 BOREHOLE LOGS.GPJ UMA.GDT 24-3-15 α 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 Soil description is primarily based on visual observation. Borehole backfilled with excavated material and bentonite up 3. DUP-04 is associated with BH24-09-04. 	oon completion.									230
ENTAL 8							÷					229 —
RONM		AECOM		LOGGED BY: J REVIEWED BY:					_		ETION DEPTH: 6.10 m ETION DATE: 24-2-12	
INVIE				PROJECT ENG			-	Osiowv				1 of 1
ш —												

				nipeg North Transit Garage	9	CLIENT: City of	Winnipeg					OLE NO: MW24-01	
				8180, 5532558			Otomo Aurona					CT NO.: 60721079	
		LE T		Paddock Drilling Ltd.		METHOD: Solid		IIK) RECOVE	TION (m): 236.35 RY CORE	
			TYPE	BENTONITE	GRAVEL	SLOUGH	GF		-		JTTINGS	SAND	
	UEР IH (M)	WELL INSTALLATION	SOIL SYMBOL	5	SOIL DESCRI	PTION		SAMPLE TYPE	SAMPLE #	⊗ Vapour Rea (ppm) 10 100	ıding⊗ 1000	COMMENTS	ELEVATION (m)
_ 0 _ _ _ _ _ _ _ _ _ _ _ 1				SAND and GRAVEL - some si grained gravel. - black, hydrocarbon odour bel - grey, loose below 1 m.		, fine to coarse sand, f	ine to coarse		01 02			Sample MW24-01-01 submitted for analysis of BTEX F1-F4, VOCs, PAHs	236
- - - - - - - - - - 2				SILT - some clay, black, moist	soft, medium plasticity,	hydrocarbon odour.			03 04		8	Sample MW24-01-03 submitted for analysis of BTEX F1-F4, VOCs, PAHs	235
				CLAY - brown, moist, soft, me	dium plasticity.				05				234
24-3-15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									07		•	Sample MW24-01-07 submitted for analysis of BTEX F1-F4, VOCs, PAHs	232
REHOLE LOGS.GPJ UMA.GDT				END OF MONITORING WELL Notes:	@ 6.1 M BELOW GROU	JND SURFACE IN CL	AY		08				231
ENVIRONMENTAL (VAPOUR ONLY) 60721079 BOREHOLE LOGS.GPJ UMA.GDT 24-3-15				 Soil description is primarily I Monitoring well backfilled wi Groundwater measured at 2 	th backfilled drill cuttings	, sand, and bentonite u	ipon completion. 024.						229
ONME						LOGGED BY:					ETION DEPTH: 6.10 m		
NVIRC				AECOM	l		REVIEWED BY PROJECT ENG				COMPL	ETION DATE: 24-2-13	1 of 1
						LI NOJECT ENG	211NE	LIN. I	WINDER OSIOWY		гауе		

				nipeg North Transit Garage	e	CLIENT: City of \	Vinnipeg					OLE NO: MW24-02	
				206.9, 5532556			<u></u>					CT NO.: 60721079	
		I RAC PLE T		Paddock Drilling Ltd.		METHOD: Solid					RECOVE	TION (m): 236.35 RY CORE	
- H		FILL -		BENTONITE	GRAVEL		GR BC		Г		TTINGS		
ľ							•••						
	DEPTH (m)	WELL	SOIL SYMBOL		SOIL DESCRIF	PTION		SAMPLE TYPE	SAMPLE #	⊗ Vapour Reac (ppm) 10 100	ding ⊗ 1000	COMMENTS	ELEVATION (m)
E	0			CONCRETE					01	8			-
				SAND and GRAVEL - some si to coarse grained gravel.	lt, some clay, dark brown,	moist, loose, fine to c	oarse sand, fine		02	*			236
-	-1			- some clay, compact below 1 SILT - some clay, trace of same		lium placticity			03	····· ↓ ····		Sample MW24-02-03 submitted for analysis of BTEX F1-F4, VOCs,	235 —
	-2				u, brown, moist, inn, meu	ium piasuoty.			04			PAHs Sample MW24-02-04 submitted for analysis of BTEX F1-F4, VOCs, PAHs	
									05				234 —
-	-3			CLAY - some silt, brown, mois	t, firm, high plasticity.				06 Q	9		Sample MW24-02-06 submitted for analysis of BTEX F1-F4, VOCs, PAHs	233
4-3-15	-4								07				232
OGS.GPJ UMA.GDT 2	5								08				231
0721079 BOREHOLE L	-6			END OF MONITORING WELL Notes: 1. Soil description is primarily I 2. Monitoring well backfilled wi 3. DUP-08 is associated with N 4. Groundwater measured at 3.	based on visual observation th backfilled drill cuttings, vlW24-02-02.	on. sand, and bentonite u	pon completion.						230
ENVIRONMENTAL (VAPOUR ONLY) 60721079 BOREHOLE LOGS.GPJ UMA.GDT 24-3-15	-7			4. Groundwater measured at 3	.55 meters delow ground	Sunace on March 5, 2	JZ4.						229
NMEN	8	1			-		LOGGED BY:	Jona	athan	Ota	COMPL	ETION DEPTH: 6.10 m	
VIRO				AECOM			REVIEWED BY				COMPL	ETION DATE: 24-2-13	4
Ш							PROJECT ENG	iNE	ER:	Kimber Osiowy		Page	1 of 1

