

Quality Engineering | Valued Relationships

Hilderman Thomas Frank Cram Assiniboine Forest Pond Overlook

Prepared for:

Attn:

Hilderman Thomas Frank Cram 500-115 Bannatyne Avenue East Winnipeg, MB R3B 0R3 Glen Manning

Project Number: 0116 003 00

Date: August 21, 2014

Quality Engineering | Valued Relationships

August 21, 2014

Our File No. 0116 003 00

Glen Manning, MALA, SALA, CSLA, GRP Hilderman Thomas Frank Cram 500-115 Bannatyne Avenue East Winnipeg, MB R3B 0R3

RE: Geotechnical Investigation for Assiniboine Forest Pond Overlook

TREK Geotechnical Inc. is pleased to submit our Final Report for the geotechnical investigation for the above noted project.

Please contact the undersigned should you have any questions.

Sincerely,

TREK Geotechnical Inc. Per:

3/4->

Brent Hay, P.Eng. Geotechnical Engineer Tel: 204.975.9433 ext. 105

BH: jh Encl.

Revision History

Revision No.	Author	Issue Date	Description
0	BH	August 21, 2014	Final Report

Authorization Signatures

Prepared By:

Brent Hay, P.Eng Geotechnical Engineer

> Certificate of Authorization Trek Geotechnical Inc. No. 4877 Date: Aug 21,2014

Reviewed By:

Kent Bannister, M.Sc., P.Eng. Geotechnical Engineer

Table of Contents

Letter of Transmittal

Revision History and Authorization Signatures

1.0	Introd	Introduction1								
2.0	Backg	Background1								
3.0	Field	Program	.1							
	3.1	Sub-Surface Investigation	.1							
	3.2	Sub-surface Conditions	.2							
4.0	Found	ation Recommendations	.3							
	4.1	Limit State Design	.3							
	4.2	Foundation Options	.4							
	4.3	Cast-in-Place Concrete Friction Piles	.4							
	4.4	Helical Pipe Piles	.5							
	4.5	Driven Steel Pipe Piles	.7							
5.0	Found	lation Concrete	.8							
6.0	Addit	onal Considerations	.8							
7.0	Closu	re	.8							

List of Tables

Table 1	Ultimate Limit State Resistance Factors for Friction Piles	6
Table 2	Skin Friction Values for Friction Piles	6

List of Figures

Figure 01 Site Plan

List of Appendices

Appendix A Test Hole Logs

Appendix B Laboratory Testing Results

I.0 Introduction

This report summarizes the results of the geotechnical investigation completed by TREK Geotechnical Inc. (TREK) for the proposed outlook structure at Assiniboine forest in Winnipeg, Manitoba. The terms of reference for the investigation are included in our proposal dated June 20, 2014. The scope of work includes a sub-surface investigation, laboratory testing, and the provision of recommendations for the design and construction of suitable foundation systems. Other considerations such as water management, foundation and site drainage, cement specifications, materials testing and inspection requirements will be included.

2.0 Background

The site is located in Assiniboine Forest approximately 750 m down an asphalt pathway from Grant Ave, atop of a small, man-made hill around 4m in height. TREK understands that the hill was constructed approximately 30 years ago. The hill overlooks a pond to the east and is surrounded by forest in other directions. TREK understands that the proposed outlook structure will be constructed on top of the hill and will consist of a small, lightly loaded outlook trellis, constructed out of steel pipe columns, a steel bed and timber trellis joints. An asphalt pathway, approximately 2.4 m wide, is present through the crest of the hill along with timber retaining walls on either side of the pathway that are approximately 0.6 m in height.

3.0 Field Program

3.1 Sub-Surface Investigation

A subsurface investigation was undertaken on July 24th, 2014 under the supervision of TREK personnel. Two test holes (TH14-01 and 02) were drilled to determine the sub-surface conditions present on-site. The test hole were drilled using a Yanmar C25R track-mounted drill rig equipped with 108 mm diameter solid stem augers. Sub-surface soils observed during drilling were visually classified based on the Unified Soil Classification System (USCS). Disturbed (auger cutting) samples and relatively undisturbed (Shelby tube) samples were collected during drilling. All samples retrieved during drilling were transported to TREK's testing laboratory in Winnipeg, Manitoba. Laboratory testing consisted of moisture content determination on all samples. Undrained shear strength testing (pocket penetrometer, torvane and unconfined compression) was performed on select samples. The test holes were backfilled with auger cuttings to the ground surface.

Test hole logs have been prepared and are included in Appendix A. Soil laboratory testing results are included in Appendix B. The test hole logs include a description and elevation of soil units encountered, sample type, sample location, results of field and laboratory testing, and other pertinent information such as sloughing, groundwater seepage, UTM coordinates and relative elevations of test hole locations. The test hole location was recorded using a hand held GPS. The test hole elevation was determined from a rod and level survey based on a relative local benchmark assigned an arbitrary elevation of 100.000 m. The top of a rock containing a commemorative plaque was used as the relative local benchmark. The test hole locations are shown on Figure 01.

3.2 Sub-surface Conditions

3.2.1 <u>Soil Stratigraphy</u>

The subsurface stratigraphy in descending order from ground surface consisted of organic clay (topsoil) overlying clay (fill), silty clay and silt till. A brief description of the soil units encountered at the test hole locations is provided below. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed test hole logs in Appendix A.

Organic Clay

Organic clay (topsoil) was encountered at both test hole locations extending from surface to a depth ranging from 0.1 m (TH14-02) to 1.1 m (TH14-01). The organic clay (topsoil) is silty, contains trace sand and trace roots, is black, moist, firm and of intermediate plasticity. A 0.1 m thick layer of organic clay was also encountered between the clay (fill) and silty clay in each test hole at a depth of about 5m.

<u>Clay (fill)</u>

Clay (fill) was encountered below the organic clay (topsoil) in both test holes and is the material used to construct the hill above the surrounding prairie elevation. The clay (fill) is silty, contains trace sand, trace gravel, is grey, moist, stiff to very stiff and of high plasticity. TREK understands that this hill was constructed approximately 30 years ago; construction records for the original fill placement are not available.

Silty Clay

Silty clay was encountered below the clay fill in both test holes to depths of 11.6 and 10.9 m in TH14-01 and 02, respectively. The silty clay contains trace sand, trace gravel, is grey to brown, moist and of high plasticity. The silty clay has undrained shear strengths (based on unconfined compressive tests) ranging from 73 to 36 kPa with an average of 60 kPa and trends towards decreasing strength with depth. The bulk unit weight of the silty clay ranges from 18.7 to 17.8 kN/m³ with an average of 18.2 kN/m³.

Silt (Till)

Silt (till) was encountered below the silty clay and was observed to power auger refusal at depths of 11.9 and 11.7 m in TH14-01 and 02, respectively. The silt (till) contains trace clay, is grey, moist and non-plastic. The moisture content of two samples from the silt (till) are 10 and 17 %.

3.2.2 <u>Seepage and Sloughing</u>

Sloughing was not observed in either test holes. Seepage was observed from the silt (till) in both test holes. The water level was measured at 11.0 and 11.4 m in TH14-01 and 02, respectively, immediately after drilling. These observations are short term and should not be considered reflective of (static) groundwater levels at the site, which would require monitoring over an extended period of time to determine. It is important to recognize that groundwater conditions may change seasonally, annually, or as a result of construction activities.

4.0 Foundation Recommendations

4.1 Limit State Design

Limit state design recommendations according to the National Building Code of Canada (NBCC, 2010) are provided below. Limit states design requires consideration of distinct loading scenarios comparing the structural loads to the foundation bearing capacity using resistance and load factors that are based on probabilistic reliability criteria. Two general design scenarios are evaluated corresponding to the serviceability and ultimate capacity requirements.

The **Ultimate Limit State (ULS)** is concerned with ensuring that the maximum structural loads do not exceed the nominal (ultimate) capacity of the foundation units. The ULS foundation bearing capacity is obtained by multiplying the nominal (ultimate) bearing capacity by a resistance factor (reduction factor), which is then compared to the factored (increased) structural loads. The ULS bearing capacity must be greater or equal to the maximum factored load. Table 1 summarizes the resistance factors that can be used for the design of foundations as per the NBCC (2010) depending upon the method of analysis and verification testing completed during construction.

The **Service Limit State** (**SLS**) is concerned with limiting deformation or settlement of the foundation under service loading conditions such that the integrity of the structure will not be impacted. The Service Limit State should generally be analysed by calculating the settlement resulting from applied service loads and comparing this to the settlement tolerance of the structure. However, the settlement tolerance of the structure is typically not yet defined at the preliminary design stage. As such, SLS bearing capacities (or unit resistances) are provided that are developed on the basis of limiting settlement to approximately 25 mm or less. A more detailed settlement analysis should be conducted to refine the estimated settlement and/or adjust the SLS capacity if a more stringent settlement tolerance is required.