			iipeg North Transit Garag	e	CLIENT: City of	Winnipeg				-	OLE NO: MW24-03	
			184.3, 5532538							-	CT NO.: 60721079	
	NTRAC		Paddock Drilling Ltd.	SHELBY TUBE	METHOD: Solid					ELEVA	TION (m): 236.35 RY	
			GRAB BENTONITE					т		UTTINGS		
BAC	KFILL 1		BENTONITE	GRAVEL		•••	RUU	1	<u>الا</u> لا	UTTINGS		
DEPTH (m)	WELL	SOIL SYMBOL		SOIL DESCRI			SAMPLE TYPE	SAMPLE #	⊗ Vapour R∉ (ppm 10 100	1)	COMMENTS	ELEVATION (m)
_ 0 _ _ _			SILT and GRAVEL - light brov	vn, moist, soft, fine to coa	arse grained gravel (fill)	L		01	8		Sample MW24-03-02 submitted for analysis of BTEX F1-F4, VOCs,	236 -
-			SAND and SILT - dark brown,	moist, compact, fine to c	oarse sand.			02			PAHs, metals	
- - -								03	\$		Sample MW24-03-03 submitted for analysis of BTEX F1-F4, VOCs,	235 -
2			SILT - some sand, light brown	ı, wet, soft, medium plasti	city, fine to coarse san	d.		04	⊗		PAHs, metals Sample MW24-03-04 submitted for analysis of BTEX F1-F4, VOCs,	
								05			PAHs, metals	234 —
			CLAY - brown, moist, high pla	sticity.								-
								06				233
- - 4 -												
								07	······ 🛞 · · · · ·			232
MA.GDT 24-3								00	6			- - - 231 —
FOGS.GPJ L								08	⊗·····			
BOREHOLE			END OF MONITORING WELL Notes: 1. Soil description is primarily	based on visual observat	ion.							230 -
- X) 6072107			 Monitoring well backfilled w DUP-08 is associated with Groundwater measured at 2 	ith backfilled drill cuttings MW24-03-02.	, sand, and bentonite u							
ENVIRONMENTAL (VAPOUR ONLY) 60721079 BOREHOLE LOGS.GPJ UMA.GDT 24-3-15												229
SNTAL 8												-
	1			-		LOGGED BY:					ETION DEPTH: 6.10 m	
IVIRO			AECON	1		REVIEWED BY					ETION DATE: 24-2-13	
Z III		AECOM				PROJECT EN	GINE	ER:	Kimber Osiowy	y I	Page	1 of 1

			nipeg North Transit Gara	ge	CLIENT: City of V	Vinnipeg					-		OLE NO: MW24-04	
			8256.5, 5532266			N A							CT NO.: 60721079	
	NTRA 1PLE		Paddock Drilling Ltd.		METHOD: Solid S		I K				_		TION (m): 237.82 RY CORE	
			BENTONITE	GRAVEL										
DEPTH (m)				SOIL DESCRI			SAMPLE TYPE	SAMPLE #	⊗	Vapour Re (ppm	eading (8	COMMENTS	ELEVATION (m)
- 0 - - - - - - - - - - - - - - - - - -			SILT - some gravel, trace cla wood, cloth, glass). CLAY - some silt, trace grave					01 02 03					Sample MW24-04-02 submitted for analysis of metals.	237
- - - - - - - - - - - - - - - - -			SILT - some sand, black, mo odour.					04					Sample MW24-04-05 submitted for analysis of dioxins and furans, and	236
			CLAY - trace of silt, brown, n	noist, firm, medium plasticit	у.			06					metals. Sample MW24-04-06 submitted for analysis of metals.	234
.GPJ UMA.GDT 24-3-15								07 08						233
ENVIRONMENTAL (VAPOUR ONLY) 60721079 BOREHOLE LOGS.GPJ UMA.GDT 24-3-15			END OF MONITORING WE Notes: 1. Soil description is primarily 2. Monitoring well backfilled 3. Groundwater measured at	/ based on visual observati with backfilled drill cuttings,	on. sand, and bentonite u	oon completion.								232
ENTAL 8											:			230
ONME		170014				LOGGED BY:							ETION DEPTH: 6.10 m	
VIR			AECON	7		REVIEWED BY			-	Onio		UMPL	ETION DATE: 24-2-12	1 of 1
ш						PROJECT ENG	INF	-R: 1	linber	USIOW	y		Page	1 of 1

	PRO	JECT:	Winr	nipeg North Transit Garage		CLIENT: City of	Winnipeg					_		DLE NO: MW24-05	
+				992.6, 5532503								_		CT NO.: 60721079	
-		TRAC PLE TY		Paddock Drilling Ltd.	SHELBY TUBE	METHOD: Solid		IIК				_		FION (m): 238.78	
- H		FILL 1		BENTONITE	GRAVEL		G		Γ					SAND	
	DEPTH (m)	WELL	SOIL SYMBOL	S	OIL DESCRI	PTION		SAMPLE TYPE	SAMPLE #	⊗	(ppi		8	COMMENTS	ELEVATION (m)
	0 -1 -2			SILT and CLAY - some gravel, or grained gravel. SILT - some clay, brown, moist, SILT and SAND - some gravel, grained gravel, debris (glass).	firm, medium plasticity				01 02 03 04 05					Sample MW24-05-03 submitted for analysis of metals. Sample MW24-05-05	238
	-3			CLAY - trace of silt, brown, mois	st, stiff, high plasticity.				06					submitted for analysis of metals.	236
15	-5								07 08					Sample MW24-05-06 submitted for analysis of metals, SAR, EC, pH.	234
E LOGS.GPJ UMA.GDT 24-3	-7			END OF MONITORING WELL Notes: 1. Soil description is primarily be 2. Monitoring well backfilled with 3. DUP-10 associated with MW2 4. Groundwater measured on M	ased on visual observat backfilled drill cuttings 24-05-05.	ion. , sand, and bentonite									232
ENVIRONMENTAL (VAPOUR ONLY) 60721079 BOREHOLE LOGS.GPJ UMA.GDT 24-3-15	-8 -9														231
ONME							LOGGED BY:							ETION DEPTH: 6.10 m	
ENVIR				AECOM		REVIEWED BY PROJECT ENC			-	Osiow		OIVIPLI	ETION DATE: 24-2-12 Page	1 of 1	

			nipeg North Transit Gar	age	CLIENT: City of	Winnipeg				-		OLE NO: MW24-06	
			937.1, 5532383			Stom Augest			 	-		CT NO.: 60721079 TION (m): 239.04	
	IPLE T		Paddock Drilling Ltd.		METHOD: Solid E SPLIT SPC		ILK			_	ECOVE	. ,	
	KFILL		BENTONITE	GRAVEL		GF				CUTTI		SAND	
DEPTH (m)	WELL	SOIL SYMBOL	Au 7	SOIL DESCR			SAMPLE TYPE	SAMPLE #	Vapour F (pp 0 10	m)	1⊗	COMMENTS	ELEVATION (m)
- 0			SILT - some clay, some sa	ind, trace gravels, light bro	wn, moist, stiff, fine to co	barse sand.		01					-
- - - - - - - 1 - -		000000000000000000000000000000000000000	SAND and SILT - light brov	wn, moist, loose, fine sand				02 03	 			Sample MW24-06-03	238 -
		0000						04	 · · · · · · · · · · · · · · · · · · ·			submitted for analysis of dioxins and furans, metals, SAR, EC, pH.	-
-2		0 00 0	SILT - some clay, some sa	nd, trace gravels, dark bro	wn, moist, stiff, low plasi	ticity, fine sand.	-		 				237 -
								05	 			Sample MW24-06-05 submitted for analysis of metals.	-
3			CLAY - some silt, dark brow	wn, moist, stiff, medium pla	asticity.				 				236 -
- - - - - - - - - - - - - - - - - - -								06	 			Sample MW24-06-06 submitted for analysis of metals.	235 —
			CLAY and SAND - light bro sand.	own, light brown, wet, firm,	medium plasticity, fine t	o coarse grained		07 08					234 -
JMA.GDT 24-3-15			END OF MONITORING W Notes: 1. Soil description is primar 2. Monitoring well backfiller	rily based on visual observ	ation.				 				233 -
			completion. 3. Groundwater measured		-				 				232
ENVIRONMENTAL (VAPOUR ONLY) 60721079 BOREHOLE LOGS.GPJ UMA.GDT 24-3-15 									 			·	231
RONMI			A <u>=</u> CO/	M		LOGGED BY: REVIEWED BY						ETION DEPTH: 6.10 m ETION DATE: 24-2-12	
ENVIE				VI		PROJECT ENG			r Osiov				1 of 1