Case	Resistance Factor
Deep Foundation with bearing resistance to axial load based on semi-empirical analysis using laboratory and <i>in-situ</i> test data.	0.4
Deep Foundation with analysis using dynamic modeling results	0.5
Deep Foundation with analysis using static loading test results	0.6

Table 1. Ultimate Limit States Resistance Factors for Deep Foundations

4.2 Foundation Options

Site conditions and anticipated building loads make this site well suited to cast-in-place concrete friction piles. Foundation systems such as driven end bearing piles (either steel h-piles or precast concrete) bearing on the silt (till) are also a feasible foundation type, however are not likely cost effective. TREK understands that driven steel pipe piles or helical pipe piles are also being considered by Hilderman, Thomas, Frank, Cram and TREK has provided recommendations for this foundation option however TREK cautions that this is likely not the most cost effective foundation alternative.. Recommendations are provided below for cast-in-place concrete friction piles, helical pipe piles and driven steel pipe piles.

Based on the age and measured consistency of the clay fill at this site, TREK is of the opinion that settlement associated with consolidation of the fill soils or underlying silty clay soils has been completed. As such TREK does not consider any additional design considerations to accommodate future settlement associated with original hill construction (such as negative skin friction) warranted for this project.

4.3 Cast-in-Place Concrete Friction Piles

The ultimate limit state (ULS) pile capacity for friction piles in silty clay can be calculated using the factored ULS skin friction and end-bearing resistances provided in Table 2. A resistance factor of 0.4 should be applied unless full scale static pile load testing is performed. For evaluation of the SLS, the pile capacity can be calculated based on the SLS skin friction values provided in Table 2. The pile settlement under applied (unfactored) loads equal to the SLS pile capacity can be expected to be 25 mm or less. If required, a detailed settlement analysis can be provided by TREK once the final pile loads are known.

			Factored I	JLS Axial Uni	t Resistance	CI C
Soil	Depth (m)		Compr d =	ession 0.4	Uplift $\mathbf{\Phi} = 0.3$	SLS Shaft Adhesion
	From	То	Shaft Adhesion	End- Bearing ¹	Shaft Adhesion	Value
Frost Zone	0.0	2.4	0	0	0	0
Clay (Fill) and Silty Clay	2.4	11.0	17 kPa	90 kPa	13 kPa	14 kPa

 Table 2. Skin Friction Values for Friction Piles

Notes: 1-ULS end bearing value assumes a machine cleaned base and pile diameter less than 0.5 m.

Additional design and construction recommendations for cast-in-place concrete piles are provided below:

- 1. The weight of the embedded portion of the pile may be neglected.
- 2. Skin friction within the upper 2.4 m of the pile should be ignored to take into consideration potential shrinkage and environmental effects such as frost action over that depth.

- 3. Piles should not extend beyond 10.5 m depth from existing grade to protect against seepage and sloughing from the silt (till) layer.
- 4. For piles subjected to freezing conditions, the pile embedment length should be designed to resist ad-freezing and uplift forces related to frost action acting along the vertical faces of the pile and pile cap within the depth of frost penetration (2.4 m below ground surface). In this regard, piles may be subject to an ad-freeze bond stress of 65 kPa within the depth of frost penetration. These forces will be resisted by structural dead loads and uplift resistance provided by the length of the pile below the depth of frost penetration. All piles should be reinforced for their full length. All cast-in-place piles require reinforcement design by a qualified structural engineer for the anticipated axial, lateral and bending loads from the superstructure.
- 5. Based on observed conditions, sleeving of the pile holes is likely unnecessary. If seepage and sloughing is observed, sleeves should be used.
- 6. Drilling and concrete placement for the piles should be inspected by geotechnical personnel to verify the soil conditions and proper installation of the piles.
- 7. Prior to casting the pile, any groundwater within the shaft should be removed or controlled. If water is present, the concrete should be placed using Tremie methods.
- 8. Concrete should be placed as soon as possible after drilling of the pile shaft.
- 9. Pile spacing should not be less than 2.5 pile diameters, measured centre to centre. If pile spacing must be closer than 2.5 pile diameters, TREK should be notified so that an evaluation of pile group effects can be performed.
- 10. Grade beams and pile caps should be constructed with a minimum 150 mm void space between soils and the underside of the concrete to minimize the effects of soil heave due to swelling or frost action.

4.4 Helical Pipe Piles

Based on site access and soil conditions present at site helical pipe piles would perform adequately for this structure. The helical pipe piles will likely be installed into the firm clay and could be subject to some vertical movements as a result of moisture content changes in the clay below the pile. Helical pipe piles are not commonly used in Winnipeg and as such, their long term performance has not been determined. The design and associated capacity of helical pipe piles are typically established by the contractor/supplier and verified by the design engineer. For preliminary design purposes, the limit state design capacity of a single helix pile end-bearing in clay 5 m below grade can be approximated by the following equations. The SLS capacity should be expected to limit settlement to less than 25 mm.

Helical Pipe Piles End-Bearing in Cohesive Soils (Clays)

SLS Capacity (kN) = $1/3 \times (9C_u + \gamma' H) \times (\pi (D-d)^2/4)$

ULS Capacity (kN) = $\Phi_r x (9C_u + \gamma' H) x (\pi (D-d)^2/4)$

Where:

 N_q = Bearing Capacity Factor (a value of 7 should be used at this site)

 $\gamma' = Effective unit weight (a value of 8 should be used at this site)$

 C_u = the undrained shear strength of the clay (a value of 50 kPa is appropriate for use for the clay at 5 m depth)

H = Helix embedment depth below final grade (m)

D = Helix diameter(m)

 $d = pipe \ diameter \ (m)$

 $\Phi_{r=}$ ULS resistance factor (a factor of 0.4 should be used unless a static pile load test is completed at the site

The actual selection of pile dimensions and capacity should be performed by the piling contractor/supplier and reviewed by TREK. Pile load tests are commonly performed by helical pipe piles contractors to confirm pile capacity prior to production piling. In addition to this, the following is recommended:

- 1. The weight of the embedded portion of the pile may be neglected in the design.
- 2. Skin friction resistance should be neglected in all organic soils, non-clay fill soils or within the upper 2.5 m of the embedded pile, whichever is greater.
- 3. The pile must be designed to handle design loads and stresses during installation.
- 4. In unheated areas, the pile should be designed to resist frost jacking forces. In this regard, uplift forces due to ad-freezing in the upper 2.4 m below ground should be based on an uplift adhesion of 100 kPa for steel shaft piles.
- 5. Helical piles are known to have installation difficulties in frozen ground conditions. Pre-boring of the upper portion of the pile may be required through frozen material.
- 6. Pile spacing should not be less than 5 times the largest helix diameter, measured center to centre. If pile spacing is closer than this, a reduction to capacity resulting from group effects will need to be evaluated. TREK should be contacted to re-assess capacity the allowable capacity should this condition arise.
- 7. Piles should be installed under the supervision of qualified geotechnical personnel.
- 8. Torque should be measured and recorded during installation to verify proper installation.
- 9. TREK should be notified if the pile installation depth differs from 5 m.

Any piles that are damaged, misaligned an excessive amount, or that do not achieve the target embedment depth may need to be replaced as per recommendations by the structural and geotechnical designers.

4.5 Driven Steel Pipe Piles

TREK understands that driven steel pipe piles are being considered for the outlook structure. It should be recognized that this type of pile performs best when driven to refusal into dense glacial till or bedrock. In this regard, the anticipated length of pile would be in excess of 12 m (40'). The resistance provided by a steel pipe pile not driven to refusal is less than that provided by either a cast in place concrete friction pile or helical pipe pile end bearing in stiff clay. The equipment required to drive steel piles coupled with site access limitations likely makes steel pipe piles a less cost effective option than the other two.

A ULS skin friction value of 14 kPa and SLS skin friction value of 11 kPa can be used for design of driven steel pipe piles that are driven to length (*e.g.* not driven to refusal). If piles are driven to refusal, a preliminary allowable pile capacity of 600 kN is recommended. Once the pile type and driver is determined, this capacity can be confirmed and the set criteria established by our office. We anticipate that a hammer with a minimum energy rating of 32 kJ per blow will be required. Should higher allowable capacities be required, we recommend dynamic testing of piles (PDA) during production. If necessary, TREK can provide further recommendations on PDA testing once a piling plan has been finalized. Since driven end bearing piles will develop the majority of their resistance from tip resistance, there is no need to reduce pile capacity due to group effects.