		Winnipeg North Transit Garage	CLIENT: City of	Winnipeg					OLE NO: TP24-01	
		: 628195.4907 5532545.493	METHOD: Exca	vator					CT NO.: 60721079 TION (m):	
	<u>TRAC</u> PLE TY	TOR: KBL Projects Ltd. /PE GRAB ISHELBY 1			JLK			RECOVE		
										1
DEPTH (m)	SOIL SYMBOL	SOIL DESCF	RIPTION		SAMPLE TYPE	SAMPLE #	⊗Vapour Read (ppm) 10 100	ing⊗ 1000	COMMENTS	
0		SAND and GRAVEL (fill) - dark brown, moist, loose, fine	sand, fine to coarse grained	l gravel.						
_1					(01	····			
-2		CLAY and SILT - grey, moist, soft, medium plasticity, de	bris (metal pipes), slight hyc	rocarbon odour.		02			Sample TP24-01-02 submitted for analysis of BTEX F1-F4, PAHs	
-3		CLAV brown projet firm modium planticity				03	***		Sample TP24-01-03 submitted for analysis of BTEX F1-F4, PAHs	
-4		CLAY - brown, moist, firm, medium plasticity.				04	****			
-5						05			Sample TP24-01-05 submitted for analysis of BTEX F1-F4, PAHs	
						06 ≪	<u>/</u>			
-6		END OF TESTPIT @ 6.1 M BELOW GROUND SURFAG Notes: 1. Soil description is primarily based on visual observatio 2. Borehole backfilled with excavated material upon com 3. DUP-02 is associated with sample TP24-01-03.								
·7										
8										
		AECOM		LOGGED BY: REVIEWED BY					ETION DEPTH: 6.10 m ETION DATE: 24-2-1	
				PROJECT ENG					Page	1 (

		Winnipeg North Transit Garage	CLIENT: City of Winn	ipeg					OLE NO: TP24-02	
		I: 628200.6999 5532545.57							CT NO.: 60721079 TION (m):	
	TRAC PLE TY	TOR: KBL Projects Ltd. (PE GRAB SHELBY TUBE	METHOD: Excavator	BL	11 12					
SAIVIP			A SPEIN SPOON					RECOVE		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPT			SAMPLE TYPE	SAMPLE #	⊗Vapour Rea (ppm) 10 100	ding ⊗ 1000	COMMENTS	
0		SAND and GRAVEL - some clay, brown/black, moist, loose, fir coarse grained gravel, hydrocarbon odour.	ne to coarse grained sand, fi	ne to						
-1						01	***		Sample TP24-02-01 submitted for analysis of BTEX F1-F4, PAHs	
•		CLAY and SILT - grey, moist, soft, medium plasticity, debris (n	netal pipes), hydrocarbon od	our.		03			Sample TP24-02-02 submitted for analysis of BTEX F1-F4, PAHs	
-2		CLAY - brown, moist, firm, medium plasticity.				05 ¢				
-3						06 [©]	<u>م</u>		Sample TP24-02-04 submitted for analysis of BTEX F1-F4, PAHs	
-4						02 [©]	Ø			
-5						04 0	§			
-6		END OF TESTPIT @ 6.1 M BELOW GROUND SURFACE IN Notes:	CLAY			J.				
-7		 Soil description is primarily based on visual observation. Borehole backfilled with excavated material upon completion 	n.				· · · · · · · · · · · · · · · · · · ·			
8										
		AECOM		GED BY: /IEWED BY					ETION DEPTH: 6.10 m ETION DATE: 24-2-1	
		ALCOM					rray Kimber Osiowy		ETION DATE: 24-2-1 Page	1

		· · ·	CLIENT: City of Winnipeg						HOLE NO: TP24-03	
		: 627931.0651 5532443.414							ECT NO.: 60721079	
	IRAC PLE TY	· · · · ·	METHOD: Excavator	BULK		1		RECOVE	ATION (m): ERY CORE	
SAIVIP			SPLIT SPOON					RECOVE		<u> </u>
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPT		SAMPLE TYPE	SAMPLE #	⊗ Vap 10	our Readi (ppm) 100	ing⊗ 1000	COMMENTS	
0		CLAY and SILT - some sand and gravel, light brown, moist, soft sand, fine to coarse grained gravel.	t, medium plasticity, fine to coarse	e	01					
-1		CLAY - some silt, trace gravels, brown, moist, stiff, medium plas	sticity, fine grained gravels.		02					
		- black, low plasticity below 1.3 m			03				Sample TP24-03-03 submitted for analysis of metals	
-2		- brown below 2.5 m			04					
-3										
-4		- light brown, stiff, medium plasticity below 3.5 m			05		·····			
		- trace cobbles, high plasticity below 4.5 m.			06		· · · · · · · · · · · · · · · · · · ·			
-5		END OF TESTPIT @ 5.5 M BELOW GROUND SURFACE IN C	<u>η αγ</u>		07				Sample TP24-03-07 submitted for analysis of metals	
-6		Notes: 1. Soil description is primarily based on visual observation. 2. Borehole backfilled with excavated material upon completion.					· · · · · · · · · · · · · · · · · · ·			
7										
8		A = 00 14	LOGGED						LETION DEPTH: 6.10 m	
		AECOM	REVIEWI					COMP	LETION DATE: 24-1-30 Page	

		Winnipeg North Transit Garage CLIENT: City of V	Vinnipeg					_		OLE NO: TP24-04	
		: 627970.2185 5532468.144	-1					_		CT NO.: 60721079 TION (m):	
	TRAC PLE TY	TOR: KBL Projects Ltd. METHOD: Excav /PE ■GRAB ∭SHELBY TUBE ⊠SPLIT SPO		JLK				_		()	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE #		Vapour F (ppi 0 10	m)	⊗	COMMENTS	DEPTH (m)
- 0 - - -		CLAY and SILT - some sand and gravel, light brown, moist, firm, medium plasticity, fi sand, fine to coarse grained gravel. CLAY - trace gravels, light brown, moist,stiff, medium plasticity, fine grained gravels,			01						
- - - 1 -		and metal).			02						1-
- - - -		- black, low plasticity below 1.5 m			03						
2 		- grey, debris (glass bottles, ceramics, cobble, wood), slight hydrocarbon odour below	2.5 m		04			⊗		Sample TP24-04-04 submitted for analysis of	2 -
- 										BTEX F1-F4, PAHs and metals	3-
- - - - 4					05						4 -
26 					06		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·			
UMA.GDT 24-3.		CLAY - light brown, wet, stiff, high plasticity			07		· · · · · · · · · · · · · · · · · · ·			Sample TP24-04-07	5 -
STPIT LOGS.GPJ		END OF TESTPIT @ 6.1 M BELOW GROUND SURFACE IN CLAY								metals	6 -
ENVIRONMENTAL (WAPOUR ONLY) 60721079 TESTPIT LOGS.GFJ UMA.GDT 24-326		Notes: 1. Soil description is primarily based on visual observation. 2. Borehole backfilled with excavated material upon completion.									7 -
MENTAL (VAP			LOGGED BY:		thor	Oto				ETION DEPTH: 6.10 m	
VIRON		AECOM	REVIEWED BY	': Je	n Mu	rray		С		ETION DATE: 24-1-30	
, Z Ш			PROJECT ENG	SINE	ER: I	Kimber	r Osiow	/y		Page	1 of 1

PRO	JECT:	Winnipeg North Transit Garage	CLIENT: City of Wi	nnipeg					Т	ESTH	HOLE NO: TP24-05	
		: 628082.8757 5532465.868							_		ECT NO.: 60721079	
CON SAMF		TOR: KBL Projects Ltd. ∕PE ■GRAB ∭S⊦	METHOD: Excavate		IIК				NO RE		ATION (m): ERY CORE	
DEPTH (m)	SOIL SYMBOL		SCRIPTION		SAMPLE TYPE	SAMPLE #) Vapour (pr	Reading	8	COMMENTS	DEPTH (m)
		CLAY - some silt, some gravel, light brown, moist CLAY - trace gravel, brown, moist, stiff, medium organics. - dark brown, wet, soft, debris (metal, wood, con ORGANICS - some clay, black, wet, soft, debris END OF TESTPIT @ 4.1 M BELOW GROUND = Notes: 1. Soil description is primarily based on visual ot 2. Groundwater encountered at 2.5 m bgs. 3. Borehole backfilled with excavated material up	plasticity, fine grained gravels, debris (v crete) below 2 m. (glass, plastic, tires, metal, bricks). SURFACE IN ORGANICS	vood, roots),		01 02 03 04 05	1				Sample TP24-05-05 submitted for analysis of metals	1
				OGGED BY: 、		than					LETION DEPTH: 5.10 m	7 -
IRON		AECOM		EVIEWED BY							LETION DATE: 24-1-31	
EN				ROJECT ENG			-	r Osiov				1 of 1