Additional design and construction recommendations for driven steel piles are provided below:

- 1. The weight of the embedded portion of the pile may be neglected in the design.
- 2. The pile must be designed to withstand design loads and to handle stresses and driving forces during installation.
- 3. End-bearing capacity should be neglected for piles that are not driven to refusal.
- 4. Pile spacing should not be less than 2.5 pile diameters, measured centre to centre.
- 5. To aid in pile alignment and reduce pile heave during driving, pre-boring may be undertaken. The pre-bore depth should be minimized to 3 m. The pre-bore diameter should be a maximum of 50 mm larger than the pile diameter. If lateral forces are required in design, the annulus surrounding the pre-bore section of the piles should be filled with lean mix concrete for compliance with the surrounding soil.
- 6. During the final set, driven piles should be driven continuously once driving is initiated to the required refusal criteria.
- 7. All driven piles within 5 pile diameters of each other should be monitored for pile heave during installation and neighbouring piles. Driven piles that have heaved should be re-driven to the refusal criteria.
- 8. Any driven piles that are damaged, misaligned an excessive amount, or that have reached premature refusal may need to be replaced. The structural designer will have to assess non-conforming piles to determine if they are acceptable.
- 9. A steel follower should not be used for driving of the steel piles.
- 10. To increase stiffness, the pipe piles could be filled with concrete after driving.

5.0 Foundation Concrete

The degree of exposure for concrete subjected to sulphate attack is classified as severe according to Table 3, CSA A23.1-09 (Concrete Materials and Methods of Concrete Construction). Accordingly, all concrete in contact with the native soil should be made with high sulphate-resistant cement (HS or HSb). Furthermore, the concrete should have a minimum specified 56 day compressive strength of 32 MPa and have a maximum water to cement ratio of 0.45 in accordance with Table 2, CSA A23.1-09 for concrete with severe sulphate exposure (S2). Concrete which may be exposed to freezing and thawing should be adequately air entrained to improve freeze-thaw durability in accordance with Table 4, CSA A23.1-09.

6.0 Additional Considerations

Drainage adjacent to the building should promote runoff away from the structure. A minimum slope of 2% should be used for both landscaped and paved areas immediately around the building. All roof leaders should be extended sufficiently away from the building walls.

7.0 Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation, laboratory testing, geometries). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work, or a mutually executed standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of Hilderman Thomas Frank Cram (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figures

0116 003 00 Hilderman Thomas Frank Cram Assiniboine Forest Pond Overlook

Test Hole Layout

PLOT: 21/08/2014 4:08:02 PM

FILE NAME: 0116 003 00_RB.dwg

SCALE : 1:1250 (279mm x 432mm)

⊕

Appendix A – Test Hole Logs

Client: Hildeman Thomas Frank Cram Project Number: 0115 003 00 Project Nume: Assinibiline Forest Lookout Ground Elevation: 99.75 m Method: 100 mm Sold Stem Auger / Yenner CISR Ruber Track Mount Date Drifte: 194.2 01.4 Sample Type: Grab (G) Shift Spoon (SS) Split Barrel (SB) Core (c) Particle Size Legend: MATERIAL DESCRIPTION Split Barrel (SB) Core (c) Sample Type: ORGANIC CLAY - sity, trace sand, trace rootlets Split Barrel (SB) Core (c) - Lack - Intermediate passicity - Intermediate passicity Split Barrel (SB) Core (c) - Lack - Intermediate passicity - Loc - Intermediate passicity, laminated silt and clay (<2mm) - Intermediate passicity - Intermediate passicity - Intermediate passicity - Loc - Intermediate passicity, laminated silt and clay (<2mm) - Intermediate passicity - Intermediate passicity - Intermediate passicity - Loc - Intermediate passicity, laminated silt and clay (<2mm) - Intermediate passicity - Intermediate passicity - Intermediate passicity <th></th> <th></th> <th></th> <th>RE</th> <th>K</th> <th>S</th> <th>ub-Su</th> <th>rface Log</th> <th>3</th> <th></th> <th></th> <th>Τe</th> <th>est Ho</th> <th>le TH'</th> <th>1 of 2</th>				RE	K	S	ub-Su	rface Log	3			Τe	est Ho	le TH'	1 of 2
Project Name: Assimibutine Forest Lookout Location: UTM_N-5623857, E-620084 Contractor: Peddock Dulling Lid Ground Elevation: 99.75 m Method: 108 mm Solid Stam Auger (Yamar C2SR Rubber Track Mount Date Dullidd: July 24, 2014 Sample Type: Grab (G) Image: State Lagend Grab (G) Image: State Lagend Single Spatial Barrel (SB) Cortex (SB) Spatial Barrel (SB) Cortex (SB) Spatial Barrel (SB) Cortex (SB) Image: Spatial Barrel (SB) Cortex (SB) Spatial Barrel (SB) Spatia Barrel (SB) Spatial Barrel (SB) </th <th>Clien</th> <th>iUI it:</th> <th>Hi</th> <th>derman Ti</th> <th>homas Frank Cra</th> <th>m</th> <th></th> <th>Project Number:</th> <th>0116</th> <th>003 00</th> <th>)</th> <th></th> <th></th> <th></th> <th></th>	Clien	i U I it:	Hi	derman Ti	homas Frank Cra	m		Project Number:	0116	003 00)				
Contractor: Paddock Drilling Lld Ground Elevation: 99.75 m Method: 0.80 m Solid Slem Auger / Temmer C2SR Rubber Track Mount Date Drilled: July 24, 2014 Particle Size Legend: Image / Temmer C2SR Rubber Track Mount Split Spon (SS) Split Barral (SB) Convol Convol Particle Size Legend: Image / Temmer C2SR Rubber Track Mount Image / Temmer C2SR Rubber C1A / Temmer C2SR Rubber C1A / Tem / Temmer C2SR Rubber C1A / Tem /	Proje	ect Nan	ne: As	siniboine f	Forest Lookout			Location:	UTM	N-552	3857, E-626	5084			
Nethod: 108 mm Salid Stam Auger / Yammar C2SR Rubber Track Mount Date Drilled: July 24. 2014 Sample Type: Image: Sample Type: Image: Sample Type: Image: Sample Type: Sam	Cont	ractor:	Pa	ddock Dril	ling Ltd.			Ground Elevation:	99.75	m					
Sample Type: Grab (G) Shelby Tube (T) Split Spoon (SS) Split Barrel (SB) Core (C) Particle Size Legend: Image: Similar Similare Similare Similar Similar Similar Similare Similar Similar Sim	Meth	od:	_108	3 mm Solid S	Stem Auger / Yanma	r C25R Rubber Trac	k Mount	Date Drilled:	July 2	4, 201	4				
Particle Size Legend: Image: State Legend: Image: S		Sample	е Туре:		Grab (G	i)	Shelby Tube (T)	Split Spoon (S	S) 🚺	Spl	it Barrel (SE	3)	Core (C	;)	
05000 000000000000000000000000000000000000		Particle	e Size I	_egend:	Fines	Clay	Silt	Sand :		Grav	rel 67	Cobble	s 📉	Boulde	ers
067 0.1 0	Elevation (m)	Depth (m)	Soil Symbol			MATERIAL DI	ESCRIPTION		Sample Type	Sample Number	□ Bulk (kN 16 17 18 Particle 0 20 40 PL M 0 20 40	Unit Wt /m ³) 19 20 Size (%) 60 80 IC LL 60 80	21 100 100 0 4	Undrained Strength <u>Test Tr</u> △ Torva ● Pocket ⊠ Qu ○ Field V 0 80	Shear (kPa) ype ne \triangle Pen. Φ ane \bigcirc 120 1602
98.7 1.0 CLAY (FILL) - silty, trace sand, trace organics, trace oxidation 1.1 -1.5 -1.5 -1.5 -1.5 -1.5 -1.6 -1.5 -1.5 -2.0 -1.5 -1.5 -1.5 -2.0 -1.5 -1.5 -1.5 -2.0 -1.5 -1.5 -1.5 -2.0 -1.5 -1.5 -1.5 -2.5 -3.0 -1.5 -1.5 -3.5 -3.5 -1.5 -1.5 -4.0 -3.5 -1.5 -1.5 -4.0 -3.5 -1.5 -1.5 -4.5 -3.5 -1.5 -1.5 -4.5 -5.6 -1.5 -1.5 -4.5 -5.6 -1.5 -1.5 -5.5 -5.6 -1.5 -1.5 -5.5 -5.6 -5.6 -1.5 -5.6 -5.6 -5.6 -1.5 -5.6 -5.6 -5.6 -1.5 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 </td <td></td> <td>0.5</td> <td></td> <td>ORGANIC - bla - mo - inte</td> <td>C CLAY - silty, tra ck vist, firm to stiff ermediate plastici</td> <td>ace sand, trace ro</td> <td>otlets</td> <td></td> <td></td> <td>G1</td> <td>•</td> <td></td> <td></td> <td></td> <td></td>		0.5		ORGANIC - bla - mo - inte	C CLAY - silty, tra ck vist, firm to stiff ermediate plastici	ace sand, trace ro	otlets			G1	•				
4.0 4.0 4.5 6.5 0RGANIC CLAY - silty, trace sand, trace rootlets - black, moist, firm to stiff, intermediate plasticity CLAY - silty, trace sand, trace rootlets, trace oxidation - mottled grey and brown - moist, stiff to very stiff - moist, stiff to very stiff		-2.0		CLAY (FI precipitate - ligh - mo - hig	LL) - silty, trace s es (< 10 mm dia.] It grey to dark gre sist, stiff to very st h plasticity, lamin	and, trace gravel,), trace organics, f :y iff ated silt and clay	trace silt inclusio trace oxidation (<2mm)	ns (< 20 mm dia.), trac	ce	G2					
94.7 94.6 94.6 94.6 ORGANIC CLAY - silty, trace sand, trace rootlets - black, moist, firm to stiff, intermediate plasticity CLAY - silty, trace sand, trace gravel, trace oxidation - motiled grey and brown - motiled gre		-3.0								G3 T4					8
94.6 G7 94.6 G7 ORGANIC CLAY - silty, trace sand, trace rootlets G7 - black, moist, firm to stiff, intermediate plasticity G7 CLAY - silty, trace sand, trace gravel, trace rootlets, trace oxidation - - 5.5 - mottled grey and brown - moist, stiff to very stiff - - high plasticity, blocky G8	04.7	4.5								G5 G6	•				
	<u>94.7</u> 94.6	5.5		ORGANI - bla CLAY - si - mo - mo - hig	C CLAY - silty, tra ck, moist, firm to ilty, trace sand, tr ttled grey and bro ist, stiff to very st h plasticity, block	ace sand, trace ro stiff, intermediate ace gravel, trace r wn iff y	otlets e plasticity rootlets, trace oxic	lation		G7 G8	•			Δ.Φ.	
										13					