		Winnipeg North Transit Garage	CLIENT: City of W	innipeg					-		HOLE NO: TP24-06	
		l: 627995.2033 5532400.078							-		ECT NO.: 60721079	
			METHOD: Excava						_		ATION (m):	
SAMF	PLE T	YPE GRAB SHELBY	TUBE SPLIT SPOO						IO R	ECOV		<u> </u>
DEPTH (m)	SOIL SYMBOL	SOIL DESC	RIPTION		SAMPLE TYPE	SAMPLE #		Vapour Re (ppm			COMMENTS	Ē
0		CLAY - some silt, brown, moist, stiff, medium plasticity.					:	<u>0 100</u>	:	1000		
		- some fine gravel, light brown, below 0.6 m.				01						
-1						02						
I		- brown/black, debris (bricks, glass, wood, ceramics, m	etal) below 1 m.					· · · ·				
						03						
-2												
						04	· · · · · · · · · · · · · · · · · · ·					
-3		CLAY - light brown, moist, stiff, high plasticity.										
						05						
-4									· · · · · ·			
						06					Sample TP24-06-06 submitted for analysis of SAR, EC, pH, and metals	
-5		- brown, wet, soft below 5 m.				07						
-6 -7 8												
-6		END OF TESTPIT @ 6.1 M BELOW GROUND SURFA										
		 Soil description is primarily based on visual observat Groundwater encountered at 5.0 m bgs. Borehole backfilled with excavated material upon content 	mpletion.						: 			
-7												
8			1.	00055 514			:	÷				
		AECOM		LOGGED BY: J REVIEWED BY:							PLETION DEPTH: 6.10 m PLETION DATE: 24-1-30	
				PROJECT ENG							PLETION DATE: 24-1-30 Page	

PRO	JECT:	Winnipeg North Transit G	arage CLIEN	T: City of Winnipeg	g								D: TP24-07	
		: 627980.2203 5532425.7											.: 60721079	
				DD: Excavator SPLIT SPOON							ELEVA	TION (r	n):	
SAME	PLE TY	PE GRAB		JSPLIT SPOON		ĸ			Z	JNO R	ECOVE			
DEPTH (m)	SOIL SYMBOL		SOIL DESCRIPTION		S AMDI E TVDE	SAINFLE IYFE	SAMPLE #	⊗	(p	Reading pm)	g⊗ 1000	C	DMMENTS	DEPTH (m)
- 0 - -		CLAY - some silt, some gravel,	brown, moist, stiff, medium plasticity, fine	e grained gravel.			01		<u> </u>					
							02							
1 		- dark brown, debris (wood, gla:	ss) below 1 m.				03							1-
-2 - - - - - - - - - - - - 3		- black/gray, wat low plasticity	debris (metal, plastic, glass, cables, woo	d) slight hydrocarbon s	smell		04 .							2 -
- - - - - - - - - - - - - - - - - - -		below 3 m.	uebris (metar, piastic, giass, cables, woo	u), siigint hydrocarbon s	sinei		05 .			8				4 -
- - - - - - - - - - - - - - - - - - -		CLAY - grey, moist, stiff, high p	acticity.				06 ·							5-
3.GPJ UMA.GD1 24-		CLAT - grey, moist, suit, nigh p	asuary.				07.					Sample submitt metals	e TP24-07-05 ed for analysis of	
ENVIRONMENTAL (WAPOUR ONLY) 60721079 TESTPIT LOGS GPU UMA GOT 24-358 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		END OF TESTPIT @ 6.1 M IN Notes: 1. Soil description is primarily b 2. Groundwater encountered at 3. Borehole backfilled with bent	3.5 m bas.											6 -
														7 -
N 8	1				D BY: Jo						COMP	ETION	DEPTH: 6.10 m	I
VIRO		AECO	M		VED BY:						COMP	LETION	DATE: 24-1-31	
				PROJE	CT ENGIN	NEE	R: K	imber	Osio	wy			Page	1 of 1

			CLIENT: City of Winnip	beg					_		OLE NO: TP24-08	
		: 628069.4647 5532409.132 TOR: KBL Projects Ltd.	METHOD: Excavator								CT NO.: 60721079 TION (m):	
SAMF				В	ILK					ECOVE		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPT	ON		SAMPLE TYPE	SAMPLE #	⊗	Vapour F (pp 0 10	m)	g⊗ 1000	COMMENTS	DEPTH (m)
- 0 		CLAY and GRAVEL - some silt, light brown, moist, soft, low plas	ticity, fine to coarse grained	gravel.		01 02 03					Sample TP24-08-03 submitted for analysis of Dioxins/Furans and	1- -
2 		CLAY - trace gravel, dark brown, moist, stiff, medium plasticity, f				04					metals	2
24-3-26 						06					Sample TP24-08-06 submitted for analysis o metals	4 - of 5 -
		END OF TESTPIT @ 5.5 M BELOW GROUND SURFACE IN C Notes: 1. Soil description is primarily based on visual observation. 2. Groundwater encountered at 5.5 m bgs. 3. Sloughing noted at 5.5 m bgs. 4. Borehole backfilled with excavation materials upon completion				07						6-
8 DNMENT				GED BY: 、							ETION DEPTH: 6.10	
AVIRC		AECOM		EWED BY				0-1-		COMPL	ETION DATE: 24-1-3	
<u>۵</u>			PRU	JECT ENG	IINE	CK. 1	1900 III	USION	vy		Pa	ge 1 of 1

		Winnipeg North Transit Garage CLIENT: City of Winnipeg					_		OLE NO: TP24-09	
		: 628025.0115 5532416.703 TOR: KBL Projects Ltd. METHOD: Excavator					_		CT NO.: 60721079 TION (m):	
	PLE TY		BULK							
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #		Vapour F (pp	m) -		COMMENTS	DEPTH (m)
ENVIRONMENTAL (VAPOUR ONLY) 60721079 TESTPIT LOGS.GPJ UMA.GDT 24-3-26		CLAY - some silt, some sand, some gravel, light brown, moist, soft, non-plastic, fine grained gravel. - some fine gravel, dark brown/orange, moist, soft, low plasticity, debris (glass, roots, ceramics) below 1m. - brown, stiff, medium plasticity, debris (wood, cobble, glass) below 2 m. CLAY - light brown and grey, moist, firm, medium plasticity. END OF TESTPIT @ 6.1 M BELOW GROUND SURFACE IN CLAY Notes: 1. Soil description is primarily based on visual observation. 2. Borehole backfilled with excavated material upon completion.		01 02 03 04 05 06 07	1				Sample TP24-09-07 submitted for analysis of metals	
NMENTAL (VAPOUF		LOGGED BY:							ETION DEPTH: 6.10 m	
IVIRO						0-1		OMPL	ETION DATE: 24-1-31	1 -1 4
Z Ш		PROJECT EN	IGINE	:ER:	Kimber	Osiov	vy		Page	1 of 1

		Winnipeg North Transit Garage	CLIENT: City of	Winnipeg					_	IOLE NO: TP24-10	
		: 628032.7363 5532348.058		(ator						CT NO.: 60721079	
SAMF			METHOD: Excav		ILK						
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPT	TION		SAMPLE TYPE	SAMPLE #	8	Vapour (pp	Reading m)	COMMENTS	DEPTH (m)
- 0 - - - -		SILT and CLAY - brown, moist, stiff, medium plasticity.				01					
- - 1		CLAY - trace gravel, dark brown, moist, stiff, medium plasticity, wood). - black, low plasticity, below 1 m.	, fine gravel, debris (tre	ee roots and		02					1-
						03					
- -2 - - - - - -						04					2 -
- 3 - 		- brown and no gravel below 3 m.				05					3 -
- 						06					4 -
5.650 UMA.GUI 24-5-2		CLAY - grey, moist, stiff, high plasticity.				07				 Sample TP24-10-07 submitted for analysis of metals	5-
		END OF TESTPIT @ 6.1 M BELOW GROUND SURFACE IN 0 Notes: 1. Soil description is primarily based on visual observation. 2. Borehole backfilled with excavated material upon completion									6 - 7 -
				LOGGED BY:		then	Oto	:		ETION DEPTH: 6.10 m	
IKON I		AECOM		REVIEWED BY	: Je	n Mu	rray		C	ETION DATE: 24-1-31	
				PROJECT ENG				Osiov	vy	Page	1 of 1