		R	K	ę	Sub-Su	rface Log	g			٦	Fest	Hole	TH1	4-0 1 of	2
GE	OTE	CHNI	CAL												
Clien	t: .	Hilderman -	Thomas Frank (Cram		Project Number:	0116	003 C	0						_
Proje	ct Name:	Assiniboine	Forest Lookout	t		Location:	UTM	N-55	23835, E-	626085					
Conti	ractor:	Paddock Dr	illing Ltd.			Ground Elevation:	99.38	3 m							
Meth	od:	108 mm Solid	Stem Auger / Yan	mar C25R Rubber Tra	ack Mount	Date Drilled:	July 2	24, 20	14						
	Sample Ty	/pe:	Grab	(G)	Shelby Tube (T)	Split Spoon (St	S)	< s	olit Barrel ((SB)	Co	re (C)			
	Particle Siz	ze Legend:	Fines	s Clay	Silt	Sand		Gra	ivel		oles	B	oulder	rs	
Elevation (m)	Depth (m) Soil Symbol			MATERIAL I	DESCRIPTION		Sample Type	Sample Number	16 17 Partii 0 20 4 PL 0 20 4	(kN/m ³) 18 19 18 19 18 19 18 19 18 19 10 60 MC L 40 60	20 21 - -) 80 100 L 80 100	011d Str 2 0 P 0 F 0 F 0 40	ength (<u>Fest Ty</u> Torvan ocket F ⊠ Qu I Field Va 80 1:	(kPa) pe $\Delta Pen. \Phi$ $\Delta ane \bigcirc$ 20 10	•
99.3	-0.5-	ORGAN CLAY (F precipita - lig - m - hi	IIC CLAY - silty, trac FILL) - silty, trac ttes (< 10 mm d ght brown loist, very stiff to gh plasticity	trace sand, trace r e sand, trace grave ia.), trace organics o hard	rootlets, black, mois el, trace silt inclusio (woody)	st, compact, low plastici ns (< 20 mm dia.), trac	ity	G15 G16							
	-1.5-							G17						•	
	-3.0-							G18					•		
94.3 94.2	5.0	ORGAN - bl CLAY - (<5 mm - m - m - hi	IC CLAY - silty, ack, moist to we silty, trace sand),trace rootlets, ottled grey and loist, stiff to very gh plasticity, blo	trace sand et, very stiff, low to , trace gravel, trace trace oxidation brown / stiff ocky	intermediate plastice silt inclusions (<5	city mm), trace precipitates	6	T19 G20 G21 G22				•	A 0		
Logg	ed By: _N	artial Lemoi	ne	Review	red By: _Brent Ha	y		Proje	ct Engine	er: Brer	nt Hay				

Sub-Surface Log

2 of 2

uc		CL					
Elevation (m)	Depth (m)	Soil Symbol	MATERIAL DESCRIPTION	Sample Type	Sample Number	□ Bulk Unit Wt 16 17 (klVm³) Particle Size (%) 0 20 40 60 80 100 PL MC LL 0 20 40 60 80 100 0	Undrained Shear <u>Strength</u> (kPa) <u>Test Type</u> △ Torvane △ ● Pocket Pen. ● ⊠ Qu ⊠ ○ Field Vane ○ 40 80 120 160200
88.4	-7.0 -7.5 -8.0 -9.0 -9.5 -10.0 -11.5 -11.5		- trace till inclusions (<20 mm dia.) below 8.8 m - grey below 10.1 m SILT (TILL) - trace to some clay, trace oxidation - light grey - moist, compact to dense - iow plasticity - some sand below 11.6 m END OF TEST HOLE AT 11.7 m IN SILT (TILL) Notes: 1. Power auger refusal at 11.7 m. 2. No sloughing observed. 11.0 m in silt (till). 3. Seepage observed at 11.0 m in silt (till). 4. Water level was measured to 11.4 m depth. 5. Test hole backfilled with auger cuttings to the ground surface.		T23 G24 G25 T26 G27		
Logg	ed By:	Marti	al Lemoine Reviewed By: Brent Hay		Proje	ct Engineer: Brent Hay	

Appendix B – Soils Laboratory Testing

0116 003 00
Hilderman Thomas Frank Cram
Assiniboine Forest Lookout

Sample Date	24-Jul-14
Test Date	25-Jul-14
Technician	Daniel Mroz

Test Pit	TH14-01	TH14-01	TH14-01	TH14-01	TH14-01	TH14-01
Depth (m)	0.0 - 0.3	1.1 - 1.2	2.6 - 2.7	3.1 - 3.2	4.1 - 4.3	4.7 - 4.9
Sample #	G1	G2	G3	T4	G5	G6
Tare ID	F96	W108	Z54	F14	A26	N53
Mass of tare	8.4	8.4	8.3	8.4	8.2	8.4
Mass wet + tare	65.1	166.9	260.0	294.3	320.3	310.4
Mass dry + tare	52.7	135.6	207.0	220.4	237.1	228.9
Mass water	12.4	31.3	53.0	73.9	83.2	81.5
Mass dry soil	44.3	127.2	198.7	212.0	228.9	220.5
Moisture %	28.0%	24.6%	26.7%	34.9%	36.3%	37.0%

Test Pit	TH14-01	TH14-01	TH14-01	TH14-01	TH14-01	TH14-01
Depth (m)	5.0 - 5.2	5.6 - 5.8	5.8 - 5.9	7.2 - 7.3	8.5 - 8.7	8.8 - 8.9
Sample #	G7	G8	Т9	G10	G11	T12
Tare ID	Z77	F10	Z75	F95	Z57	F82
Mass of tare	8.3	8.4	8.4	8.3	8.3	8.5
Mass wet + tare	241.5	300.4	262.2	309.8	289.6	377.4
Mass dry + tare	170.0	219.0	199.0	215.8	203.9	264.7
Mass water	71.5	81.4	63.2	94.0	85.7	112.7
Mass dry soil	161.7	210.6	190.6	207.5	195.6	256.2
Moisture %	44.2%	38.7%	33.2%	45.3%	43.8%	44.0%

Test Pit	TH14-01	TH14-01	TH14-02	TH14-02	TH14-02	TH14-02
Depth (m)	10.5 - 10.7	11.7 - 11.9	0.1 - 0.3	0.9 - 1.1	1.4 - 1.5	2.9 - 3.0
Sample #	G13	G14	G15	G16	G17	G18
Tare ID	Z29	Z101	F74	N13	W26	F74
Mass of tare	8.4	8.2	8.5	8.4	8.3	8.2
Mass wet + tare	341.8	312.4	279.4	300.7	255.1	265.9
Mass dry + tare	243.4	269.1	217.0	234.1	191.9	198.4
Mass water	98.4	43.3	62.4	66.6	63.2	67.5
Mass dry soil	235.0	260.9	208.5	225.7	183.6	190.2
Moisture %	41.9%	16.6%	29.9%	29.5%	34.4%	35.5%

0116 003 00
Hilderman Thomas Frank Cram
Assiniboine Forest Lookout
Hilderman Thomas Frank Cra Assiniboine Forest Lookout

Sample Date	24-Jul-14
Test Date	25-Jul-14
Technician	Daniel Mroz

Test Pit	TH14-02	TH14-02	TH14-02	TH14-02	TH14-02	TH14-02
Depth (m)	4.6 - 4.7	5.2 - 5.3	5.5 - 5.6	5.9 - 6.1	7.6 - 7.7	9.0 - 9.1
Sample #	T19	G20	G21	G22	T23	G24
Tare ID	F45	H46	Z47	N96	Z59	E112
Mass of tare	8.3	8.4	8.6	8.4	8.4	8.5
Mass wet + tare	227.4	330.2	260.1	276.5	367.5	265.2
Mass dry + tare	168.6	227.1	188.9	203.7	246.6	192.3
Mass water	58.8	103.1	71.2	72.8	120.9	72.9
Mass dry soil	160.3	218.7	180.3	195.3	238.2	183.8
Moisture %	36.7%	47.1%	39.5%	37.3%	50.8%	39.7%