LICOLTING: 2020 3029 550 272.97 PROLETIN: PROLETIN: PROLETIN: PROLETIN: COMMENTS SAMPLE TYPE 0.644 []] SHELBYTUSE SOIL DESCRIPTION III SHELBYTUSE COMMENTS III SHELBYTUSE COMMENTS III SHELBYTUSE COMMENTS III SHELBYTUSE COMMENTS III SHELBYTUSE III SHELBYTUSE COMMENTS III SHELBYTUSE COMMENTS III SHELBYTUSE III SHELBYTUSE COMMENTS III SHELBYTUSE III SHELBYTUSE COMMENTS III SHELBYTUSE III SHELBYTUSE III SHELBYTUSE COMMENTS III SHELBYTUSE IIII SHELBYTUSE IIII SHELBYTUSE IIII SHELBYTUSEE IIII SHELBYTUSEE IIIIII		Winnipeg North Transit Garage	CLIENT: City of	Winnipeg				_	OLE NO: TP24-11	
SAMPLE TYPE GRAB Image: Second				water				_		
Image: Solid processing of the second seco					ULK			_		
0 CLAY - some silt, light brown, moist, stiff, medium plasticity. - dark brown, debris (tires, concrete, metal, glass, wood) below 0.5 m. 1 -1 -2 -3 -4 -4			IPTION			SAMPLE #	(ppr	n)		DEPTH (m)
7 8 Image: Complexity of the complexity o	-1	- dark brown, debris (tires, concrete, metal, glass, wood) CLAY - brown, moist, stiff, high plasticity. END OF TESTPIT @ 6.1 M BELOW GROUND SURFAC Notes: 1. Soil description is primarily based on visual observatio	below 0.5 m.			02 03 04 05 06			Sample TP24-11-07 submitted for analysis of metals.	3
LOGGED BY: Jonathan Ota COMPLETION DEPTH: 6.10 m REVIEWED BY: Jen Murray COMPLETION DATE: 24-1-30	IENTAL (VAPOUR ONLY) 6072			1			 			7 -
	SONM									
PROJECT ENGINEER: Kimber Osiowy Page 1 of 1	ENVIE						Osiow			1 of 1

		Winnipeg North Transit Ga		T: City of Winnipeg				-		OLE NO: TP24-12	
		: 628012.9499 5532442.0					 	_		CT NO.: 60721079	
	TRAC PLE TY	TOR: KBL Projects Ltd.		OD: Excavator	IIК			_		TION (m): RY CORE	
DEPTH (m)	SOIL SYMBOL		SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE #	Vapour F (ppi	Reading m)	8	COMMENTS	DEPTH (m)
		 trace fine to coarse gravels, br some fine to coarse gravel, dal ceramic, bricks) below 2 m. trace fine gravels, light brown, CLAY - light brown, moist, firm, END OF TESTPIT @ 6.1 M BEI Notes: Soil description is primarily ba 	k brown/orange, soft, low plasticityl, det stiff, debris (wood, metal, glass) below 3 high plasticity.	oris (metal, wood, glass,		01 02 03 04 05 06 07				Sample TP24-12-04 submitted for analysis of metals Sample TP-24-12-07 submitted for analysis of SAR, EC, pH, and metals	3-
											7 -
MNO		A = c o	A.A.	LOGGED BY:						ETION DEPTH: 6.10 m	
NVIR		AECO	//1	REVIEWED BY PROJECT ENG			 Osiow		UNIPL	ETION DATE: 24-1-31 Page	e 1 of 1
1				TROJECTENC	211 YE	<u></u> ۱۸. ا	03101	'y		raye	

		Winnipeg North Transit Garage	CLIENT: City of Winr	ipeg				-	IOLE NO: TP24-13	
		I: 628086.3485 5532494.89						-	ECT NO.: 60721079	
	TRAC PLE TY	TOR: KBL Projects Ltd. (PE GRAB SHELBY)	METHOD: Excavator	BU					ATION (m): ERY CORE	
SAIVIP										
DEPTH (m)	SOIL SYMBOL	SOIL DESCR	RIPTION		SAMPLE TYPE	SAMPLE #	⊗ Vapour Re (ppm 10 100)	COMMENTS	
0		CLAY - some silt, some sand and gravel, light brown, m fine to coarse grained gravel.	ioist, soft, non-plastic, fine to coars	e sand,		01 02				
-2		- brown (some orange colouration) , moist, stiff, medium	n plasticity below 2 m.			03				
-3						04			•	
-4		- black, wet, debris (wood, metal, springs, plastic, glass) below 4 m.			06				
-6		END OF TESTPIT @ 6.1 M BELOW GROUND SURFA Notes: 1. Soil description is primarily based on visual observati				07			Sample TP24-13-07 submitted for analysis of metals	
-7		 Soil description is primarily based on visual observati Groundwater encountered at 3.0 m bgs. Borehole backfilled with excavated material upon cor 	npletion.							
8			10	GGED BY: J	lonati	han (: : Ota		LETION DEPTH: 6.10 m	
		AECOM		VIEWED BY:					LETION DATE: 24-1-31	
							Kimber Osiowy		Page	1 0