Test Pit	TH14-02	TH14-02	TH14-02	TH14-02	
Depth (m)	10.2 - 10.4	10.7 - 10.8	10.9 - 11.3	11.6 - 11.7	
Sample #	G25	T26 CLAY	T26 SILT (TILL)	G27	
Tare ID	H99	N10	H79	F88	
Mass of tare	8.4	8.5	8.3	8.3	
Mass wet + tare	245.2	428.5	385.8	375.3	
Mass dry + tare	171.0	306.1	345.0	340.5	
Mass water	74.2	122.4	40.8	34.8	
Mass dry soil	162.6	297.6	336.7	332.2	
Moisture %	45.6%	41.1%	12.1%	10.5%	

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout
Test Hole	TH14-01
Sample #	T04
Depth (m)	2.7 - 3.3
Sample Date	24-Jul-14
Test Date	25-Jul-14
Technician	Lee Boughton

Tube Extraction

Recovery (mm) 530

Bottom - 3.3 m	3.20) m		3.05 m		2.89 m	Top - 2.7 m
	F	р	Moisture Content		Qu		
			Visual		γ_{Bulk}		
75 mm			152 mm		153 mm		150 mm
Visual Classif	ication	l			Moisture Cor	ntent	
Material	CLAY	(Fill)		_	Tare ID		F14
Composition	silty			_	Mass tare (g)		8.4
trace gravel				_	Mass wet + tare	e (g)	294.3
trace sand				_	Mass dry + tare	e (g)	220.4
trace organics (re	ootlets)			_	Moisture %		34.9%
				_	Unit Weight		
				-	Bulk Weight (g)	1143.00
Color	dark g	rey		_	0 (0)		
Moisture	moist	•		_	Length (mm)	1	153.31
Consistency	stiff			_	••••	2	153.21
Plasticity	high p	lasticity		_		3	153.11
Structure	blocky	,		_		4	153.25
Gradation	-			-	Average Lengt	h (m)	0.153
Torvane					Diam. (mm)	1	72.36
Reading		_	-			2	72.33
Vane Size (s,m,	I)	_	-			3	72.30
Undrained Shea	ar Stren	gth (kPa)	-			4	72.22
Pockot Popot	romote	or.			Average Diame	eter (m)	0.072
Reading	1	71	1 50	_	V_{olumo} (m ³)		6 29F-04
	2	-	1.30	 		$ht (kN/m^3)$	0.23E-04 17 8
	-	-	1.50	_	Bulk Unit Weig	ht (pcf)	113.4
	Avera	-	1 43	_	Dry Unit Woigh	(kN/m^3)	13.2
Undrained Shea	ar Stren	, qth (kPa)	70.3	-	Dry Unit Weigh	t (pcf)	84.1
		· · · · · · · · ·	. 010	_	,	11 · · /	

Client ProjectHilderman Thomas Frank Cram Assiniboine Forest LookoutTest Hole Sample #TH14-01 T04Depth (m)2.7 - 3.3Unconfined StrengthSample Date24-Jul-14kPaksfTest Date25-Jul-14Max qu146.23.1TechnicianLee BoughtonMax Su73.11.5	Project No.	0116 003 00			
ProjectAssiniboline Forest LookoutTest HoleTH14-01Sample #T04Depth (m)2.7 - 3.3Sample Date24-Jul-14Sample Date25-Jul-14Test Date25-Jul-14Max qu146.2Max Su73.11.5	Client	Hilderman Thomas Frank Cram			
Test Hole TH14-01 Sample # T04 Depth (m) 2.7 - 3.3 Unconfined Strength Sample Date 24-Jul-14 kPa ksf Test Date 25-Jul-14 Max qu 146.2 3.1 Technician Lee Boughton Max Su 73.1 1.5	Project	Assiniboine Forest Lookout			
Test Hole TH14-01 Sample # T04 Depth (m) 2.7 - 3.3 Unconfined Strength Sample Date 24-Jul-14 kPa ksf Test Date 25-Jul-14 Max qu 146.2 3.1 Technician Lee Boughton Max Su 73.1 1.5					
Sample # T04 Depth (m) 2.7 - 3.3 Unconfined Strength Sample Date 24-Jul-14 kPa ksf Test Date 25-Jul-14 Max qu 146.2 3.1 Technician Lee Boughton Max Su 73.1 1.5	l est Hole	I H14-01			
Depth (m) 2.7 - 3.3 Unconfined Strength Sample Date 24-Jul-14 kPa ksf Test Date 25-Jul-14 Max qu 146.2 3.1 Technician Lee Boughton Max Su 73.1 1.5	Sample #	T04			
Sample Date 24-Jul-14 kPa ksf Test Date 25-Jul-14 Max qu 146.2 3.1 Technician Lee Boughton Max Su 73.1 1.5	Depth (m)	2.7 - 3.3	Unconfine	d Strength	
Test Date 25-Jul-14 Max q _u 146.2 3.1 Technician Lee Boughton Max S _u 73.1 1.5	Sample Date	24-Jul-14		kPa	ksf
TechnicianLee BoughtonMax Su73.11.5	Test Date	25-Jul-14	Max q _u	146.2	3.1
	Technician	Lee Boughton	<u>Max Su</u>	73.1	1.5

Specimen Data

Description CLAY (Fill) - silty, trace gravel, trace sand, trace organics (rootlets), dark grey, moist, stiff, high plasticity, blocky

Length	153.2	(mm)	Moisture %	35%	
Diameter	72.3	(mm)	Bulk Unit Wt.	17.8	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	13.2	(kN/m^3)
Initial Area	0.00411	(m ²)	Liquid Limit	-	(
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Pocket Pene	Pocket Penetrometer			
Reading	Undrained Sh	near Strength	Reading	Undrained S	hear Strength		
tsf	kPa	ksf	tsf	kPa	ksf		
-	-	-	1.50	73.6	1.54		
Vane Size			1.30	63.8	1.33		
-			1.50	73.6	1.54		
			1.43	70.3	1.47		

Failure Geometry Sketch:

Photo:

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004106	0.0	0.00	0.00
10	9	0.2540	0.17	0.004113	29.4	7.16	3.58
20	22	0.5080	0.33	0.004119	72.1	17.49	8.75
30	39	0.7620	0.50	0.004126	128.6	31.17	15.58
40	64	1.0160	0.66	0.004133	211.0	51.06	25.53
50	92	1.2700	0.83	0.004140	303.3	73.26	36.63
60	122	1.5240	0.99	0.004147	403.8	97.37	48.69
70	146	1.7780	1.16	0.004154	484.6	116.67	58.33
80	162	2.0320	1.33	0.004161	538.5	129.42	64.71
90	174	2.2860	1.49	0.004168	578.9	138.90	69.45
100	181	2.5400	1.66	0.004175	602.5	144.31	72.16
110	183	2.7940	1.82	0.004182	609.2	145.68	72.84
120	184	3.0480	1.99	0.004189	612.6	146.24	73.12
130	181	3.3020	2.16	0.004196	602.5	143.58	71.79
140	174	3.5560	2.32	0.004203	578.9	137.73	68.87
150	166	3.8100	2.49	0.004210	552.0	131.10	65.55

Project No. Client Project	0116 003 00 Hilderman Thomas Frank Cram Assiniboine Forest Lookout			
Test Hole	TH14-01			
Sample #	Т09			
Depth (m)	5.8 - 6.3	Unconfined	Strength	
Sample Date	24-Jul-14		kPa	ksf
Test Date	11-Aug-14	Max q _u	133.2	2.8
Technician	Jodi Neumann	Max S _u	66.6	1.4

Specimen Data

Description CLAY - silty, trace rootlets, dark grey, moist, very stiff, high plasticity, blocky

Length	152.6	(mm)	Moisture %	33%	
Diameter	72.4	(mm)	Bulk Unit Wt.	18.7	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	14.0	(kN/m^3)
Initial Area	0.00411	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Pocket Pene	Pocket Penetrometer				
Reading	Undrained Sh	near Strength	Reading	Undrained S	hear Strength			
tsf	kPa	ksf	tsf	kPa	ksf			
-	-	-	2.20	107.9	2.25			
Vane Size			2.10	103.0	2.15			
-			1.90	93.2	1.95			
			2.07	101.4	2.12			

Failure Geometry

Sketch:

Photo:

TREK Project OII6 OO3 Location Assini boine Forest Hole No Trille -01 Sample No. TO9 Depth 19-N. Date Ang 11, 2014

Unconfined Compressive Strength ASTM D2166

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004113	0.0	0.00	0.00
10	6	0.2540	0.17	0.004120	19.6	4.76	2.38
20	12	0.5080	0.33	0.004127	39.3	9.51	4.76
30	21	0.7620	0.50	0.004134	68.8	16.64	8.32
40	31	1.0160	0.67	0.004140	102.2	24.69	12.34
50	42	1.2700	0.83	0.004147	138.5	33.39	16.69
60	52	1.5240	1.00	0.004154	171.4	41.27	20.63
70	73	1.7780	1.17	0.004161	240.7	57.84	28.92
80	89	2.0320	1.33	0.004168	293.4	70.40	35.20
90	105	2.2860	1.50	0.004175	346.6	83.00	41.50
100	118	2.5400	1.66	0.004183	390.3	93.32	46.66
110	129	2.7940	1.83	0.004190	427.4	102.01	51.01
120	138	3.0480	2.00	0.004197	457.7	109.06	54.53
130	145	3.3020	2.16	0.004204	481.3	114.48	57.24
140	150	3.5560	2.33	0.004211	498.1	118.28	59.14
150	154	3.8100	2.50	0.004218	511.5	121.27	60.64
160	158	4.0640	2.66	0.004225	525.0	124.25	62.13
170	161	4.3180	2.83	0.004233	535.1	126.43	63.21
180	164	4.5720	3.00	0.004240	545.2	128.59	64.30
190	166	4.8260	3.16	0.004247	552.0	129.96	64.98
200	168	5.0800	3.33	0.004255	558.7	131.32	65.66
210	170	5.3340	3.50	0.004262	565.5	132.68	66.34
220	171	5.5880	3.66	0.004269	568.8	133.23	66.62
230	169	5.8420	3.83	0.004277	562.1	131.43	65.72

Project No.0116 003 00ClientHilderman Thomas Frank CramProjectAssiniboine Forest Lookout

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	167	6.0960	3.9946	0.004284	555.4	129.64	64.82
250	166	6.3500	4.16	0.004291	552.0	128.62	64.31
260	155	6.6040	4.33	0.004299	514.9	119.78	59.89
270	145	6.8580	4.49	0.004306	481.3	111.75	55.88
280	137	7.1120	4.66	0.004314	454.3	105.31	52.65
290	124	7.3660	4.83	0.004321	410.5	95.00	47.50
300	120	7.6200	4.99	0.004329	397.0	91.72	45.86
310	112	7.8740	5.16	0.004337	370.1	85.35	42.68
320	108	8.1280	5.33	0.004344	356.7	82.10	41.05
330	100	8.3820	5.49	0.004352	329.7	75.76	37.88

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout
Test Hole	TH14-01
Sample #	T12
Depth (m)	8.8 - 9.4
Sample Date	24-Jul-14
Test Date	25-Jul-14
Technician	Lee Boughton

Tube Extraction

Recovery (mm) 600

Bottom - 9.4 m		9.09 m	8.94	4 m	Top - 8.8 m	
Vi	sual	Q	L	PP Tv	Moisture Content	
		YBu	lk		Visual	
34	9 mm	151 г	nm		100 mm	
Visual Classification		Moisture Con	tent			
Material CLAY		Tare ID			F82	
Composition silty		Mass tare (g)			8.5	
trace silt inclusions (<5 mm diam	ı.)	Mass wet + tare	e (g)		377.4	
trace precipitates		Mass dry + tare	e (g)		264.7	
		Moisture %			44.0%	
- <u></u>		Unit Weight				
		Bulk Weight (g)			1149.80	
Color mottled grey a	nd brown					
Moisture moist		Length (mm)	1		150.69	
Consistency stiff			2		150.59	
Plasticity high plasticity			3		150.70	
Structure blocky			4		150.65	
Gradation -		Average Lengtl	n (m)		0.151	
Torvane		Diam. (mm)	1		72.96	
Reading	0.35		2		72.70	
Vane Size (s,m,l)	S		3		72.70	
Undrained Shear Strength (kP	a) <u>85.8</u>		4		72.56	
Pocket Penetrometer		Average Diame	ter (m)		0.073	
Reading 1	1.70	Volume (m ³)			6.26F-04	
2	1.90	Rulk Unit Woid	ht (kN/m ³)	_	18.0	
- 3	1.50	Bulk Unit Weid	ht (pcf)		114.7	
Average	1.70	Dry Unit Weigh	t (kN/m ³)		12.5	
Undrained Shear Strength (kP	a) 83.4	Dry Unit Weigh	t (pcf)	_	79.6	

Project No. Client Project	0116 003 00 Hilderman Th Assiniboine F	omas Frank Cram orest Lookout				
Test Hole Sample # Depth (m)	TH14-01 T12 8.8 - 9.4			Unconfine	ed Strenath	
Sample Date	24-Jul-14				kPa	ksf
Test Date	25-Jul-14			Max q _u	128.0	2.7
Technician	Lee Boughtor	า		Max S _u	64.0	1.3
Specimen E	Data					
Description	CLAY - silty, t plasticity, bloc	race silt inclusions (<5 ky	mm diam.), trace precipitate	es, mottled gr	ey and brown, moist,	stiff, high
Lenath	150.7	(mm)	Moisture %	44%		
Diameter	72.7	(mm)	Bulk Unit Wt.	18.0	(kN/m ³)	
L/D Ratio	2.1		Dry Unit Wt.	12.5	(kN/m^3)	
Initial Area	0.00415	(m ²)	Liquid Limit	-	(,	
Load Rate	1.00	(%/min)	Plastic Limit	-		
			Plasticity index	-		
Undrained S	Shear Streng	gth Tests				
Torvane			Pocket Penet	rometer		
Reading	Undrained S	Shear Strength	Reading	Undraine	d Shear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.35	85.8	1.79	1.70	83.4	1.74	
Vane Size			1.90	93.2	1.95	
S			1.50	73.6	1.54	
			1.70	83.4	1.74	
Failure Geo	metrv					
Sketch:	,		Photo:			

Photo:

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation	Load Ring	Deflection	Axial Strain	Corrected Area	Axial Load	Compressive	Shear
Dial Reading	Dial Reading	(mm)	(%)	(m²)	(N)	Stress, q _u (kPa)	Stress, S _u (kPa)
0	0	0.0000	0.00	0.004154	0.0	0.00	0.00
10	8	0.2540	0.17	0.004161	26.2	6.29	3.14
20	18	0.5080	0.34	0.004169	58.9	14.14	7.07
30	28	0.7620	0.51	0.004176	92.3	22.10	11.05
40	38	1.0160	0.67	0.004183	125.3	29.96	14.98
50	47	1.2700	0.84	0.004190	155.0	36.99	18.49
60	55	1.5240	1.01	0.004197	181.4	43.21	21.61
70	62	1.7780	1.18	0.004204	204.4	48.62	24.31
80	69	2.0320	1.35	0.004211	227.5	54.02	27.01
90	74	2.2860	1.52	0.004218	244.0	57.84	28.92
100	80	2.5400	1.69	0.004226	263.8	62.42	31.21
110	85	2.7940	1.85	0.004233	280.2	66.20	33.10
120	91	3.0480	2.02	0.004240	300.0	70.76	35.38
130	96	3.3020	2.19	0.004248	316.5	74.52	37.26
140	103	3.5560	2.36	0.004255	339.8	79.86	39.93
150	109	3.8100	2.53	0.004262	360.0	84.46	42.23
160	114	4.0640	2.70	0.004270	376.9	88.26	44.13
170	120	4.3180	2.87	0.004277	397.0	92.83	46.42
180	125	4.5720	3.03	0.004285	413.9	96.61	48.30
190	130	4.8260	3.20	0.004292	430.7	100.36	50.18
200	135	5.0800	3.37	0.004299	447.6	104.10	52.05
210	140	5.3340	3.54	0.004307	464.4	107.82	53.91
220	144	5.5880	3.71	0.004315	477.9	110.76	55.38
230	148	5.8420	3.88	0.004322	491.4	113.68	56.84

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	153	6.0960	4.0463	0.004330	508.2	117.38	58.69
250	156	6.3500	4.21	0.004337	518.3	119.50	59.75
260	160	6.6040	4.38	0.004345	531.8	122.39	61.20
270	163	6.8580	4.55	0.004353	541.9	124.50	62.25
280	165	7.1120	4.72	0.004360	548.6	125.82	62.91
290	167	7.3660	4.89	0.004368	555.4	127.14	63.57
300	168	7.6200	5.06	0.004376	558.7	127.68	63.84
310	168	7.8740	5.23	0.004384	558.7	127.45	63.73
320	169	8.1280	5.40	0.004391	562.1	127.99	64.00
330	168	8.3820	5.56	0.004399	558.7	127.00	63.50
340	165	8.6360	5.73	0.004407	548.6	124.48	62.24

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout
Test Hole	TH14-02
Sample #	T19
Depth (m)	4.6 - 5.0
Sample Date	24-Jul-14
Test Date	25-Jul-14
Technician	Lee Boughton

Tube Extraction

Recovery (mm) 460

Bottom - 5.0 m 4.83 m			4.72	4.7 <u>2</u> m		
TOPSOIL - silty, trace organics,		Transitio	Qu P Itisu L Υ _{Bulk} Τ		Moisture Content Visual	
	201 mm		114 mm		145 mm	
Visual Classif	ication		Moisture Cont	tent		
Material	CLAY		Tare ID			F45
Composition	siltv		Mass tare (q)			8.3
trace silt inclusio	ns (<5 mm diam.)		Mass wet + tare	(q)		227.4
trace sand	, ,		Mass dry + tare	(g)		168.6
			Moisture %			36.7%
			Unit Weight			
<u></u>			Bulk Weight (g)			866.80
Color	grey					440 70
Moisture	firm to stiff		Length (mm)	1		113.78
Disistency	high placticity			2		114.20
Structure	blocky			3		114.39
Gradation			Average Length	Average Length (m)		
Oradation			Average Length	(11)		0.114
Torvane			Diam. (mm)	1		72.53
Reading		0.37		2		72.56
Vane Size (s,m,	l)	m		3		72.52
Undrained Shea	ar Strength (kPa)	36.3		4		72.66
			Average Diamet	er (m)		0.073
Pocket Penet	rometer					
Reading	1	1.20	Volume (m ³)		4.7	72E-04
	2	1.30	Bulk Unit Weigh	nt (kN/m ³)		18.0
	3	1.20	Bulk Unit Weigh	nt (pcf)		114.6
	Average	1.23	Drv Unit Weight	(kN/m ³)		13.2
Undrained Shear Strength (kPa) 60.5		Dry Unit Weight	(pcf)		83.9	

Project No. Client Project	0116 003 00 Hilderman Thomas Frank Cram Assiniboine Forest Lookout			
Test Hole	IH14-02			
Sample #	T19			
Depth (m)	4.6 - 5.0	Unconfin	ed Strength	
Sample Date	24-Jul-14		kPa	ksf
Test Date	25-Jul-14	Max q _u	71.9	1.5
Technician	Lee Boughton	Max S _u	35.9	0.8

Specimen Data

Description CLAY - silty, trace silt inclusions (<5 mm diam.), trace sand, grey, moist, firm to stiff, high plasticity, blocky

Length	114.2	(mm)	Moisture %	37%	
Diameter	72.6	(mm)	Bulk Unit Wt.	18.0	(kN/m ³)
L/D Ratio	1.6		Dry Unit Wt.	13.2	(kN/m^3)
Initial Area	0.00414	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Pocket Pene	Pocket Penetrometer				
Reading	Undrained Shear Strength		Reading	Undrained Shear Strength				
tsf	kPa	ksf	tsf	kPa	ksf			
0.37	36.3	0.76	1.20	58.9	1.23			
Vane Size			1.30	63.8	1.33			
m			1.20	58.9	1.23			
			1.23	60.5	1.26			

Failure Geometry Sketch:

Photo:

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation	Load Ring	Deflection	Axial Strain	Corrected Area	Axial Load	Compressive	Shear
Dial Reading	Dial Reading	(mm)	(%)	(%) (m ²)		Stress, q _u (kPa)	(kPa)
0	0	0.0000	0.00	0.004136	0.0	0.00	0.00
10	3	0.2540	0.22	0.004145	9.8	2.37	1.18
20	5	0.5080	0.44	0.004154	16.3	3.93	1.97
30	9	0.7620	0.67	0.004164	29.4	7.07	3.53
40	16	1.0160	0.89	0.004173	52.4	12.55	6.27
50	22	1.2700	1.11	0.004182	72.1	17.23	8.61
60	30	1.5240	1.33	0.004192	98.9	23.60	11.80
70	36	1.7780	1.56	0.004201	118.7	28.25	14.12
80	42	2.0320	1.78	0.004211	138.5	32.88	16.44
90	48	2.2860	2.00	0.004220	158.3	37.50	18.75
100	54	2.5400	2.22	0.004230	178.0	42.08	21.04
110	59	2.7940	2.45	0.004240	194.5	45.88	22.94
120	64	3.0480	2.67	0.004249	211.0	49.66	24.83
130	69	3.3020	2.89	0.004259	227.5	53.41	26.71
140	73	3.5560	3.11	0.004269	240.7	56.38	28.19
150	77	3.8100	3.34	0.004279	253.9	59.33	29.67
160	80	4.0640	3.56	0.004289	263.8	61.51	30.75
170	83	4.3180	3.78	0.004299	273.7	63.66	31.83
180	86	4.5720	4.00	0.004308	283.5	65.81	32.90
190	89	4.8260	4.23	0.004318	293.4	67.95	33.98
200	91	5.0800	4.45	0.004329	300.0	69.31	34.66
210	93	5.3340	4.67	0.004339	306.6	70.67	35.34
220	94	5.5880	4.89	0.004349	309.9	71.26	35.63
230	95	5.8420	5.12	0.004359	313.2	71.85	35.93

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)	
240	95	6.0960	5.3398	0.004369	313.2	71.68	35.84	
250	95	6.3500	5.56	0.004380	313.2	71.51	35.76	
260	95	6.6040	5.78	0.004390	313.2	71.35	35.67	
270	94	6.8580	6.01	0.004400	309.9	70.43	35.21	

Project No. Client Project	0116 003 00 Hilderman Thomas Frank Cram Assiniboine Forest Lookout
Test Hole	TH14-02
Sample #	T23
Depth (m)	7.6 - 8.2
Sample Date	24-Jul-14
Test Date	25-Jul-14
Technician	Lee Boughton

Tube Extraction

Recovery (mm) 600

Bottom - 8.2 m			7.87	′ m	7	7.72 m	Top - 7.6 m
				Q	u	PP	Moisture Content
				Υ _{Βι}	ılk	Τv	Visual
	348 mm	I		152	mm		100 mm
Visual Classifi	cation			Moisture Cor	ntent		
Material	CLAY			Tare ID			Z59
Composition	silty			Mass tare (g)			8.4
trace silt inclusion	ns (<5 mm diam.)			Mass wet + tare	e (g)		367.5
trace precipitates				Mass dry + tare	∋ (g)		246.6
trace oxidation				Moisture %			50.8%
				Unit Weight			
				Bulk Weight (g)		1123.50
Color	mottled grey and b	prown					
Moisture	moist			Length (mm)	1		151.95
Consistency	stiff to very stiff				2		151.75
Plasticity	high plasticity				3		151.55
Structure	blocky				4		151.82
Gradation	-			Average Lengt	h (m)		0.152
Torvane				Diam. (mm)	1		73.21
Reading		0.43			2		73.20
Vane Size (s,m,l)	S			3		73.21
Undrained Shea	r Strength (kPa)	105.4			4		73.15
				Average Diame	eter (m)		0.073
Pocket Penetr	ometer			-			
Reading	1	1.70		Volume (m ³)			6.39E-04
-	2	1.30		Bulk Unit Weia	ht (kN/m ³)		17.3
	3	1.70		Bulk Unit Weig	ht (pcf)		109.8
	Average	1.57		Dry Unit Weigh	t (kN/m ³)		11.4
Undrained Shea	r Strength (kPa)	76.8		Dry Unit Weigh	it (pcf)	_	72.9

0116 003 00

Project No.

Client Project	Hilderman Thomas Frank Cram Assiniboine Forest Lookout						
Test Hole	TH14-02						
Sample #	T23						
Depth (m)	7.6 - 8.2	Unconfine	Unconfined Strength				
Sample Date	24-Jul-14		kPa	ksf			
Test Date	25-Jul-14	Max q _u	119.4	2.5			
Technician	Lee Boughton	<u>Max Su</u>	59.7	1.2			

Specimen Data

Description CLAY - silty, trace silt inclusions (<5 mm diam.), trace precipitates, trace oxidation, mottled grey and brown, moist, stiff to very stiff, high plasticity, blocky

Length	151.8	(mm)	Moisture %	51%	
Diameter	73.2	(mm)	Bulk Unit Wt.	17.3	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	11.4	(kN/m^3)
Initial Area	0.00421	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Pocket Pene	Pocket Penetrometer				
Reading	Undrained Shear Strength		Reading	Undrained Shear Strength				
tsf	kPa	ksf	tsf	kPa	ksf			
0.43	105.4	2.20	1.70	83.4	1.74			
Vane Size			1.30	63.8	1.33			
S			1.70	83.4	1.74			
			1.57	76.8	1.60			

Failure Geometry Sketch:

Photo:

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation	Load Ring	Deflection	Axial Strain	Corrected Area	Axial Load	Compressive	Shear
Dial Reading	Dial Reading	(mm)	(%)	(m²)	(N)	Stress, q _u (kPa)	Stress, S _u
	0	0.0000	0.00	0.004207	0.0	0.00	
0	0	0.0000	0.00	0.004207	0.0	0.00	0.00
10	3	0.2540	0.17	0.004215	9.8	2.33	1.16
20	5	0.5080	0.33	0.004222	16.3	3.87	1.94
30	11	0.7620	0.50	0.004229	36.0	8.51	4.25
40	17	1.0160	0.67	0.004236	55.7	13.14	6.57
50	24	1.2700	0.84	0.004243	78.6	18.53	9.27
60	32	1.5240	1.00	0.004250	105.5	24.83	12.41
70	40	1.7780	1.17	0.004257	131.9	30.98	15.49
80	48	2.0320	1.34	0.004265	158.3	37.11	18.56
90	55	2.2860	1.51	0.004272	181.4	42.45	21.23
100	61	2.5400	1.67	0.004279	201.1	47.00	23.50
110	66	2.7940	1.84	0.004286	217.6	50.77	25.38
120	71	3.0480	2.01	0.004294	234.1	54.52	27.26
130	75	3.3020	2.18	0.004301	247.3	57.49	28.75
140	80	3.5560	2.34	0.004308	263.8	61.22	30.61
150	85	3.8100	2.51	0.004316	280.2	64.93	32.47
160	90	4.0640	2.68	0.004323	296.7	68.64	34.32
170	94	4.3180	2.85	0.004331	309.9	71.56	35.78
180	100	4.5720	3.01	0.004338	329.7	76.00	38.00
190	105	4.8260	3.18	0.004346	346.6	79.75	39.87
200	109	5.0800	3.35	0.004353	360.0	82.70	41.35
210	114	5.3340	3.51	0.004361	376.9	86.42	43.21
220	119	5.5880	3.68	0.004368	393.7	90.12	45.06
230	124	5.8420	3.85	0.004376	410.5	93.81	46.91

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	129	6.0960	4.0167	0.004384	427.4	97.50	48.75
250	134	6.3500	4.18	0.004391	444.2	101.16	50.58
260	138	6.6040	4.35	0.004399	457.7	104.04	52.02
270	142	6.8580	4.52	0.004407	471.2	106.92	53.46
280	146	7.1120	4.69	0.004414	484.6	109.79	54.89
290	150	7.3660	4.85	0.004422	498.1	112.63	56.32
300	153	7.6200	5.02	0.004430	508.2	114.72	57.36
310	156	7.8740	5.19	0.004438	518.3	116.80	58.40
320	158	8.1280	5.36	0.004446	525.0	118.10	59.05
330	160	8.3820	5.52	0.004453	531.8	119.41	59.70
340	159	8.6360	5.69	0.004461	528.4	118.44	59.22
350	159	8.8900	5.86	0.004469	528.4	118.23	59.12
360	159	9.1440	6.03	0.004477	528.4	118.02	59.01
370	157	9.3980	6.19	0.004485	521.6	116.30	58.15

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout
Test Hole	TH14-02
Sample #	T26
Depth (m)	10.7 - 11.3
Sample Date	24-Jul-14
Test Date	25-Jul-14
Technician	Lee Boughton

Tube Extraction

Recovery (mm) 600

Bottom - 11.3 m			10.9	10.93 m			Тор	- 10.7 m
SILT (Till) - gravel, trace moist, soft, homogenou	trace clay, trace e sand, light grey, low plasticity, ls	Kept	Transition	Q Y _B ı	U ulk	PP Tv	Moisture Content Visual	
	340 mm			142	mm		118 mm	l
Visual Classif	ication			Moisture Con	tent	S	SILT (Till)	CLAY
Material	CLAY			Tare ID			H79	N10
Composition	silty			Mass tare (g)			8.3	8.5
trace silt till inclus	sions			Mass wet + tare	e (g)		385.8	428.5
				Mass dry + tare	(g)	_	345.0	306.1
				Moisture %			12.1%	41.1%
				Unit Weight				
				Bulk Weight (g)	1	_		1079.10
Color	dark grey							
Moisture	moist			Length (mm)	1			141.73
Consistency	firm				2			141.80
Plasticity	high plasticity				3			141.50
Structure	blocky				4			141.60
Gradation	-			Average Lengtr	n (m)			0.142
Torvane				Diam. (mm)	1			73.00
Reading		0.26			2	_		72.26
Vane Size (s,m,I)	m			3			72.20
Undrained Shea	r Strength (kPa)	25.5			4			72.35
Pockot Popot	romotor			Average Diame	ter (m)	_		0.072
Reading	1	0.60		V_{aluma} (m ³)				5 84F-04
Reading	2 –	0.00		Volume (m)	$h t (k N l/m^3)$			18 1
		0.90		Bulk Unit Weig	ht (pcf)	_		115.4
	Average	0.77		Dry Unit Weigh	$t (kN/m^3)$			12.8
Undrained Shea	r Strength (kPa)	37.6		Dry Unit Weigh	t (pcf)	_		81.7
		0.10		, c	- (I)	-		0

0116 003 00

Project No.

Client Project	Hilderman Thomas Frank Cram Assiniboine Forest Lookout			
Test Hole	TH14-02			
Sample #	T26			
Depth (m)	10.7 - 11.3	Unconfined	Strength	
Sample Date	24-Jul-14		kPa	ksf
Test Date	25-Jul-14	Max q _u	69.4	1.4
Technician	Lee Boughton	<u>Max S_u</u>	34.7	0.7

Specimen Data

Description CLAY - silty, trace silt till inclusions, dark grey, moist, firm, high plasticity, blocky

Length	141.7	(mm)	Moisture %	41%	
Diameter	72.5	(mm)	Bulk Unit Wt.	18.1	(kN/m ³)
L/D Ratio	2.0		Dry Unit Wt.	12.8	(kN/m^3)
Initial Area	0.00412	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane		Pocket Penetrometer				
Reading	Undrained Shear Strength		Reading	Undrained Shear Strength		
tsf	kPa	ksf	tsf	kPa	ksf	
0.26	25.5	0.53	0.60	29.4	0.61	
Vane Size			0.80	39.2	0.82	
m			0.90	44.1	0.92	
			0.77	37.6	0.79	

Failure Geometry Sketch:

Photo:

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation	Load Ring	Deflection	Axial Strain	Corrected Area	Axial Load	Compressive	Shear Stress, S _u
Dial Reading	Dial Reading	(mm)	(%)	(m⁻)	(N)	Stress, q _u (kPa)	(kPa)
0	0	0.0000	0.00	0.004123	0.0	0.00	0.00
10	4	0.2540	0.18	0.004130	13.1	3.17	1.58
20	10	0.5080	0.36	0.004138	32.7	7.90	3.95
30	16	0.7620	0.54	0.004145	52.4	12.63	6.32
40	23	1.0160	0.72	0.004153	75.3	18.14	9.07
50	31	1.2700	0.90	0.004160	102.2	24.57	12.29
60	38	1.5240	1.08	0.004168	125.3	30.07	15.03
70	43	1.7780	1.26	0.004175	141.8	33.95	16.98
80	47	2.0320	1.43	0.004183	155.0	37.05	18.53
90	50	2.2860	1.61	0.004190	164.9	39.34	19.67
100	53	2.5400	1.79	0.004198	174.7	41.62	20.81
110	57	2.7940	1.97	0.004206	187.9	44.69	22.34
120	59	3.0480	2.15	0.004214	194.5	46.17	23.08
130	62	3.3020	2.33	0.004221	204.4	48.42	24.21
140	65	3.5560	2.51	0.004229	214.3	50.68	25.34
150	67	3.8100	2.69	0.004237	220.9	52.14	26.07
160	69	4.0640	2.87	0.004245	227.5	53.59	26.80
170	71	4.3180	3.05	0.004252	234.1	55.05	27.53
180	73	4.5720	3.23	0.004260	240.7	56.50	28.25
190	75	4.8260	3.41	0.004268	247.3	57.93	28.97
200	77	5.0800	3.59	0.004276	253.9	59.37	29.68
210	79	5.3340	3.77	0.004284	260.4	60.79	30.40
220	81	5.5880	3.94	0.004292	267.1	62.22	31.11
230	83	5.8420	4.12	0.004300	273.7	63.64	31.82

Project No.	0116 003 00
Client	Hilderman Thomas Frank Cram
Project	Assiniboine Forest Lookout

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	84	6.0960	4.3033	0.004308	276.9	64.28	32.14
250	85	6.3500	4.48	0.004316	280.2	64.93	32.46
260	87	6.6040	4.66	0.004324	286.8	66.33	33.16
270	88	6.8580	4.84	0.004333	290.2	66.97	33.49
280	89	7.1120	5.02	0.004341	293.4	67.60	33.80
290	90	7.3660	5.20	0.004349	296.7	68.23	34.12
300	91	7.6200	5.38	0.004357	300.0	68.86	34.43
310	91	7.8740	5.56	0.004365	300.0	68.73	34.36
320	92	8.1280	5.74	0.004374	303.3	69.35	34.68
330	92	8.3820	5.92	0.004382	303.3	69.22	34.61
340	92	8.6360	6.10	0.004391	303.3	69.09	34.54
350	92	8.8900	6.28	0.004399	303.3	68.95	34.48
360	91	9.1440	6.46	0.004407	300.0	68.08	34.04